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Abstract
Model-Based Image Reconstruction (MBIR) methods signif-

icantly enhance the quality of tomographic reconstruction in con-
trast to analytical techniques. However, the intensive computa-
tional time and memory required by MBIR limit its use for many
practical real-time applications. But, with increasing availabil-
ity of parallel computing resources, distributed MBIR algorithms
can overcome this limitation on computational performance.

In this paper, we propose a novel distributed and iterative
approach to Computed Tomography (CT) reconstruction based on
the Multi-Agent Consensus Equilibrium (MACE) framework. We
formulate CT reconstruction as a consensus optimization problem
wherein the objective function, and consequently the system ma-
trix, is split across multiple disjoint view-subsets. This produces
multiple regularized sparse-view reconstruction problems that are
tied together by a consensus constraint, and these problems can
be solved in parallel within the MACE framework. Further, we
solve each sub-problem inexactly, using only 1 full pass of the
Iterative Coordinate Descent (ICD) optimization technique. Yet,
our distributed approach is convergent. Finally, we validate our
approach with experiments on real 2D CT data.

Introduction
Tomographic reconstruction methods can be broadly divided

into two categories ; Analytical reconstruction, and, Model-based
iterative reconstruction (MBIR). In comparison with analytical
methods, MBIR has the advantage that the quality of reconstruc-
tion is superior even when projection data is sparse. Therefore, in
X-ray imaging systems where views are very limited, or equiv-
alently, scanning time is significantly reduced, MBIR offers a
way to achieve high quality reconstruction. Similarly, in medi-
cal imaging systems where X-ray dosage is highly restricted to
ensure safety of the patient, MBIR vastly outperforms analyti-
cal methods in reconstruction quality [8]. However, despite all
these advantages, MBIR suffers from the downside that it is com-
putationally expensive and much slower than analytical methods.
Further, in certain reconstruction applications, it is computation-
ally more efficient to pre-compute and store the system matrix
[2]. But such an approach is often limited by available memory in
the case of large-scale problems. Nevertheless, distributed MBIR
algorithms can overcome the above limitations on computational
time and memory. Furthermore, both the increasing availability
and reducing cost of parallel computing resources has made the
distributed implementation of MBIR even more viable for real-
time applications.

Wang et al. in [2] gives a brief overview on the scalabil-
ity of current MBIR algorithms on distributed memory systems.

Most MBIR algorithms are massively scalable in the spatial do-
main, that is, multiple voxels in object space can be updated in
parallel. While simultaneous update methods based on gradient
descent optimization and its accelerated variants inherently al-
low such scalability, it has been recently shown that even greedy
sequential update methods such as Iterative Coordinate descent
(ICD) optimization can be tailored to achieve similar scalability
[2]. Furthermore, greedy methods such as ICD have the advan-
tage of very fast convergence compared to simultaneous methods.
While ICD can typically achieve convergence in less than ten it-
erations, gradient-descent methods usually require hundreds of it-
erations in the absence of preconditioning [12].

Another way to scale MBIR across a large number of paral-
lel nodes is by distributing its computation in the sinogram-view
domain. More specifically, we consider the problem where the en-
tire set of sinogram-views for a given object is partitioned among
the individual nodes of a distributed memory system. However, in
such a scenario where each node owns only a sparse subset of the
global sinogram-views, fast MBIR algorithms that rely on ICD do
not directly scale across nodes.

In this paper, we propose a distributed approach called view-
subset parallelization that solves the above problem. The key idea
of this approach is to formulate reconstruction as a consensus op-
timization problem. In such a formulation, every node renders a
limited-view reconstruction from its own sparse subset of sino-
gram data, and through repeated centralized communication with
other nodes, drives its individual reconstruction towards the true
global solution.

Our above-proposed distributed approach provides a number
of computational advantages. First, since each node only pro-
cesses a subset of views, it must store only a small portion of
the system matrix, which can dramatically reduce memory re-
quirements. Second, by distributing the computation across many
nodes, the reconstruction time can be reduced. In certain appli-
cations such as medical imaging via helical-scan CT, it is prefer-
able to compute the forward projection operator on-the-fly due to
adaptive geometrical parameters of the system, but this increases
computational overhead. However, many scientific applications
such as X-ray synchrotron imaging permit precomputing and stor-
ing the entire forward projection matrix. Therefore, especially for
such applications, our distributed approach both significantly re-
duces the memory foot-print of the projection matrix on each node
and also provides faster data access. Further, our approach can be
an auxiliary method to push the existing limits of scalability for
massively parallel imaging techniques such as [2] that exploit par-
allelism in the spatial domain alone.
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View-subset Parallelization Approach
Figure 1 illustrates how view-subsets are generated. All

sinogram-views of the same object slice are divided among N dis-
joint subsets in an interleaved manner. In this specific example,
the total number of views, Nθ , is 4, and N is 2. In general, when
N is sufficiently large, each subset contains a very sparse subset
of all views acquired.

From now onward, we shall refer to the reconstruction of
the object from all Nθ views as the true reconstruction. Figure
2 depicts the intuition behind our approach of view-subset par-
allelization. Each of the N sparse view-subsets can be used to
render a reconstruction of its own, albeit of a relatively lower
quality than the true reconstruction. We can choose any suitable
sparse-view reconstruction method for the above, including those
based on ICD. Intuitively, we wish to perform these N individual
sparse-view reconstructions in parallel, and then somehow “fuse”
them together to arrive at the true solution, as shown in Figure 2.
A naive approach would be to merely average the N individual
sparse-view reconstructions as an approximation to the true solu-
tion. However, such a simplistic approach would be far from the
true reconstruction, especially when N is large. This is primarily
because there is no consensus between the individual sparse-view
reconstructions, and further, each one of them would be riddled
with artifacts, particularly when dealing with real sinogram data.
Therefore, a more sophisticated mathematical framework is re-
quired to both achieve parallelism across multiple view-subsets
and simultaneously guarantee convergence to the true solution.
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Figure 1. Generation of view-subsets. Sinogram-views are divided among

multiple disjoint subsets in a round-robin fashion. In this example, 4 views of

an object are split among 2 subsets.

Equation (1) describes the broad idea behind the mathe-
matical framework needed for our distributed approach. In this
equation, x ∈ Rn represents the image to be reconstructed, and
f : Rn → R∪{+∞} is the convex objective function for recon-
structing the image from all Nθ views acquired.

Minimize f (x) = f1(x)+ f2(x)+ ...+ fN(x), x ∈ Rn. (1)

In the subsequent sections of this paper, we will show that f can
be expressed as a sum of N functions, where N represents the
number of view-subsets, and fi : Rn → R∪{+∞}, i = 1, ...,N,
represents the convex objective function for reconstructing the
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Figure 2. Intuition behind view-subset parallelization. Individual sparse-

view reconstructions based on any technique are rendered in parallel from

each of the N view-subsets, and then somehow combined together to obtain

the true solution.

image from sparse views of the i-th view-subset alone. This opti-
mization problem of equation (1) can be rewritten as a consensus
optimization problem as shown below.

Minimize
N

∑
i=1

fi(xi), xi ∈ Rn, subject to xi = z, i = 1, ...,N.

(2)

The constraint xi = z, i = 1, ...,N, enforces consensus among in-
dividual sparse-view reconstructions, xi ∈ Rn. The Multi-Agent
Consensus Equilibrium (MACE) approach proposed by Buzzard
et al. [1] provides a general framework wherein constrained opti-
mization problems such as (2) and more general consensus prob-
lems can be solved in an iterative and parallel fashion. In subse-
quent sections of this paper, we shall discuss the MACE frame-
work in further detail, and also propose certain modifications that
allow it to be computationally efficient for our application of to-
mographic reconstruction.

Partitioning the Objective function among
View-subsets

We express the true reconstruction, x∗ ∈ Rn, as the
maximum-a-posteriori (MAP) estimate given by

x∗ = argmin
x∈Rn

f (x), where

f (x) =− log p(y|x)− log p(x), (3)

and y is the list of standard projection measurements from all Nθ

views. In the above equation, p(y|x) represents the likelihood
model of the measurements y conditioned on the unknown image
x, and p(x) represents the prior model of the unknown image x.
Let k ∈ {1, ...,Nθ} denote view-index and Nd denote number of
detectors. Sauer and Bouman [3] approximate the negative log
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likelihood model as

− log p(y|x) =
Nθ

∑
k=1

1
2
(yk−Akx)t

Λk (yk−Akx) (4)

where Ak ∈ RNd×n is the forward projection matrix for the k-th
view, Λk ∈RNd×Nd is the diagonal weighting matrix and yk ∈RNd

is the list of projection measurements for the k-th view. The entry
of the matrix Ak at index (l, j), Ak,l, j, represents the contribution
of the j-th pixel to the projection measurement of the l-th detector,
when the source-detector arrangement is rotated by the k-th view
angle. From equations (4) and (3), the objective function for MAP
estimation is

f (x) =
Nv

∑
k=1

1
2
‖yk−Akx‖2

Λk
+βh(x) (5)

where h(x) is the negative log prior model, and β > 0 is the over-
all regularization parameter. Typically h is chosen to be a con-
vex spatial smoothing function that penalizes differences between
neighboring pixels. This convexity of h makes f convex as well.

We can split f among N view-subsets and express it in a
form similar to equation (1). We define Ji, i = 1, ...,N to be a
subset of view-indices such that J1∪ J2 · · ·∪ JN = {1, ...,Nθ} and
J1∩ J2 · · ·∩ JN = /0. We define function fi as

fi(x) = ∑
k∈Ji

1
2
‖yk−Akx‖2

Λk
+

β

N
h(x) . (6)

Note that fi represents the objective function for regularized
sparse-view reconstruction, since it includes both the data fidelity
fit for views indexed in subset Ji, as well as the prior model h(x).
From the above definition it follows that

f (x) =
N

∑
i=1

fi(x) .

Therefore, our reconstruction problem can reformulated as a con-
sensus optimization problem of the form given by equation (2).
We will use the MACE framework to solve this problem in a dis-
tributed and iterative fashion.

Multi-Agent Consensus Equilibrium (MACE)
Framework

Buzzard et al. in [1] propose a general framework named
MACE to solve consensus optimization problems such as (2).
More specifically, it prescribes a system of equations which de-
termine the consensus solution. Further, this specific system of
equations that can be solved by various methods, and some of
these methods are parallelizable. One particular approach in [1]
to solve the MACE system of equations is closely related to con-
sensus ADMM [11].

Before we move onto further details regarding the MACE
framework, our notations and definitions for the subsequent sec-
tions of this paper are as follows:

• We define Fi : Rn→Rn, the proximal map of a convex func-
tion fi : Rn→ R as

Fi(x) = argmin
v∈Rn

{
fi(v)+

1
2σ2 ‖v− x‖2

}
. (7)

• We use bold notation to denote a tall vector consisting of
N individual vectors, each belonging to Rn. For example,
v ∈ RnN denotes a tall vector, where v = [vt

1 vt
2 · · · vt

N ]
t and

vi ∈ Rn, i = 1, ...,N.
• We use the bold notation with a “bar” superscript to denote

the averaging operation on a tall vector belonging to RnN .
For example, we define v̄ = (1/N)∑

N
i=1 vi.

• We use the non-bold notation with a “hat” superscript to de-
note a vertical stacking operation on a vector belonging to
Rn. For example, we define x̂ = [xt xt · · · xt ]t , where x ∈Rn

and x̂ ∈ RnN .

The MACE framework states that determining x∗, solution
to optimization problem of equation (2), is equivalent to finding a
pair (x∗,u∗) ∈ Rn×RnN that satisfies the conditions

Fi(x∗+u∗i ) = x∗, i = 1, . . . ,N, (8)

ū∗ = 0. (9)

The above conditions can be rewritten more compactly as

F(v∗) = G(v∗), (10)

where v∗ = x̂∗+u∗, and maps F,G : RnN → RnN are defined as

F(v) =

F1(v1)
...

FN(vN)

 and G(v) =

v̄
...
v̄

 , (11)

for any v ∈ RnN . Importantly, equation (10) specifies the system
of equations for the MACE framework, whose solution v∗ can
give us the consensus solution x∗, since v̄∗ = x∗. From equa-
tion (11), note that the N individual proximal maps within F
can be evaluated in parallel, and so we interpret F as a paral-
lel proximal map operator. On the other hand, G can be inter-
preted as a centralized merge & broadcast operator that inputs
vi ∈ Rn, i = 1, ...,N from N different nodes and then broadcasts
back their average.

Buzzard et al. in [1] suggest various methods for solving the
MACE system of equations specified by equation (10). One par-
ticular method from [1] that we will use in this paper, is refor-
mulating equation (10) as determining the fixed-point of a spe-
cific map T : RnN → RnN . More specifically, if we define w∗ as
w∗ = x̂∗−u∗, or equivalently, w∗ = (2G−I)v∗ since ū∗ = 0, then
w∗ is the fixed-point of the map T , (2F− I)(2G− I). Once we
determine w∗, we can subsequently compute x∗, since w̄∗ = x∗.

It can be shown that the aforestated map T is non-expansive,
and so one particular way to determine its fixed-point w∗ is to use
the Mann iteration technique. In this technique, we begin with
any w(0) ∈ RnN , an initial guess of the fixed-point w∗, and then
each iteration is a weighted averaging of the form

w(k+1) = ρTw(k)+(1−ρ)w(k), (12)

where k≥ 0 and ρ ∈ (0,1) is a weighting parameter that can even
be changed every iteration subject to certain conditions . As k
increases, w(k) converges to w∗ irrespective of the intialization
w(0).

Importantly, note that the Mann iteration is parallelizable for
our specific T because F is a parallel operator, and, even though
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G is a centralized operator, its computational overhead is signifi-
cantly lower than that of F. Therefore, this fixed-point algorithm
provides us a distributed and iterative approach to solving the con-
sensus optimization problem of equation (2). However, in the next
section of this paper, we explain why this approach is too compu-
tationally expensive and also propose a solution to this problem.

Partial Update MACE (PUMACE) Framework
The MACE approach described in the previous section of

this paper is in general computationally expensive and not prac-
tical for many applications. This is because each proximal map
Fi = Fi(· ;σ) : Rn→Rn defined by equation (7) requires iterative
optimization on its own, and so, operator F has high computa-
tional overhead. Consequently, the MACE approach contains a
large number of nested iterations and and requires many inner it-
erations to converge to the consensus solution.

To overcome this issue, we propose a slightly modified
version of the MACE approach called Partial Update MACE
(PUMACE). The main idea here is to replace each proximal map,
Fi(· ;σ), with an approximate version that is quicker to solve.
Our approximation is based on using a highly reduced number
of iterations to evaluate the proximal map, even though this may
not yield the fully converged result for this map. We accordingly
name this type of approximation the partial-update (PU) approxi-
mation. In theory, since fi in equation (2) is convex, its proximal
map Fi(· ;σ) should ultimately converge to a unique global mini-
mum irrespective of the initial state. However, when the number
of iterations is very limited, the choice of initial state determines
the solution. So further, the PU approximation is also dependent
on the initial state. We use the notation F̃i(· ;σ ,Xi) : Rn→ Rn to
denote the PU approximation of the proximal map Fi(· ;σ), where
Xi ∈ Rn specifies the initial state.

For any v,X ∈ RnN , we define the parallel operator F̃ :
RnN → RnN as

F̃(v;σ ,X) =

 F̃1(v1;σ ,X1)
...

F̃N(vN ;σ ,XN)

 .

So, F̃(v;σ ,X) gives us an approximate solution, or partial update
solution to F(v;σ), and this solution is dependent on the initial
state, X.

Algorithm 1 PUMACE algorithm
1: Initialize:
2: w(0)← any value ∈ RnN

3: X(0)←G(w(0))
4: k← 0 . Partial update index

5: while not converged do
6: v← (2G− I)w(k)

7: X(k+1)← F̃
(

v;σ ,X(k)
)

. Partial update solution

8: w(k+1)← 2X(k+1)−v . ≈ (2F− I)(2G− I)w(k)

9: w(k+1)← ρw(k+1)+(1−ρ)w(k) . Mann iteration

10: k← k+1
11: end while
12: Solution:
13: x∗← w̄(k) . Consenus solution

Detailed pseudo-code for the PUMACE algorithm is shown
in Algorithm 1. Here, k represents the discrete time-step, alter-
nately referred to as partial update (PU) index. Note that the
PUMACE framework allows any choice of optimization tech-
nique to compute the PU solution. Importantly, in this paper, we
use only 1 pass of the Iterative Coordinate Descent (ICD) opti-
mization method [5] to compute the partial update solution. In
this specific case, unlike the MACE approach, the PUMACE ap-
proach does not contain nested iterations of optimization.

Importantly, note that in line 7 of Algorithm 1, the result
of the current partial update is used as the initial state for the
next partial update. This is significant, because a good initial
state drives the partial update solution, F̃(v;σ ,X(k)), towards the
fully converged solution, F(v;σ). In practice, this occurs pre-
dominantly as k increases. Also, it is worth noting that the
equilibrium conditions specified by equation (8) or (10) require
x̂∗ = F(v∗;σ), or equivalently, x̂∗ = F̃(v∗;σ , x̂∗) for the partial
update case, where x∗ is the consensus solution, and v∗ = x̂∗+u∗.
Since v∗ = (2G− I)w∗, 1 the above condition can be more suc-
cinctly summarized as

x̂∗ = F̃((2G− I)w∗;σ , x̂∗).

This intuitively justifies the use of X(k) as the initial state for the
(k+1)-th partial update in line 7 of the pseudo-code. Further, note
that in our specific application of PUMACE to CT reconstruction,
such a way of picking the initial state for each partial update is
key to fast implementation of operator F̃. This is because ICD
optimization [5] requires maintaining the residual sinogram as a
state vector, and our approach allows us to do so without needing
to compute a forward projection prior to each partial update.

In Algorithm 1, lines 8 and 9 together are analogous to it-
eratively evaluating the fixed point of the non-expansive map
T : RnN → RnN , where T = (2F− I)(2G− I). However, since
we use F̃ in place of F in line 7, we may not obtain the exact
fixed-point of the non-expansive map T. Nonetheless, we can
prove that for strictly, convex quadratic problems PUMACE con-
verges to the true consensus solution. The proof for the above is
beyond the scope of this brief paper and we shall provide it in a
future publication. In the experiments section of this paper, we
apply the PUMACE approach to CT reconstruction, wherein the
objective function is convex but not strictly quadratic as a result
of incorporating non-quadratic prior models in equation (5). Even
so, we verify that the final PUMACE solution is near the desired
fixed-point, and consequently, we approximate the true consensus
solution.

Keeping in mind our application of PUMACE approach to
CT reconstruction, there are certain key operations that provide
us an opportunity to improvise. These key operations are: the
merge operation G, the partial sparse-view reconstruction opera-
tion F̃, and the Mann update operation. In order to keep this paper
brief, we shall discuss variants of the PUMACE approach based
on improvising these key operations in a future publication.

Experimental Results
We present results on two real sinogram datasets acquired

by parallel-beam CT modality. The first dataset is from a syn-

1Note that from definition of v∗ and w∗ in terms of x∗ and u∗, it follows
that both w∗ = (2G− I)v∗ and v∗ = (2G− I)w∗ hold since ū∗ = 0.
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chrotron tomography scan of Iron Hydroxide microstructure, and
the second dataset is a security scan of checked-in baggage. The
parameters of the datasets are listed in the table below.

Dataset Parameters

Dataset # Views # Detectors Image Size
Iron Hydroxide 225 1024 1024 × 1024
Baggage Scan 720 1024 512 × 512

For all experiments in this section, the prior model is a Q-
Generalized Gaussian Markov Random Field (Q-GGMRF) prior
[9] that can preserve both low contrast and high contrast image
features.

We benchmark the convergence of our distributed view-
subset approach using a serial baseline approach. This serial base-
line approach is conventional ICD reconstruction using the com-
plete set of views. The distributed view-subset approach is based
on the PUMACE framework, where each partial update is com-
puted using only 1 pass of ICD optimization.

We measure computational time for reconstruction in units
of equits rather than machine time. For the case of the serial base-
line algorithm, we define 1 equit to be the time taken when all
pixels within the region of interest (ROI) are updated in a single
pass of ICD [10]. In contrast, our distributed approach utilizes N
parallel processes, each owning a sparse subset of views. So more
generally, we define an equit as

#equits =
∑

N
i=1 Number of pixel updates by i-th process

N×Number of pixels in ROI

In practice, for any given partial update, each of the N parallel
processes updates roughly the same number of pixels within the
ROI. Importantly, note that under this approximation, the above
definition of 1 equit does not vary with N. Therefore, our defi-
nition is consistent across both serial and distributed approaches.
Further, importantly note that in the distributed approach, a single
pixel update is roughly N times faster than that of the serial ap-
proach that uses all views. Consequently, if both the distributed
and serial approaches take the same number of equits to converge,
then the distributed approach is faster than the serial approach by
a factor of N.

Additionally, we use the procedure of zero-skipping [10] for
our ICD updates, and so, in a single pass of ICD optimization, we
do not necessarily update all pixels in the ROI. In other words, the
number of equits per pass of ICD can be fractional.

To define our metric of normalized RMSE (NRMSE). We de-
fine the NRMSE of an image x ∈ Rn that is benchmarked against
a reference x∗ ∈ Rn as

NRMSE(x,x∗) =
RMSE(x,x∗)

Mean pixel value of x∗ within ROI
.

We use the fully converged reconstruction from the baseline ap-
proach as reference x∗. We state that our distributed approach
achieves convergence, if the merged result w̄(k) in line (13) of Al-
gorithm 1 satisfies the condition NRMSE(w̄(k),x∗) < T , where
T is a certain threshold. In our experiments we set T = 4% for
the Iron Hydroxide Dataset, and T = 5% for the Baggage Scan

dataset. We measure speed-up of our distributed approach with N
view-subsets, or equivalently N distributed nodes, as

Speed-up(N)=N× #equits for serial approach to converge
#equits for distributed approach to converge

.
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(a) Baggage scan data set
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(b) Iron Hydroxide data set

Figure 3. Scalability of the view-subset parallelization approach using

PUMACE vs. the number of view-subsets. Our approach is convergent to

the true reconstruction even when #views per subset is very sparse. As #

view-subsets increases, speed-up increases, but efficiency decreases.

Figure 3 illustrates the scalability of our approach. We ver-
ify the convergence of our distributed approach with increasing
number of view-subsets, N, and further, plot Speed-up(N) vs N
as shown in Figure 3. First, note that we achieve convergence
even at high values of N, or, equivalently when the views per sub-
set are very sparse. For example, in the case of the Iron Hyroxide
dataset, we achieve convergence even when N = 32, or equiva-
lently, only 7 views per subset. Similarly, in the case of the Bag-
gage Scan dataset, we achieve convergence even when N = 64, or
equivalently, only 11 views per subset. Second, note that while
increasing N provides us higher speed-ups, the parallel efficiency
reduces. For example, in the case of baggage scan dataset, we
achieve a speed-up of approximately 21 when N = 64, while in
the case of the Iron Hydroxide dataset, we achieve a speed-up of
approximately 9 when N = 32.
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Figure 4. PUMACE: Effect of Mann iteration parameter ρ on rate of con-

vergence.

Figure 4 illustrates the effect of Mann update parameter
ρ on the rate of convergence of our distributed approach using
PUMACE. In sub-figures (a) and (b), we sweep ρ through 5 dif-
ferent values from 0.5 to 0.9. Further, for a given value of ρ ,
we plot the NRMSE of the iteratively reconstructed image after
each partial update (PU), until convergence is achieved. For both
datasets, ρ = 0.8 seems to be the optimal choice of ρ . This op-
timal value of ρ produces significantly faster convergence than
the case ρ = 0.5, which is the default relaxation used by most of
the conventional proximal splitting methods including consensus-
ADMM [1].

Figures 5 and 6 show reconstructions of the individual view-
subsets, w∗i , 1 ≤ i ≤ N, and the merged consensus result w̄∗ at
convergence. Note that while the the individual sparse-view re-
constructions have conspicuous artifacts, no such artifacts are
present in the consensus result. This is because the artifacts in
each w∗i , represent its disagreement with the consensus solution.
Consensus optimization resolves these disagreements, and so, the
merged consensus result is the true solution that is devoid of the
abovestated artifacts. The above notion is summarized mathemat-
ically by equation (9).
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(a) w∗1 from view-subset 1 of 8

PUCE Recon V2 at Convergence
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(b) w∗2 from view-subset 2 of 8
Reconstruted Image with PUCE
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(c) w̄∗: Merged reconstruction

Figure 5. Converged reconstruction when N = 8: (top) Individual sparse-

view reconstructions, subsets 1 and 2. (bottom) merged consensus result.
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(a) w∗1 from view-subset 1 of 16
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(b) w∗2 from view-subset 2 of 16
Reconstruted Image with PUCE
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(c) w̄∗: Merged reconstruction

Figure 6. Converged reconstruction when N = 16: (top) Individual sparse-

view reconstructions, subsets 1 and 2. (bottom) merged consensus result.
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Conclusion
In this paper, we proposed a novel distributed and iterative

approach to CT reconstruction called view-subset parallelization.
Our approach distributes the computation of fast MBIR meth-
ods such as those based on ICD, across a large number of par-
allel nodes, where each node owns only a sparse subset of sino-
gram views and a small portion of the global system matrix. The
key idea behind our approach is re-formulating the reconstruction
problem as a consensus optimization problem, and we used the
MACE framework to solve the same. Further, we presented a vari-
ation of MACE using partial updates to accelerate convergence of
our distributed approach. Finally, we evaluated the performance
of our approach through experiments with real CT data.
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