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Abstract
Computed Tomography (CT) is a non-invasive imaging tech-

nique that reconstructs cross-sectional images of scenes from a
series of projections acquired at different angles. In applications
such as airport security luggage screening, the presence of dense
metal clutter causes beam hardening and streaking in the result-
ing conventionally formed images. These artifacts can lead to ob-
ject splitting and intensity shading that make subsequent labeling
and identification inaccurate. Conventional approaches to metal
artifact reduction (MAR) have post-processed the artifact-filled
images or interpolated the metal regions of the sinogram projec-
tion data. In this work, we examine the use of deep-learning-
based methods to directly correct the observed sinogram projec-
tion data prior to reconstruction using a fully convolutional net-
work (FCN). In contrast to existing learning-based CT artifact
reduction work, we work completely in the sinogram domain and
train a network over the entire sinogram (versus just local image
patches). Since the information in sinograms pertaining to ob-
jects is non-local, patch-based methods are not well matched to
the nature of CT data. The use of an FCN provides better com-
putational scaling than historical perceptron-based approaches.
Using a poly-energetic CT simulation, we demonstrate the poten-
tial of this new approach in mitigating metal artifacts in CT.

Introduction
X-ray computed tomography (CT) allows visualizing the in-

terior of objects in a non-destructive fashion. A source transmits
X-rays which are detected by a receiver after passing through the
region of interest (ROI). This configuration provides projection
data of material properties of the scene at different offsets and
angles. The resulting observed projection data is commonly re-
ferred as the sinogram. Reconstruction algorithms then couple the
observed sinogram with an imaging model to reconstruct cross-
sectional attenuation images of the original scene. The recon-
structed images represent X-ray attenuation properties of objects
in the ROI, which are dependent on X-ray energy.

The Filtered back projection (FBP) algorithm is the standard
reconstruction method used in most CT scanners. FBP produces
excellent reconstructions when we have access to high-quality
sinogram data with complete angular coverage and scenes with
constrained density ranges. In the presence of highly attenuating
metallic objects, however, FBP can produce severe streak arti-
facts resulting from inconsistencies in the underlying assumptions
on which FBP is based [1, 2]. These image artifacts produce in-
tensity shading and object splitting which makes the subsequent
image analysis steps of object segmentation and identification in-
accurate. These challenges are especially strong in security appli-
cations, where scenes are more likely to contain a large spectrum

(a) Without metals (b) With metals

Figure 1. Reconstruction of an example scene without and with metallic

objects using FBP method. This illustrates the challenging nature of metal

artifacts which can severely impact CT reconstructions.

of materials. The problem is illustrated in Figure 1 for a synthetic
example, where reconstructions of the same scene with and with-
out highly-absorbing metals are presented.

X-ray CT has applications in a vast range of areas includ-
ing medical imaging [3], materials sciences [4], and security [5].
Metal artifacts are a major challenge in CT image reconstruc-
tions. In this paper, we propose a deep learning-based approach
for metal artifact reduction (MAR). We apply a convolutional neu-
ral network (CNN) that learns to perform sinogram correction us-
ing a large simulated dataset. In particular, we use a fully con-
volutional network (FCN) over the entire sinogram to correct the
sinogram data, and finally use a conventional FBP algorithm for
reconstruction of the corrected sinogram data. In this we are re-
moving problems in the projection data rather than in the subse-
quent image. Our proposed approach is simple, efficient, and in
initial experiments seems to outperform existing popular MAR
techniques.

Prior Work
Many MAR techniques have been proposed in literature but

the problem still remains the focus of research. The existing MAR
methods can be categorized into four groups: physics-based cor-
rection, iterative reconstruction, image post-processing, and sino-
gram correction methods. Physics-based methods involve pre-
processing of the projection data using different filtering oper-
ations to reduce effects of metal artifact inducing mechanisms.
Some examples include adaptive filtering [6], edge-preserving
blur filter [6].

Iterative reconstruction methods generally use a model-
based approach to minimize a well-defined objective function
subject to defined constraints. De Man et al. [7] proposed
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Figure 2. FCN architecture used in this paper to learn sinogram correction.

a maximum-likelihood-based MAR approach by using poly-
energetic model. Hamelin et al. [8] approximated data as Gaus-
sian distribution and used the poly-energetic model to reduce
metal artifacts. Zhang et al. [9] suggested a penalized least
squares methods subject to non-negativity constraint and discard
metal traces data.

Image post-processing approaches rely on image processing
methods to reduce artifacts in the image domain. Soltanian-Zadeh
et al. [10] exploit the high-frequency nature of metal-induced
streaks and estimate streaks as the difference between original
reconstruction and its low-pass-filtered version. Bal et al. [11]
applied an adaptive filter in the metal affected regions of the im-
age. Gjesteby et al. [12] used a simple CNN to learn a mapping
from metal affected image to artifact-free image.

Sinogram correction methods are the most popular MAR
techniques, the idea is to replace metal-corrupted sinogram data
with estimated values in an effort to perform sinogram correction.
The values for metal-corrupted sinogram regions are typically es-
timated using neighboring information. Kalender et al. [13] con-
sider metal-corrupted data as missing data and estimate the miss-
ing data using a one-dimensional linear interpolation method (re-
ferred as LI-MAR in the rest of the paper). LI-MAR is consid-
ered a benchmark and is so far the most cited MAR technique
[2]. Morin and Raeside [14] use nearest neighbor search to es-
timate the missing data. Mahnken et al. [15] suggested a two-
dimensional interpolation that replaces the metal-corrupted data
by a weighted sum of 16-nearest neighbors (referred as WNN-
MAR in the rest of the paper). Zhao et al. [16] perform sino-
gram interpolation using wavelet coefficients. Normalized MAR
(NMAR) [17] uses a prior image to normalize the corrupted
sinogram and a simple interpolation method to estimate metal-
corrupted data in the normalized sinogram. NMAR heavily relies
on a prior image and is not suitable for security or other appli-
cations where a correct prior image cannot be robustly found.
A comprehensive review of MAR techniques can be found in
Gjesteby et al. [2].

Deep Learning Based Sinogram Correction
In this paper, we exploit the structured nature of sinograms

and learn a CNN-based function to identify and correct the cor-
rupted data in sinogram domain. We propose a completely auto-
mated approach to perform sinogram correction that can handle
diverse sizes and numbers of metals placed on arbitrary locations.
Our approach exploits a large simulated dataset to learn to per-

form sinogram correction using a deep CNN. As opposed to other
learning based methods, we work in the sinogram domain and use
complete sinogram data to learn a mapping function to correct the
sinogram data. We use a fully convolutional network (FCN) ar-
chitecture in which convolutional kernels of all layers learn rep-
resentations at same scale. As compared to fully connected net-
works these structures have fewer learning parameters and due to
convolutional nature of operations, exploits local neighborhood
information.

Fully Convolutional Network (FCN)
With AlexNet [18] winning the ImageNet challenge in 2012

[19] has resulted in renewed interest in theoretical and applica-
tions aspects of neural networks. The availability of different ma-
chine learning frameworks and hardware computing capabilities
have enabled researchers to rapidly develop new algorithms and
achieve state-of-the-art performance using neural networks-based
methods which in many cases even surpass human performance
[20, 21, 22]. These successes have attracted researchers in many
related areas to focus on developing machine learning-based algo-
rithms to solve interesting problems in their domain. Apart from
image classification, CNNs have shown tremendous performance
in various image restoration tasks such as image denoising [23],
artifact reduction [24], and image super-resolution [25].

Our CNN architecture is inspired by VDSR [25], which is
a 20-layer FCN used for image super-resolution. Our network is
different in that it uses 10 convolutional layers with 5× 5 con-
volutional kernels whereas VDSR used 3× 3 kernels. The net-
work architecture used in this paper is presented in Figure 2. All
the layers in our network have 64 channels except the last layer
which has only 1 channel. We use single-pixel stridden convolu-
tions and use zero-padding so that convolutions do not change the
image size. We use the leaky rectified linear unit (LReLU) non-
linearity with 0.2 slope at the first 9 layers. Additionally, we use
the batch normalization (BN) [26] operation at each layer except
the first and last layer. This architecture results in 41×41 theoret-
ical effective receptive field, so our networks can potentially use
information from a large area to estimate the missing data. The
input to our FCN is the metal-corrupted sinogram and correspond-
ing target is the artifact-free sinogram. The artifact-free sinogram
is generated by simulating the same scene with no metallic ma-
terials in the field of view. We use the mean-square-error loss
function to train the network.
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Figure 3. FCN-MAR algorithm is presented, once FCN is trained completely

it is used to correct sinogram data which produces reconstructions without

metals. The metal image is then used to insert metals back to produce final

output of the algorithm.

FCN-MAR Algorithm
Our FCN-MAR algorithm has three major steps: (i) metal(s)

segmentation in the reconstructed image, (ii) sinogram correc-
tion, and (iii) reconstruction using FBP and inserting segmented
metal(s). These steps are illustrated in Figure 3. This paper fo-
cuses on simulated data only where we can use oracle information
for the metal segmentation step. So we use perfect knowledge
of metals for metal image Xm. We train FCN on a large dataset
which is later used to perform sinogram correction. Once sino-
gram is corrected, we use FBP to reconstruct the image and in-
sert the metal(s) back in the reconstructed image. While we use
oracle information for metal segmentation step in this work,, in
practice, we do not have access ti perfect information about the
metals. One of the ways to automate the metals segmentation
step is to reconstruct the image using incorrect sinogram data and
apply thresholding followed by morphological operations.

Experiments
This section discusses our experiments. Our aim was to

understand the potential for sinogram-based deep learning. We
describe our accurate poly-energetic CT simulation setup, MAR
dataset generation, FCN training strategy, reconstruction results,
and compare the performance of our approach to two popular
MAR methods. We consider LI-MAR and WNN-MAR for com-
parison and use mean-square-error to compare results of different
methods.

We used a physically accurate poly-energitic CT simulation
to generate data for training and testing. An X-ray source trans-
mits multi-energetic X-rays which are partially absorbed by scene
objects with attenuation µ(E) and subsequently received by an
energy integrating detector. The energy-dependent absorption is
in accordance with the X-ray absorption properties of the object,
µ(E), described by linear attenuation coefficients (LACs). In this
work we ignore X-ray scatter for simplicity. The detectors per-
form a weighted sum received photons over the range of the ener-

gies in the beam. For ideal scenarios, the resulting sinogram can
be specified by Equation 1.

I =−
N

∑
i=1

I0 ·η(Ei) · e
−∑

l
µ(~x,Ei)

(1)

where I represents intensity of received ray, I0 represents source
intensity factor, N denotes the number of energies used to esti-
mate the discretized version of continuous energy dependence of
the source beam, η(Ei) denotes the CT system weighting func-
tion, µ(~x,Ei) represents the LAC value at energy Ei at the scene
location~x, and ∑l denotes the projection operation commonly re-
ferred as the Radon Transform.

In real systems, however, the sinogram is subjected to elec-
tronic and data-dependent noise. We model electronic noise as a
Gaussian distribution with zero-mean and σ2

e variance. The mean
of electronic noise is generally non-zero, but can be estimated and
subtracted to result in a zero-mean effect. The data-dependent
noise is modeled as the Poisson distribution with mean I. Fur-
ther, it is common to use as data a log-normalized sinogram. The
resulting log-normalized observed sinogram, Ĩn, is given by Equa-
tion 2.

Ĩn =− ln

( N
∑

i=1
Poisson

(
I0 ·η(Ei) · e

−∑
l

µ(~x,Ei)
)
+N (0,σ2

e )

N
∑

i=1
I0 ·η(Ei)

)
(2)

MAR Dataset
We create a MAR dataset by generating pairs of artifact-

free and metal-corrupted scenes and their corresponding sino-
grams. Our simulation setup is based on Equation 2. The weight-
ing function corresponds the Imatron C300 scanner by Crawford
et al. [27]. We use N = 86 uniformly sampled energy bins be-
tween 10 KeV and 95 KeV, source flux I0 = 1.8×105, and elec-
tronic noise variance σ2

e equivalent to the statistics of 170 pho-
tons received at 70 KeV (suggested by [28]). We use LAC values
from the NIST XCOM database [29] to simulated suitcases of
size 179mm× 179mm. We used 255 detector channels and 256
projection angles uniformly sampled between 00 and 1800.

In order to create MAR datasets, we prepared a stochastic
suitcase simulator which inserts the objects at different locations
in the suitcase. Here, object material, shape, and location is se-
lected randomly. For training, we generated 10,000 suitcases with
non-metal materials, and their corresponding sinograms with up
to 3 metals. For each suitcase, we generate a 1 metal, a 2 metal,
and a 3 metal example. This results in 30,000 pairs of suitcases
which we used to train our network. For testing, we generated
3,000 similar pairs and compared the performance of our method
to LI-MAR and WNN-MAR.

FCN Training
We applied the Adam optimizer [30] to train FCN with a

mini-batch size of 16. We used initial learning rate of 0.01 with
momentum parameters β1 = 0.9,β = 0.999. The network was
trained for 200 epochs and the final state of the network was
later used on test data. We used Tensorflow [31] to implement
and train this network. The network training took approximately
48 hours on a Nvidia Tesla P100 GPU. Once the training is
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(a) Input (b) Target (c) LI-MAR [13] (d) WNN-MAR [15] (e) FCN-MAR

Figure 4. Input and output sinograms, reconstructions and residuals corresponding to considered MAR methods are shown for an example scene. FCN-

MAR evidently outperforms other methods by producing sinograms which are very similar to target sinograms. Zoomed patches displayed in range [0.42 1.5]

accentuate the differences among different sinogram correction methods. Reconstruction results show the effectiveness of our deep learning based FCN-MAR

approach in artifact reduction. FCN-MAR suppresses most of the metal-induced streaks while preserving the structure.

completed, it takes less than a second to process each test sample.

Results and Discussion
We present a comparison of MAR methods, showing their

impact in both the sinogram and the image domain for two exam-
ples of our larger set chosen as particularly challenging examples.
In each case the input and target sinogram pairs along with the
outputs of all three methods considered are presented.

The process of sinogram correction consists of two steps:
identification of metal corrupted traces, and replacing those data
points with estimate values. For LI-MAR and WNN-MAR, we
use oracle information for identification step and use correspond-
ing algorithms to estimate new values from the reliable neigh-
boring data. However, our approach is completely automated in
that it automatically identifies the corrupted data and estimates
new data. This is possible due to the learning-based nature of
our approach that relies on deep-learning and big-data to learn to
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(a) Input (b) Target (c) LI-MAR [13] (d) WNN-MAR [15] (e) FCN-MAR

Figure 5. Input and outputs sinogram, resulting reconstructions, and residuals corresponding to different MAR methods are presented for another example

scene. FCN-MAR evidently outperforms other methods by producing sinograms which are very similar to target sinograms and therefore suppress most of the

streaks and preserves structure.

identify and correct the corrupted data.

Example 1 is shown in Figure 4 and contains three metal ob-
jects in a challenging configuration in which they happen to align.
The first row presents the original sinogram, target sinogram, and
the results of the various methods. Bright traces in the input sino-
gram depict the incorrect data which are not present in the target
sinogram. LI-MAR uses a 1-D linear interpolation scheme to es-
timate new values, it uses information only from the data acquired
at the same angle. This is why values estimated by LI-MAR are a

good approximation in areas with less content and when diameter
of metal traces is small. WNN-MAR uses a 2-D weighted near-
est neighbor scheme to estimate new values, however, it does not
completely discard the original data and assigns a small weight to
original data. This is why we still see dimmed traces correspond-
ing to the corrupted regions. Our FCN-MAR approach relies on
a CNN to correct the corrupted data, and resulting sinogram ex-
hibit the effectiveness of our approach in accurately correcting the
corrupted data.
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We show zoomed patches of sinograms in second row of
Figure 4 to accentuate the differences among outputs of different
techniques. It is clear that LI-MAR results have a linear structure
due to the inherent assumptions behind its interpolation scheme
that data is only correlated along the detector channels. Addi-
tionally, it can be noticed that estimated values along the border
of traces are more accurate as compared to central pixels in the
corrupted regions. WNN-MAR uses 2-D information and assigns
small weight to original data, this is why dimmed traces are still
visible. Additionally, since WNN-MAR uses a rule-based ap-
proach to estimate new values, it will not be able to accurately
estimate values in areas with high content. On the other hand,
zoomed patches of FCN processed sinograms exhibit structure
and intensity values which are very close to the target sinograms.

Further, we present the sinogram residuals of considered
methods in third row of Figure 4. We see very bright residual
traces for the input data. LI-MAR reduces the residuals to some
extent, but they are still visible in most of regions. WNN-MAR
dims the residuals but they are still present all over the sinogram.
Residual traces are minimal in the FCN processed sinograms and
there is no structure associated with residuals.

Output images generated by different methods are presented
in fourth row of 4. Notice that output images are generated by us-
ing FBP to reconstruct images and inserting metals back again to
the reconstructions using metal image Xm. The presented results
show that if we do not use any MAR technique, the produced re-
constructions suffer from severe streaking artifacts which limit the
usefulness of CT. The objects nearby metals are broken into mul-
tiple pieces, and there are several streaks. LI-MAR output image
shows that it suppresses existing streaks but it creates new streaks
and results in the splitting of rubber sheet at a different location.
Additionally, intensity shading is still visible. WNN-MAR does
not create new streaks, but it fails to completely suppress existing
streaks. Rubber sheets are still split into two pieces and intensity
shading is also visible. FCN-MAR output shows that it suppresses
most of the existing streaks and recover the structure hidden under
the streaks. Additionally, rubber sheets are not split into pieces.
So FCN-MAR not only suppresses most of the streaks and recover
the structure hidden under streaks but also keep rubber sheets in-
tact.

We present output image residuals in the fifth row of Fig-
ure 4. There are very bright streaks present in the residual im-
age corresponding to original data. LI-MAR reduces some of the
streaks but there is structure associated in the LI-MAR residual
image. WNN-MAR residual image show both structure and resid-
ual streaks. FCN-MAR suppresses most of the streaks and there
is not structure associated with the residual image which shows
that FCN-MAR successfully suppresses most of the streaking and
structural artifacts.

Sinogram and output image results for example 2 are shown
in and Figure 5. First row presents input, target and output sino-
grams produced by different methods. Similar to example 1, LI-
MAR and WNN-MAR fail to accurately correct the corrupted
data in most regions of the sinogram and FCN-MAR produces
sinogram values and structure which are very similar to the tar-
get sinogram. This difference becomes prominent in the zoomed
patches shown in second row. LI-MAR has a linear structure,
WNN-MAR dims the metal traces, and FCN accurately corrects
the structure and intensity values. This claim is further supported

Comparison of considered methods on test data in terms of
average MSE.

Without MAR LI-MAR WNN-MAR FCN-MAR
7.22×10−5 1.22×10−6 1.43×10−6 5.83×10−7

by the sinogram residuals presented in third row, where LI-MAR
and WNN-MAR still have high residuals, and FCN have very
small residual values. Output results are generated by applying
FBP to the resulting sinograms and inserting metals back using
metal image Xm. We present a qualitative comparison of different
methods using reconstructed images in fourth row which shows
that original sinogram results in very bright streaks and struc-
tural artifacts including object splitting. LI-MAR suppresses orig-
inal streaks but creates new streaks and structural artifacts includ-
ing splitting of rubber sheet at two different points. WNN-MAR
fails to completely suppress the streaking and structural artifacts.
However, FCN-MAR suppresses most of the streaks and struc-
tural artifacts. The rubber sheet split into pieces in other outputs
appears as a single object in the FCN-MAR output image. The
superiority of FCN-MAR approach becomes prominent when we
look at the output image residuals presented in the last row. While
LI-MAR and WNN-MAR both still have residual structural and
streaking artifacts, FCN-MAR residual image exhibit no structure
and errors are reduced to minimal values.

Further, we use average mean-square-error (MSE) to per-
form a quantitative comparison of considered methods in Table
1. The quantitative analysis reveals that FCN-MAR reduces 99%
of MSE as compared to standard FBP method. Furthermore, it
also reduces 52% and 59% relative MSE as compared to LI-MAR
and WNN-MAR methods respectively. It shows that our proposed
FCN-MAR method suppresses most of the streaks present in the
original reconstructed produced using FBP method. Both qual-
itative and quantitative analysis show that our proposed method
greatly suppresses the metal-related artifact and outperforms two
popular MAR techniques considered in this paper.

LI-MAR and WNN-MAR perform better in areas with less
content and suffer in areas with high content. It is clear from both
examples that output sinograms produced by LI-MAR and WNN-
MAR fail to completely correct the sinograms. However, both
structure and intensity values of sinograms produced by FCN-
MAR are very similar to the target sinograms. Zoomed patches
of sinograms show that our deep-learning-based method not only
recover the sinogram structure but also produces intensity values
which are very close to the target the sinograms. The sinogram
residuals also show that sinogram error for our method is mini-
mal. Further, both considered methods LI-MAR and WNN-MAR
reduce streaks, however, residual streak level is still quite high and
objects nearby metals are still broken. On the other hand, FCN-
MAR produces excellent reconstructions by suppressing most of
the streaks and recovering the objects nearby metals.

Conclusion
Metal-induced artifacts severely degrade the quality of CT

reconstructions and limit their usability in subsequent steps of ob-
ject segmentation and identification. Although many MAR tech-
niques have been proposed in literature, however, their effective-
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ness is limited. Even the most cited technique, LI-MAR [13], fails
to suppress streaks completely and introduces new streaks in some
cases. In this paper, we presented a deep learning based method
to reduce metal artifacts. Our method lies in the sinogram cor-
rection category of MAR techniques, we train a CNN on a large
CT dataset to perform sinogram correction on complete sinogram
data. We show that our method effectively corrects the sinograms.
i.e., their structure and intensity values are very similar to target
sinograms. Our analysis shows that FCN-MAR produces excel-
lent reconstructions which are far superior as compared to LI-
MAR and WNN-MAR. It also shows that FCN-MAR reduces
99% of average MSE as compared to FBP, the technique which
is used in most of the CT scanners today. The learning-based
nature of our algorithm makes it powerful that rather than using
a rule-based approach it learns the sinogram correction function
from a large dataset. A future extension of this work could be a
similar network that can be trained in an unsupervised setting.
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