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Abstract 
Three-dimensional statistical iterative reconstruction (SIR) 

algorithms have the potential to significantly reduce image artifacts 
by minimizing a cost function that models the physics and statistics 
of the data acquisition process in x-ray CT. SIR algorithms are 
important for a wide range of applications including nonstandard 
geometries arising from irregular sampling, limited angular range, 
missing data, and low-dose CT. For iterative image reconstruction 
algorithms to be deployed in clinical settings, the images must be 
quantitatively accurate and computed in clinically useful times. We 
describe an acceleration method that is based on adaptively varying 
an update factor of the additive step of the alternating minimization 
(AM) algorithm. Our implementation combines this method with 
other acceleration techniques like ordered subsets (OS) which was 
originally proposed for transmission tomography by Ahn, Fessler 
et. al [1]. Results on both an NCAT phantom and real clinical data 
from a Siemens Sensation 16 scanner demonstrate an improved 
convergence rate compared to the straightforward implementations 
of the alternating minimization (AM) algorithm of O’Sullivan and 
Benac [2] with a Huber-type edge-preserving penalty, originally 
proposed by Lange [3]. Our proposed acceleration method on 
average yields 2X acceleration of the convergence rate for both 
baseline and ordered subset implementations of the AM algorithm. 

Introduction  
Every image reconstruction method for X-ray CT can be broadly 
classified into two major families: linear methods such as filtered 
backprojection (FBP) and statistical methods. Statistical methods 
are mostly iterative in nature where the next image estimate is 
computed based on the measure of error between measured data and 
predicted data from the current image estimate along with a 
regularization function. SIR algorithms may produce quantitatively 
better images with lower x-ray dose which is important in many 
clinical applications [4, 5]. However, in most clinical applications, 
linear reconstruction algorithms like FBP or Feldkamp-Davis-Kress 
(FDK) are used due to their simplicity and low computational 
burden [6, 7]. 

Several statistical image reconstruction algorithms for x-ray 
CT have been proposed throughout the years (Sukovic and 
Clinthorne [8], De Man, et al. [9], Williamson, et al. [10], Fessler, 
et al. [11, 12]). The main motivations for shifting towards these 
iterative algorithms are that they can realistically model the 
nonlinear detector response in the attenuation line integral caused 
by beam hardening, scatter, and stochastic properties of the 
measured data. Other advantages include the adaptability of the 
method for specific detector-response models and the possibility of 
incorporating additional constraints. 

The main hurdles for the adoption of SIR algorithms in practice 
are the iterative nature of these algorithms and the larger 
computation time. The actual computation time demand varies 
depending on the field of application which in turn dependent on the 
volume of the measured data and the amount of desired accuracy of 
the reconstructed images. In security applications, the 
reconstruction time of three-dimensional image volumes must 
satisfy the rate at which bags travel through the scanner. For many 
medical applications, the time depends on the availability of 
radiologists, which can vary widely. There are various pathways to 
decrease the time required for iterative image reconstruction. One of 
the effective pathways is to use multiple graphical processing units 
(GPUs) to parallelize the computationally intensive parts of the 
algorithm [13-17]. A second pathway is through advanced 
algorithms from convex optimization theory [18]. Another way is 
by accelerating the convergence rate of existing algorithms at the 
expense of not having guaranteed convergence properties [19-21]. 
A new method named adaptive auxiliary variable is investigated in 
this article for accelerating the convergence rate of the AM 
algorithm and is evaluated using a simulated phantom and real 
clinical data obtained from a Siemens Sensation 16 scanner. 

In our current work, we first assume a Poisson distribution 
model for the measured transmission data. Then we calculate a 
maximum likelihood estimate of the measured data and data model 
by reformulating the estimation problem as a double minimization 
of an I-divergence problem. A Huber-type penalty is then added to 
the divergence term. Finally, we formulate an objective function 
with the I-divergence and regularization terms. As the optimization 
space is quite large, we have reformulated the objective function as 
𝑁 one-dimensional convex optimization problems, where N is the 
number of voxels in the image being reconstructed. After that, we 
have provided pseudocodes for the general AM algorithm and its 
accelerated version with the ordered-subset technique. Next, we 
derive our proposed auxiliary variable based acceleration method 
and present a pseudocode for its efficient parallel implementation. 
Finally, we have validated our proposed acceleration technique with 
NCAT phantoms and Siemens Sensation 16 helical scan data by 
comparing the convergence rates of a straightforward 
implementation of the AM algorithm with its accelerated version. 

Convex Optimization Technique for X-ray CT 

Mathematical Model 
In this article, we consider a mono-energetic scatter-free statistical 
model to account for the x-ray photon randomness as was done 
previously [2, 22]. At the basis of our statistical model, we assume 
the photons arrive at the detectors in accordance with a photon 
counting process. Let the 3D image volume of linear attenuation 
coefficients (in mm-1) be represented by the vector μ. Let 𝑖 denote a 
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ray path between the x-ray source and a pixel in the multi-row 
detector array and 𝑗 denote a voxel in the image volume. The 
measured transmission data, 𝑑 , is modeled as originating from 
independent Poisson counting processes. In discretized form, the 
mean value of 𝑑  is 

𝑔 (𝜇) = 𝐼 , exp − ∑ ℎ 𝜇 + 𝛽 , (1) 

where 𝐼 ,  is the mean number of counts in the absence of an 
attenuating medium, 𝛽  is the mean number of background events, 
assumed to be nonnegative and known, and 𝜇  is the linear 
attenuation coefficient in voxel 𝑗. The system matrix elements ℎ  
comprise the appropriately discretized point-spread function 
relating the projection space to the image space. If projection 𝑖 does 
not pass through voxel 𝑗, then ℎ  is zero. The Poisson log-likelihood 
function is 

𝑙(𝑑; 𝜇) = ∑ 𝑑 log 𝑔 (𝜇) − 𝑔 (𝜇) . (2) 

The objective of our iterative reconstruction algorithm is to 
maximize the log-likelihood function in (2) subject to 𝜇  being 
nonnegative, due to the nature of linear attenuation coefficients. It 
turns out that maximizing 𝑙(𝑑; 𝜇) is equivalent to minimizing the I-
divergence between 𝑑 and 𝑔(𝜇). In other words 

𝜇∗ = argmax 𝑙(𝑑; 𝜇) = argmin I 𝑑||𝑔(𝜇) , (3) 

where the I-divergence 𝐼[𝑑||𝑔(𝜇)] is defined as 

𝐼[𝑑||𝑔(𝜇)] ≜ ∑ 𝑑 ln
𝑑

𝑔 (𝜇) +𝑔 (𝜇) − 𝑑 . (4) 

The objective function presented in (3) cannot be optimized 
directly over 𝜇 since the optimization space is large. One of the best 
approaches is to develop surrogate functions that approximate the 
original function at every iteration and are easy to minimize. This 
approach leads to iterative algorithms where different surrogate 
functions are formed and minimized at each iteration and yet the 
original function decreases monotonically. 

Because this is an ill-posed inverse problem, we add a penalty term, 
R(μ), to the objective function used in the AM reconstruction, and 
weight it by a regularization parameter λ, where λ is a scalar that 
reflects the amount of smoothing desired. A larger value will give 
emphasis to the penalty term (i.e., the prior expectation that the 
image will be smooth), whereas a smaller value will give more 
emphasis to the I-divergence term (i.e., the discrepancy between the 
measured data and the data estimated by the model). The added 
penalty term is defined as 

𝑅 𝜇 ≜ ∑ 𝜔 , 𝜓 𝜇 − 𝜇 .∈  (5) 

For 3D regularization, we use the 26-voxel neighborhood 𝑁  
surrounding voxel j. The weights 𝜔 ,  control the relative 
contribution of each neighbour and are chosen as the inverse 
distances between voxels 𝑗 and 𝑗′. The potential function ψ(t) is a 
symmetric convex function that penalizes the difference between the 
values of neighboring voxels. For computational simplicity, we use 
a modified potential function used by Lange [3], 

𝜓(𝑡) ≜ 𝛿 − ln 1 + , (6) 

where δ is a parameter that controls the transition between a 

quadratic region (for smaller ) and a linear region (for larger ). 

For our specific reconstruction, we exclude a few image slices from 
the beginning and end in the penalty calculation because those slices 
will have severe artifacts due to cone beam truncation. Calculating 
the penalty for those slices could negatively impact reconstruction 
of the inner slices since the artifacts do not have any type of structure 
that can meaningfully be penalized by 𝑅(𝜇). The overall problem is 
then to find the penalized likelihood estimate 

𝜇∗ = argmin 𝐼[𝑑||𝑔(𝜇)] + 𝜆𝑅(𝜇). (7) 

This approach is also called penalized maximum likelihood 
estimation. It is worth noting that (3) is a special case of (7) when 
𝜆 = 0. 

Derivation of the Surrogate Function for the 
Regularized AM Algorithm 
In this section, we present the derivation of the surrogate function 
for an AM algorithm with a Huber-type penalty term. First, we start 
with a nonnegative initial image, 𝜇 , where the superscript 
represents the iteration index, and create surrogate functions for both 
the I-divergence and penalty term at each iteration and update the 
image by minimizing the surrogate functions. Special properties of 
the surrogate function guarantee a monotonic decrease of the 
original function, which will be explained later in this section. 

We define our data term as the I-divergence between the data 
𝑑  and the estimated mean 𝑔 (𝜇). The I-divergence has some terms 
that depend on the data only, which do not affect the minimization 
problem. We represent those data-dependent terms by 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑖). 

Assuming 𝛽 = 0, we have 

𝐼[𝑑||𝑔; 𝜇] ≜ ∑ 𝑑 ∑ ℎ 𝜇  +  ∑ 𝐼 , exp − ∑ ℎ 𝜇 +

                                                                                       𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑖) . (8) 

Focusing on the terms that include 𝜇, we construct the surrogate 
function as 

𝐼[𝑑||𝑔; 𝜇] ≜ ∑ 𝑑 ∑ ℎ 𝜇  + ∑ 𝐼 , exp − ∑ ℎ 𝜇 +

                                                                      ∑ ℎ �̂� − ∑ ℎ �̂�  , (9) 

                   = ∑ 𝜇 ∑ ℎ 𝑑 +

                      ∑ 𝐼 , exp − ∑ ℎ �̂� exp − ∑ ℎ 𝜇 − �̂� . (10) 

We define the exponentiated forward projection of image estimate 
as 

𝑞 = 𝐼 , exp − ∑ ℎ �̂� . (11) 

The backprojection of 𝑞  is defined as 

𝑏 = ∑ 𝑞 ℎ  , (12) 

and the backprojection of the data is defined as 
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𝑏 = ∑ 𝑑 ℎ  . (13) 

Therefore, the I-divergence term equals 

𝐼[𝑑||𝑔; 𝜇] = ∑ 𝜇 𝑏  +  ∑ 𝑞 exp − ∑ ℎ 𝜇 − �̂� . (14) 

Using the convex decomposition lemma, we can derive the 
inequality 

𝐼[𝑑||𝑔; 𝜇] ≤ ∑ 𝜇 𝑏  +  ∑ 𝑞 ∑ 𝑟 exp − 𝜇 − �̂� , (15) 

where  

𝑟 ≥ 0, ∀ 𝑖, 𝑗 (16) 

∑ 𝑟 ≤ 1 ∀ 𝑖. (17) 

If we choose  

𝑟 = , ∀ 𝑖, 𝑗 (18) 

where 𝑍 is defined as  

𝑍 = max  ∑ ℎ  , (19) 

then we can satisfy the conditions denoted by equations (16) and 
(17). Finally, we define the surrogate function of the data fit term 
𝐼[𝑑||𝑔; 𝜇, �̂�] using equations (12) (15) and (18) as  

𝐼[𝑑||𝑔; 𝜇, �̂�] = ∑ 𝜇 𝑏  +  ∑ 𝑞 ∑ exp −𝑍 𝜇 − �̂�  (20) 

                       = ∑ 𝜇 𝑏  +  ∑ ∑ 𝑞 ℎ  exp −𝑍 𝜇 − �̂�  (21) 

                       = ∑ 𝜇 𝑏  +  ∑ 𝑏 exp −𝑍 𝜇 − �̂� . (22) 

This surrogate function has the following two majorization 
properties  

𝐼[𝑑||𝑔; 𝜇]  =  𝐼[𝑑||𝑔; 𝜇, 𝜇] ∀ 𝜇, (23) 

and 

𝐼[𝑑||𝑔; 𝜇]  ≤  𝐼[𝑑||𝑔; 𝜇, �̂�] ∀ 𝜇, �̂� . (24) 

Using the properties from equations (23) and (24), we have  

𝐼[𝑑||𝑔; �̂�] − 𝐼[𝑑||𝑔; 𝜇]  ≥  𝐼[𝑑||𝑔; �̂�, �̂�]  −  𝐼[𝑑||𝑔; 𝜇, �̂�]. (25) 

In other words, if one can find some 𝜇 that makes the right-hand side 
of (25) positive (some 𝜇 that decreases the surrogate function value), 
then the original objective function also decreases. This is the key 
idea for forming iterative algorithms using any kind of surrogate 
function, including the Jensen type for our case. With a proper 
choice of 𝑟 , the surrogate can be “decoupled”; in other words, 
minimizing 𝐼[𝑑||𝑔; 𝜇, �̂�] can become 𝑁 one-dimensional 

independent convex minimization problems (one for each 𝜇 ), 
which are easy to parallelize.  

Using the convex decomposition lemma again we can write the 
potential function as  

𝜓 𝜇 − 𝜇 = 𝜓 𝛼 𝜇 − �̂� + �̂� − �̂� +

                              (1 − 𝛼)
( )

𝜇 − �̂� + �̂� − �̂�  ∀ 𝑗 (26) 

≤ 𝛼𝜓
1

𝛼
𝜇 − �̂� + �̂� − �̂� + 

                             (1 − 𝛼)𝜓
( )

𝜇 − �̂� + �̂� − �̂�  ∀ 𝑗. (27) 

To simplify equation (27), we choose 𝛼 ≜ 1 2⁄  to obtain  

𝜓 𝜇 − 𝜇 ≤ 𝜓 2 𝜇 − �̂� + �̂� − �̂�  +

                                      𝜓 −2 𝜇 − �̂� + �̂� − �̂�  (28) 

                        = 𝜓 2𝜇 − �̂� − �̂�  + 𝜓 2𝜇 − �̂� − �̂� . (29) 

We substitute the potential function in (6) into the surrogate function 
in (29) and ignore the part of (29) that is independent of 𝜇  to obtain 
the modified penalty function, 𝑅(𝜇), given by  

𝑅(𝜇, �̂�) = ∑ ∑ 𝛿  − log 1 +∈

                     . (30) 

A necessary condition for the solution of the penalized likelihood 
function is given by 

[ || ; , ]
 + 𝜆

( )
= 0 ∀ 𝑗 . (31) 

From equation (22) we can derive the derivative of the I-divergence 
terms as 

[ || ; , ]
= 𝑏  −  𝑏 exp −𝑍 𝜇 − �̂�  ∀ 𝑗 . (32) 

If we choose 𝜆 = 0, we can derive a closed form solution of the 
unpenalized likelihood estimate as 

𝜇 = �̂�  +  log  ∀ 𝑗 . (33) 

 

Implementation of the Regularized AM Algorithm 
The decoupling steps provide an iterative algorithm that is 
guaranteed not to increase. Also, it creates many one-parameter 
convex functions (one for each voxel) that can be minimized in 
parallel using GPU threads. The pseudocode for the regularized AM 
Algorithm is shown in Figure 1. 
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Figure 1. Regularized AM Algorithm 

Acceleration Methods 

Ordered Subsets 
A method called ordered subsets is widely used to increase the 
convergence speed by using a subset of data at each sub-iteration. 
The subsets are constructed to be balanced, disjoint, and exhaustive. 
If the data are partitioned into 𝐿 subsets, at sub-iteration l a surrogate 
function for the data-fitting term with only data indices in the 
corresponding subset is created and minimized with a proportional 
regularization term. Since the original data-fitting term for which we 
create surrogate functions changes at each iteration, convergence is 
not guaranteed. Denoting all source-detector pairs as 𝕐 and source-
detector pairs in subset l as 𝕐  for l = 0,1, …, (L-1), the regularized 
ordered subsets algorithm (OS-AM) is presented in Figure 2. 
 

Adaptive Auxiliary Variable 
The AM algorithm in closed form solution yields additive updates 
for the linear attenuation coefficient values with step sizes that are 
chosen to guarantee convergence. This guaranteed convergence 
criterion results in step sizes that are unnecessarily conservative. 
Therefore, to accelerate the convergence of our algorithm, we will 
try to choose bigger step sizes using adaptive auxiliary variables 𝑍  

such that 𝑟 =  . 

For the derivation of these so-called adaptive auxiliary 
variables, we start with data fit term surrogate function and ignore 
the regularization term for simplicity, which yields 

𝐼[𝑑||𝑔; 𝜇, �̂�] = ∑ 𝜇 𝑏 +

                      ∑ 𝐼 , exp − ∑ ℎ �̂� ∑ exp −𝑍 𝜇 − �̂� . (34) 

The derivative of this function with respect to 𝜇  is  

[ || ; , ]
= 𝑏 −

               ∑ ℎ 𝐼 , exp − ∑ ℎ �̂�  exp −𝑍 𝜇 − �̂� . (36) 

Figure 2. Regularized AM Algorithm with ordered subsets 

If our current estimate of �̂�  at the k-th iteration is �̂�  and we allow 

𝑍  to vary with iteration, denoted by 𝑍 , then setting 

[ || ; , ]
= 0 (36) 

gives 

𝑍 =

∑ , ∑

  ∀ 𝑗 . (37) 

Since we are minimizing the surrogate function around �̂� , any 
nonnegative value for this variable can be used. The inverse of the 
auxiliary variable acts as the weight in the closed form update. So, 
reducing the value of 𝑍  accelerates the convergence of the 
algorithm. One such choice would be to make �̂� = 0 ∀ 𝑗, which 
results in 

𝑍 =

∑ ,

 ∀ 𝑗 . (38) 

The backprojection of the incident photon intensity is 

𝑏 , = ∑ ℎ 𝐼 ,  . (39) 

Input: �̂� = 0 ∈ ℝ , 𝑍 = 2 ∗ 𝑅  ∈ ℝ , 𝑑 , 𝐼 , ∈ ℝ , 
𝜆 ≥ 0, 𝛿 > 0. 
Precompute 𝑏 = ∑ 𝑑 ℎ , ∀ 𝑗  
for k=0,1,2, …. do 
       𝑞 = 𝐼 , exp − ∑ ℎ �̂�  ∀ 𝑖 

       𝑏  = ∑ ℎ  𝑞  ∀ 𝑗 

   �̂� = argmin 𝑏 𝜇 − �̂� + exp −𝑍 𝜇 −

                                      �̂� + 

                                𝜆 ∑ 𝛿 − log 1 +∈

                                   , ∀ 𝑗    

 
end for 

 

Input: �̂�
( , )

= 0 ∈ ℝ  , 𝑍 = 2 ∗ 𝑅 ∈ ℝ , 𝑑 , 𝐼 , ∈ ℝ , 

𝜆 ≥ 0, 𝛿 > 0, 𝕐  for 𝑙 = 0,1,2, … . (𝐿 − 1). 
Precompute 𝑏 = ∑ 𝑑 ℎ∈𝕐 , ∀ 𝑙 and 𝑗  

Precompute 𝑏 = ∑ 𝑑 ℎ , ∀ 𝑗  
for k=0,1,2, …. do 
     for 𝑙 = 0,1,2, … . (𝐿 − 1) do  

      𝑞( , )
= 𝐼 , ex p − ∑ ℎ �̂�

( , )
∀ 𝑖 ∈ 𝕐  

      𝑏( , ) = ∑ ℎ  𝑞
( , ) ∀ 𝑗 

�̂�
( , )

= argmin 𝑏 𝜇 − �̂�
( , )

+       
𝑏

( , )

𝑍
exp −𝑍 𝜇 − �̂�

( , )
+ 

                  ∑ 𝛿

( , ) ( , )

−   log 1 +∈

         

( , ) ( , )

  ∀ 𝑗 

       end for 

       �̂�( , )
= �̂�

( , ) ∀ 𝑗 

end for 
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Then the adaptive auxiliary variable is 

𝑍 =

,

 ∀ 𝑗 . (40) 

In words, we can express our auxiliary variable as  

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 =

        

   

    

    (  )
 . (41) 

According to our previous choice of Z from equation (19), we can 
use the reconstruction diameter as a threshold for our proposed 
adaptive auxiliary variable 𝑍 , according to 

𝑍 =

,

if

,

< 2𝑅 ,
,

> 1, �̂� > 0 and 𝑘 ≥ 1

2 ∙ 𝑅 , else.

 (42) 

Since we start our iterative algorithm with an initial image estimate 
derived from a linear reconstruction algorithm like filtered 
backprojection (FBP) [23] or Feldkamp-Davis-Kress (FDK) [24], 
we can use this initial image estimate to precompute the initial 
values of the auxiliary variable. The value of 𝑍  is shown in 
Figures 4c, 4d, and 4f for reconstructed data from a Siemens 
Sensation 16 scanner and a simulated NCAT phantom respectively, 
where �̂� = �̂� . The region of the image with larger attenuation 
coefficients show a smaller value of the auxiliary variable, which in 
turn results in larger update steps and vice-versa. However, the 
requirement (17) in the derivation of the surrogate function of the 
AM algorithm which guarantees convergence is not satisfied as is 

evident in Figure 5. The histogram distribution of ∑ 𝑟 = ∑ , 

which is the forward projection of the inverse auxiliary variable 
1

𝑍 , shows values larger than 1 for our adaptive variable scheme. 

So, the loss of guaranteed convergence is one of the compromises 
of our proposed acceleration method. 
 
Also, it is evident from equation (41) that both backprojection arrays 
𝑏 ,  and 𝑏  can be precomputed. So, the adaptive nature of the 
auxiliary variable comes from the fact that after each iteration the 
value of the variable is updated with the current estimate of the 
reconstructed image. For parallel processing units like GPUs, this 
step doesn’t add any significant burden to the overall computation 
time since the computation of each element of the auxiliary variable 
is independent of each other and GPU threads can compute all the 
elements efficiently. The regularized AM algorithm with ordered 
subset is presented in Figure 3 with the initial image estimate 
derived from the FDK algorithm. 

Data Description 
To validate the acceleration of the convergence rate of our 
algorithm, we used an NCAT phantom and raw sinogram data from 
a Siemens Sensation 16 scanner. To generate synthetic sinogram 
from the NCAT phantom image volume, we include Poisson noise 
in the forward projection data of the phantom image using equation 
(1). The parameter 𝛽  denotes the mean of the Poisson distributed 

number of background events added to the data at source-detector 
pair i, and is equal to 1% of the measured photon intensity of the i-
th source-detector pair. The parameters of the measured data and 
reconstructed images are shown in Table 1: 
 

No. of views 13920 
No. of detector channels 672 

No. of detector rows 16 
No. of image slices 164 
No. of pixels/slice 512x512 

Table 1. Parameters of measured data and reconstructed image 

Figure 3. Regularized OS-AM Algorithm with adaptive auxiliary variable 

Results 
To quantify the accuracy of the reconstructed images, the quantity 
discussed below was measured on the reconstructed images. In the 
following definition, N denotes the total number of voxels in our 
region of interest (ROI), �̂�  is the reconstructed image after 𝑘 

iterations, and �̂�  is the phantom image from which the synthetic 

Input: �̂�
( , )

= �̂� ∈ ℝ , 𝑑 , 𝐼 , ∈ ℝ , 𝜆 ≥ 0, 𝛿 >

0, 𝕐  𝑓𝑜𝑟 𝑙 = 0,1,2, … . (𝐿 − 1). 
Precompute 𝑏 = ∑ 𝑑 ℎ∈𝕐 , ∀ 𝑙 and 𝑗  

Precompute 𝑏 = ∑ 𝑑 ℎ , ∀ 𝑗  
Precompute 𝑏 , = ∑ 𝑑 𝐼 , , ∀ 𝑗  
Precompute 
𝑍 =

,

, if

,

< 2 ∗ 𝑅  ,
,

> 1 ,  �̂� > 0 

2 ∗ 𝑅 , else

   

∀ 𝑗 
for k=0,1,2, …. do      
      for 𝑙 = 0,1,2, … . (𝐿 − 1) do  

      𝑞( , )
= 𝐼 , exp − ∑ ℎ �̂�

( , )
, ∀𝑖 ∈ 𝕐  

      𝑏( , ) = ∑ ℎ  𝑞
( , )

 ∀ 𝑗 

 �̂�( , )
= argmin 𝑏 𝜇 − �̂�

( , )
+  

( , )

exp −𝑍 𝜇 −

                              �̂�
( , )

+ 

                           ∑ 𝛿

( , ) ( , )

−∈

                                  log 1 +

( , ) ( , )

, ∀ 𝑗 

       end for 

       �̂�( , )
= �̂�

( , )
 ∀ 𝑗 

        𝑍 =
,

( , ) , if

,

( , ) < 2 ∗ 𝑅  ,
,

> 1 ,  �̂�
( , )

> 0 

2 ∗ 𝑅 , else

   

∀ 𝑗 
end for 
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projection data were generated. The percent absolute error (PAE) is 
defined as 

PAE = 100 × ∑ − 1 . (43) 

However, for real data there is no true image that can be used to 
calculate PAE. Instead, we use the total value of the objective 
function from equation (7) as our performance measure. 

For both PAE and I-divergence values, the rate of decrease 
doubles with the addition of an adaptive auxiliary variable for both 
baseline and ordered subset AM implementation as evident in 
Figure 6. For larger numbers of ordered subsets, the rate of 
acceleration is also larger. However, after a certain number of initial 
iterations, the straightforward implementation catches up with the 
adaptive auxiliary variable implementation and eventually surpasses 
it, possibly due to the loss of the convergence guarantee because of 
our aggressive update steps. After extensive experimentation with 
different datasets, scanner geometries and ordered subset 
configurations, we have repeatedly observed an average of two 
times acceleration in convergence rate for initial iterations but the 
rate of acceleration diminishes as we approach convergence. 

Conclusions 
In this paper, we have proposed a novel approach to adaptively 
compute the additive step in the AM algorithm. We have observed 
that our approach of using an adaptive auxiliary variable combined 
with ordered subsets creates no extra computation cost compared to 
the straightforward implementation of the OS-AM algorithm. From 
the image quality assessment parameters, we can conclude that our 
proposed adaptive auxiliary variable technique shows an average of 
2X increase in convergence rate for every OS configuration. 
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Figure 4 (a) and (b) Linear attenuation coefficient map reconstructed with FDK algorithm for real data obtained from Siemens Sensation 16 scanner, units of mm-1. 
(c) and (d) Values of the auxiliary variable for the corresponding image slices. (e) Linear attenuation coefficient map reconstructed with FDK algorithm for NCAT 
data in units of mm-1. (f) Values of the auxiliary variable for the corresponding image slice. 
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(a) (b) 

Figure 5. Histogram of the forward projection of the inverse auxiliary variable 1 𝑍  where (a) 𝑍  is constant (𝑍 = 𝑚𝑎𝑥  ∑ ℎ = 2 ∗ 𝑅 ) and (b) 𝑍  is computed by 

adaptive auxiliary variable.  

 
(a) (b) (c) 

 

 
(d) (e) 

Figure 6. (a) ROI of the NCAT phantom image. PAE vs iteration number for the NCAT phantom in the given ROI (b) without ordered subsets and with (red) and 
without (blue) the adaptive auxiliary variable (c) with 5 ordered subsets and with (red) and without (blue) the adaptive auxiliary variable. Objective function values 
vs iteration number for Siemens Sensation 16 scanner reconstructed images (d) without ordered subset implementation and with (blue) and without (red) adaptive 
auxiliary variable, and (e) with 5 ordered subset implementation and with (blue) and without (red) adaptive auxiliary variable. 
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