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Abstract 

A supervised learning approach for dynamic sampling 

(SLADS) yielded a seven-fold reduction in the number of pixels 

sampled in hyperspectral Raman microscopy of pharmaceutical 

materials with negligible loss in image quality (~0.1% error). 

Following validation with ground-truth samples, sparse sampling 

strategies were informed in real-time by the preceding set of 

measurements. In brief, Raman spectra acquired at an initial set of 

random positions inform the next most information-rich location to 

subsequently sample within the field of view, which in turn 

iteratively informs the next locations until a stopping criterion 

associated with the reconstruction error is met. Calculation times 

on the order of a few milliseconds were insignificant relative to the 

timeframe for spectral acquisition at a given sampling location. 

The SLADS approach has the distinct advantage of being directly 

compatible with standard Raman instrumentation. Furthermore, 

SLADS is not limited to Raman imaging, providing a time-savings 

in image reconstruction whenever the single-pixel measurement 

time is the limiting factor in image generation. 

Background and Motivation  
The efficacy of active pharmaceutical ingredients (APIs) can 

be greatly impacted by their crystalline form. In the specific case 

of clopidogrel bisulphate, Form I exhibits substantially faster 

dissolution kinetics and bioavailability than Form II, which is the 

thermodynamically favored form. As a result, care is taken during 

the manufacturing process to ensure high yields of the 

thermodynamically metastable Form I product. Success in these 

efforts is informed through a suite of measurements, which include 

Raman spectroscopy. Unfortunately, the limits of detection for 

bulk ensemble averaged Raman measurements are on the order of 

~1%-5%, which is unacceptably high for ensuring long-term 

stability of the drug product.  

Confocal Raman microscopy holds promise for greatly 

reducing the limits of detection by allowing classification of 

individual particles with high confidence. For individual Form I or 

Form II particles, localized Raman from those individual particles 

corresponds to a local concentration of 100%, enabling 

classification based on clear differences in the Raman spectra 

associated with each of the two crystal forms. In this paradigm, in 

which Raman microscopy allows classification of individual 

particles, the lower limit of detection is ultimately dictated by the 

Poisson statistics governing the total number of particles 

interrogated and the mis-classification rate of the spectroscopic 

analysis. However, in practice, the measurement time required to 

perform Raman imaging sets a practical upper bound on the lower 

limit of detection. Because Raman scattering is a relative weak 

process, the long integration times required to obtain spectra with 

sufficient signal to noise greatly limit the broader utility of Raman 

microscopy for per-particle analysis.  

In this context, it is clear that methods capable of enabling 

Raman imaging with fewer total number of pixels sampled have 

the potential to correspondingly reduce the time-frame for Raman 

image acquisition. The faster imaging speeds correspond directly 

to a reduction in the limits of detection for the same time of 

analysis. An approach was developed and validated incorporating 

SLADS in combination with Raman spectral analysis for 

classification. Initial proof-of-concept studies were performed on 

Raman images in which complete spectra were obtained at each 

pixel, followed by implementation of hyperspectral Raman 

imaging and classification of clopidogrel bisulphate 

pharmaceutical materials. 

    

 

 

Theoretical Foundation 
The theoretical foundation of SLADS is detailed in prior 

work1. In brief, for a ground truth underlying object X consisting of 

N pixels, the set of k measurements at locations S combine to 

generate the set of known information Y. 
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The primary goal of the SLADS algorithm is to identify the 

location s(k+1) that reduces the subsequent reconstruction distortion 

between the ground truth and recovered images X and ( )ˆ kX  , 

respectively. For a binary image, the distortion D is defined by the 

following. 
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Since increasing the number of measurements will generally 

improve the accuracy of the reconstruction and reduce the 

distortion, the reduction in distortion R from measurement of the s 
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pixel after k preceding measurements is given by the following 

definition. 

    ( ; ) ( ) ( ; )ˆ ˆ, ,k s k k sR D X X D X X    (3) 

In practice, X is not known in advance. However, the 

expected reduction in distortion (ERD = R ) can be estimated from 

the expectation value of R.  
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The next best k+1 sampling location corresponds to the 

position that maximizes the expected reduction in distortion from 

Eq. 1.4. In SLADS, the relationship between the measurements Y 

and the ERD is a regression function informed by an offline 

training process. 
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Results and Discussion 
Initial studies were performed to assess the merits of the 

SLADS algorithm in hyperspectral image reconstruction. Ground 

truth spectra were acquired by performing Raman spectroscopy at 

each pixel in a 128×128 pixel image consisting of a 1:1 mix of 

Form I and Form II clopidogrel bisulphate particles.  

An instrument schematic for the SLADS Raman microscope 

are shown in Figure 1. In brief, random access within the field of 

view was achieved with a galvanometer mirror pair, followed by 

Raman spectral acquisition at discrete locations. Spectral 

classification was performed to determine composition, and that 

assignment used in the SLADS analysis for selection of the next 

most judicious sampling location.   

 

 
 

Comparisons between random sampling and SLADS are 

shown in Figure 2 for measurements with a known ground-truth 

outcome. A mixture of Form I and Form II clopidogrel bisulphate 

spheroidal particles ~20 m in diameter were prepared by physical 

mixing (mortar and pestle), then cast on a transparent glass prior to 

analysis. Raman spectra were acquired at each location within the 

field of view and classified as Form I, Form II, or background on a 

per-pixel basis based solely on the spectroscopy. Classification 

was performed by spectral dimension reduction through linear 

discriminant analysis, followed by support vector machine analysis 

for determination of classification boundaries.  

 

 
 

From inspection of Figure 2, dynamic sampling provides 

clear advantages over random sampling. Most notably, the 

classification errors corresponding to the border regions between 

locations of different composition were substantially reduced in 

SLADS relative to random sampling. From the measured %error 

based on the ground truth assessment, 15% sampling by SLADS 

recovered an image with negligible uncertainty relative to the 

ground truth result, while random sampling of as much as 50% of 

the pixels still produced measurement errors roughly ten-fold 

greater.  

From these results and other studies incorporating SLADS1,2, 

the greatest benefits are likely to be realized in applications in 

which the measurement time per pixel is necessarily long relative 

to the combined SLADS calculation time and random access 

positioning time. In the case of Raman spectroscopy, typical 

spectral acquisition times greatly exceed the ~1 ms calculation and 

Figure 1. Schematic of the instrument for dynamic sampling image 
construction for Raman hyperspectral microscopy. A fiber-coupled 
Raman probe was used to integrate spectroscopy with an existing 
microscope (Nikon TE2000U). A galvanometer pair was 4f-coupled to 
the objective using a lens pair (not shown). Following calibration, the 
galvanometer pair allowed rapid (~1ms) repositioning of the 785 nm 
Raman laser focal point within the object plane. Concurrent collection 
of the transmitted 785 nm light allowed for bright field imaging in 
perfect registry with the Raman imaging.  
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Figure 2. Analysis of SLADS for chemical imaging based on confocal 
Raman mapping of pharmaceutical materials. Ground truth data were 
collected by performing Raman sampling at every location in the image 
(bottom middle) followed by classification at each pixel as Form I (red), 
Form II (blue), or background (black). Simulations of image 
reconstructions were then performed for both SLADS and random 
sampling (top row, and middle row, respectively). Misclassification 
errors are show in the right-most column for 15% sampling, along with a 
comparison of the reconstruction errors for both SLADS and random 
sampling as the fraction of sampled pixels increases. 

Dynamic
sampling

Random
sampling

100 μm

132-2
IS&T International Symposium on Electronic Imaging 2018

Computational Imaging XVI



 

 

random access times. In such scenarios, SLADS has the potential 

to serve as a general tool for improving image reconstruction 

quality by efficiently sampling the locations most informative for 

image reconstruction.  
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