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Abstract 

The logic of the Bonferroni correction for multiple tests, or family-wise error, is to set the 
criterion to reduce the expected number of erroneous false positives, or Type I errors, below 1. 
This is a very stringent criterion for false positives in cases where the test may be applied 
millions of times, and will necessarily introduce a large proportion of false negatives (missed 
positives, or Type II errors). A proposed solution to this problem is to adjust the criterion for 
False Discovery Rate (Benjamini & Hochberg, 1995), which allows the number of false positives 
to increase proportionally to the number of true positives, though remaining at a small 
proportion, dramatically reducing the number of false negatives. This approach may be 
conceptualized as working with a relaxed confidence level that any one test is a true rather than 
a false positive, bringing the criterion more into line with our societal assessment of the validity 
of statements in general, and even in science, as having less than 100% certainty. The analytic 
strategy to the assessment of statistical significance provides a more intuitive approach to the 
identification of sparse signals in large datasets than the standard Bonferroni approach to 
correction for multiple tests. 

 
 

Introduction 
The role of statistical testing is to set 
meaningful limits on what may be regarded as 
the error range for statistical estimates. 
However, functional error ranges depend on 
the number of times a test is applied, which in 
the era of ‘big data’ may number in the 
millions of applications, making a criterion that 
reduces false alarms to 1 in 20 applications 
(symbolized as p < 0.05) subject to 
unacceptable numbers of false alarms.  It is 
therefore important to provide an adequate 
approach to the assessment of large numbers 
of multiple tests when applying them to large 
datasets, such as those encountered in 
product quality control, identification of 
genetic substrates of diseases or individual 
characteristics, or high-resolution medical 
imaging such as brain connectivity analysis. 
 
 

The Era of Big Data 
The 21st century may be characterized as the 
beginning of the era of Big Data, spearheaded 
by the Human Genome Project whose initial 
deadline was the turn of the millennium in the 
year 2000.  The term ‘Big Data’, which seems 
to have its origins in computer graphics 
developed by Silicon Graphics for Hollywood 
special effects (Mashey, 1998) and 
econometrics around the same time (Diebold, 
2003), span many arenas of human endeavor.   
Climate data span the globe, with NASA 
satellites sending back more than ten million 
gigbytes of data per year. 
The human genome contains 3 billion base 
pairs, so it was a decade-long effort to 
sequence it for one individual, but techniques 
have rapidly improved and now it can be done 
for any of the 7 billion individuals on the 
planet in less than an hour.  
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The internet has a somewhat 
longer history dating back to the 
mid-20th century. It has now 
reached the scope of more than 1 
million terabytes of information 
(Kemp, 2017), although these are 
exchanged among the relatively 
modest number of only about 1 
billion websites (i.e., less than 1 
per every 7 people on the planet).   
By contrast, the human brain 
contains as many as 100 billion 
neurons, so a single brain is still 
more highly connected than the 
entire internet by a couple of 
orders of magnitude. Indeed, the 
numbers of potential connections 
in these systems are enormously 
larger than the numbers of nodes, at about 1 
quadrillion for the Internet and 10 quintillion 
for the human brain.  
 
The Human Connectome Project is the current 
effort to study the structural, functional and 
directed (or effective) connectivity of the 
human brain as a function of its interaction 
with the environment. Although it reaches 
very much into the domain of Big Data, the 
connectome does not reach the scale of the 
neural connectivity. Structural connectivity is 
performed at a resolution of about 0.5 mm3, or 
about 50,000 voxels of segmented neural 
information, providing for the order of a billion 
possible connections.  Functional connectivity, 
whether undirected or directed, is performed 
at a resolution of about 2 mm3, or about 1,000 
voxels of segmented neural information, 
providing for the order of only a million 
possible connections.  Nevertheless, 
determining which of these connections is 
significantly identifiable or activated in a 
particular brain at a particular time requires an 
individual statistical test for every one of the 
million or billion possible connections, and 

thus demands a well-considered approach to 
the correction of multiple tests. (At present, it 
is not possible to envisage brain connectivity 
analysis at the full scale of neuronal resolution, 
but advances will undoubtedly be made 
toward that ultimate goal.) 
 
Signal Detection Theory and the Student t 
Test 
The core concept for classical statistical testing 
is based on the assumption that performance 
is limited by additive Gaussian noise (based on 
the outcome of the Central Limit Theorem, 
which is that the combination of various 
sources of noise is asymptotically Gaussian). 
Statistical tests for the detection of a given 
signal in a noisy environment (which, in the 
limit, is the case for all knowledge acquisition 
and assessment) are based on the Signal 
Detection Theory (SDT) formalism (Tanner & 
Swets, 1954). The signal is drawn from a 
distribution fS(x) of values perturbed by the 
added Gaussian noise, while the non-signal 
null samples are drawn from a separate 
distribution fN(x) with the same standard 
deviation (Fig. 1). In practice, the distribution 

 

Fig. 1. A. A depiction of the Internet in 2005 from http://www.opte.org/the-
internet/. B. The shape and properties of the brain’s white-matter structures have 
been shown to be related to behavior, cognition and neurological diseases. 
(Courtesy of the USC Laboratory of Neuro Imaging and Martinos Center for 
Biomedical Imaging, Consortium of the Human Connectome Project). 

Big	Data,	the	Internet,	and	the	Human	Connectome
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must be assessed by drawing multiple samples 
in conditions when no signal is known to be 
present, and fitting a theoretical distribution to 
the result. For typical multi-source noise, the 
Central Limit Theorem makes the Gaussian 
distribution the best candidate for the 
theoretical distribution, but other distributions 
may be appropriate for special situations. 
 
To test whether one sample is a signal or a 
noise sample, the SDT formalism is to set a 
criterion level on the basis of the noise 
distribution fN(x) and treat any sample larger 
than that value as signal. This approach will 
allow a known proportion of noise samples to 
be treated as signal, or false alarms (e.g. 5% 
for a criterion level of p < 0.05), indicated by 
the blue region in Fig. 1. For a mean signal 
level fS(x) matching this criterion, however, 
50% of true signals will be rejected (misses), 
with progressively greater discriminability as 
the signal level increases. 

 
Fig. 1. Classical Signal Detection Theory analysis, which 
also corresponds to the basis of the t-test. The noise 
(fN(X)) and signal+noise (fS(X)) distributions are shown 

separated by 1.96  between the means D1 and D2, 
leaving a criterion level at 5% of the noise distribution as 
the cutoff for the signal estimates.  Computing the 
standard errors of the means for 100 samples allows the 
estimated criterion level to be substantially reduced 
according to the standard error of the means (SEM). 

The next level of assessment is to take multiple 
samples, or readings, of the same situation, or 
sampling distribution, in order to improve the 
accuracy of the statistical assessment. Taking 
the average of these readings will reduce the 
spread of the distribution by the square root of 
the number of samples, n (Fig. 1 inset). 
Applying the same false alarm proportion of p 
< 0.05 to the new multiple-sample noise 
distribution will result in a proportionately 
lower criterion level, so that the signal 
strength will result in a much higher 
proportion of signal samples being categorized 
as valid signal.  
 
The applicable statistical test for the multiple 
sample situation depicted in Fig. 1 (inset) is the 
“Student” t-test (Gosset, 1908), defined as the 
ratio of the difference between the means to 
their standard error (SEM): 
 
                       difference between means        

  t  =
          difference SEM                                     

 
                                                                            (1) 
 

               =  

M2 – M1

√( (
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n1
)
2
+ (
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)
2
)

 

 
To assess its significance, the value of t must 
be checked against a statistical table of t 
values at the preferred level of significance 
based on the applicable number of degrees of 
freedom (df), which are calculated by the 
simple formula:  
 
  df = n1 + n2 - 2   (2) 
 
The criterion value of t varies from about 10 

for df = 2 to 1 for df  ~=  . 
 

D1 D2

Signal	strength

SEM

Psychophysical	Signal	Detection	Theory	
with	Invariant	Gaussian	Noise	
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Multiple Testing 
So far, we are considering a single application 
of the criterion level for a single statistical test. 
When the test is applied multiple times, the 
applicable criterion has to be adjusted, since 
some proportion of the tests will inevitably be 
classified as valid results even when they are 
drawn from purely random effect 
distributions. The standard approach to setting 
the criterion for multiple testing or, “family-
wise error”, was codified by Bonferroni (1936) 
as the criterion to reduce the probability of an 
erroneous false positives below 1. This is a 
very stringent criterion for false positives in 
cases where the test may be applied tens of 
thousands or millions of times, as is often the 
case in large datasets.  The equation for the 
Bonferroni corrected criterion level pc is simply 
to divide the desired uncorrected level pu  by 
the number of tests T to be performed: 
 
 pc = pu / T                                             (3) 
 
For example,  at p < 0.05 the Bonferroni 
correction for a significant signal in any one of 
10,000 voxels in a human brain scan is  p < 
0.000005, which requires a signal z-score level 
of 5 times the prevailing noise level, a radical 
increase over the z-score of 1.96 required for a 
single test.   
 
Benjamini/Hochberg correction for false 
discovery rate, or confidence level 
Another way to characterize this criterion is in 
terms of confidence level in each assessment 
of significance. Thus, it is generally accepted 
that the logic of everyday calculations is not 
absolute, even down to the definition of object 
concepts In practical application, there is 
always some fuzzy fringe, or region of 
uncertainty, surrounding the definitive core of 
any concept (Zadeh, 1965; Tyler & Likova, 
2010). This uncertainty can be expressed as a 
confidence level in the categorization of any 

aspect of reality, as for how likely it is to match 
the ideal definition of that concept.  For 
example, gender recognition by current 
software has error rates of 0.8% for light-
skinned males, 7% for light-skinned females, 
12% for dark-skinned males and 35% for dark-
skinned females (Buolamwini & Gebru, 2018). 
Although human recognition capabilities are 
better than this, they are not absolute, so we 
cannot be 100% confident in any given object 
or feature identification. It therefore makes 
the most sense to apply a specified confidence 
level (such as 90%) to any given statistical 
assessment rather than requiring an unrealistic 
level of absolute certainty. 
 
This situation has been addressed in an 
interesting form by Benjamini & Hochberg 
(1995) to take into account the number of 
tests that pass the significance criterion rather 
than focusing entirely on eliminating any false 
positives, or “false discoveries”. Thus, rather 
than reducing the number of false positives to 
zero, as was the case for the Bonferroni 
criterion, the concept is to hold the rate of 
false positives to some small fraction of the 
number of true positives, or valid results.  For 
example, it may be acceptable to allow a 10% 
rate of false positives among the valid results, 
giving 90% confidence in any one result.   
 
Holm (1979) had made the proposal to order 
the significance levels for multiple tests and 
consider them in order relative to the 
Bonferroni criterion, stepping down the n in 
the numerator by one each time that a test 
passes the its applicable criterion.  This allows 
for more tests to pass at high significance, but 
it still rejects many valid results that would 
pass the usual criterion on a single test basis 
by holding to the concept of absolute validity 
of all the results. The Benjamini-Hochberg 
approach based on an acceptable rate of false 
positives has been characterized as a step-up 
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method rather than Holm’s step-down 
method, ending up rejecting fewer true 
positives. 
 
Applying this concept of a confidence level to 
the correction for multiple tests is simple in 
the case of no signal conditions, since the 
noise distribution can be assumed to be fully 
Gaussian. The problem arises when the signal 
is present, since its distribution is arbitrary and 
unknown. The signal distribution will be 
assumed to be flat (if necessary) but it may not 
be necessary. Given the number of tests, the 
area under the normal distribution is known 
for any given p value.  The excess of positive 
results over that number therefore represents, 
on average, the signal results.  For example, if 
2000 tests are assessed at the p < 0.05 
criterion level, the number of false positives in 
each tail should be 50 and the Bonferroni 
criterion required to eliminate all false 
positives is p < 0.000025 (i.e., 0.05/2000). 
 
Benjamini-Hochberg (B-H) Procedure 
Implementing the B-H procedure is a two-step 
strategy. The first step is to run the analysis at 
the uncorrected level of significance in order 
to determine the number of possibly 
significant results if tested individually. If there 
is no signal in the dataset, the expected 
number of false positives in each tail of the 
distribution is given by  
 

E = pu x n / 2                                       (4) 
 
where pu is the uncorrected criterion 

and n is the number of applications of the test 
(e.g., 500 false positives for 10,000 tests at pu = 
0.05). 

 
The possible number of truly significant results 
at pu is then estimated as 
 
 T = Pu – E                                               (5) 

 
 where Pu is the empirical number of 
positive results at pu.  

 

Thus, for the relaxed criterion of the 
confidence level, C, the new approach defines 
the corrected significance level pc as  
 
 pc = pu / T x C                                       (6) 
 
For comparison, Bonferroni                 
correction is pc = pu / n.   
 
For m tests 

1. Rank the individual p-values in 
descending order. 

2. Draw a line from 0.05 to 0 over the 
interval 0 to m. 

       [ pBH = (i/m)Q ]  
3. Take all tests below this line as 

significant. 
 
Simulated example 
In the above example, depicted in Fig. 4, the 
blue curve shows the samples from a 
simulated Gaussian distribution plotted in 
inverse percentile rank order. The red curve is 
a similar function for the example of 10% of 
significant test results in 10,000 tests (at a 
level of z = 2). In the lower half of the figure 
(on an expanded ordinate to show the bottom 
5% of the scale) are depicted the four 
significance criteria discussed in this paper.  
 
The upper dashed line shows the standard 
uncorrected criterion of p = 0.05. 
 
The lower dashed line shows the Bonferroni 
corrected criterion of p = 0.000005. 
 
The green curves show the rank-dependent 
criteria levels for the Holm approach for 10, 
100, and 1000 tests in descending order in the 
graphic. Thus, it can be seen that the Holm 
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approach approximates the low Bonferroni cut 
progressively more closely as the n increases, 
providing progressively less benefit for larger 
n. By the 10,000 test level, it closely 
approximates the Bonferroni line along most 
of its extent. It is therefore ineffective in 
recovering the 100 true positives in this 
sample. 
 
The 90% B-H criteria is indicated by the oblique 
line running from the uncorrected criterion to 
the Bonferroni criterion lines, with the buff 
coloration indicating the zone of significant 
results.  It can be seen that, due to the 
curvature of the inverse ranked curve for the 
10% significant results (red curve), a full range 
of the simulated results are categorized as 
positive ‘hits’.  The actual proportion of hits 
was 55% of the total number of true positives, 

 
 
Fig. 2. MonteCarlo simulation 
comparing the Benjamini-Hochberg (B-
H) method with simple Bonferroni 
correction and the Holm sequential 
method, for two distributions: a 10% 
signal distribution (red curve) at the 
50% criterion level (z = 1.96) and a pure 
noise distribution (blue curve). For both 
the Holm and B-H approaches, p values 
for all individual tests are inversely 
rank-ordered from high-to-low to 
define the criterion line between the 
uncorrected and the Bonferroni 
corrected criteria. The ordinate is 
expanded up to the uncorrected 
criterion value of 0.05 for clarity. In this 
format, the Holm criteria are shown as 
the green curves for 10, 100 and 1000 
tests, in descending order. The points 
where the B-H and Holm rank-order 
curves cross the criterion line define the 
hit/false-alarm ratios for the two 
distributions. 

 
 
 
 

with a 5% false alarm rate corresponding to 
90% of the ‘signal’ cases (i.e., a 90% 
confidence level that the signal cases are 
valid). The lowest applicable significance 
criterion is lowered to 0.033 in this example, 
only a little more stringent than the 
uncorrected criterion.   
 
It should be stressed that, in the absence of 
any actual positive in the dataset, the B-H 
procedure will not produce many more false 
positives than the Bonferroni, but that it will 
detect a higher proportion of positives if they 
have higher z-scores (i.e., when the tail of the 
inverse percentile rank curve extends further 
to the right). 
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Thus, it is clear that there is no free lunch, but 
that the graded criterion approach provides 
for the detection of the majority of signals for 
the price of allowing contamination with small 
proportion of noise elements. In many fields of 
endeavor, this is well worth the cost for the 
benefit of recovering potentially a large 
number of signals that would be excluded by 
the stringent Bonferroni criterion.  Given that 
there are many uncertainties of control in a 
particular experimental design, such as 
contaminated samples, temperature control, 
treatment compliance, disease diagnosis, etc, 
etc, it does not seem reasonable to hold the 
statistical criterion to an absolute standard of 
perfection.  
 
Popularity of the Benjamini-Hochberg 
correction for false discovery 
As mentioned, the 21st century may be 
characterized as the beginning of the era of Big 
Data, so it might be expected that a statistical 
procedure such as the B-H correction for 
‘discovery’, which is designed for use with 
large datasets, would achieve widespread 
popularity in this era. Since 1995 when it was 
first published, however, the B-H correction 
has had a limited usage history (see Fig. 3). 
Barely registering until 2000, it had a burst of 
popularity for about 5 years. But since 2005 its 
growth leveled off to a markedly slower rate of 
about 10% per year, currently reaching a level 
of a little over 1000 publications per year.   
This is a tiny proportion of the roughly 2 
million scientific publications every year, so it 
is clear that the technique has by no means 
overtaken traditional approaches to statistical 
analysis, despite its obvious advantages in data 
mining. 
 
Conclusion 
There are two basic philosophies for statistical 
analysis.  The traditional approach is to adopt a 
strategy than ensures that, within the bounds 

of statistical estimation, no result is considered 
unless it has an absolute certainty of not being 
attributable to random processes. This 

approach works well for individual cases of 
statistical assessment but founders in the era 
of Big Data, when an investigation may require 
thousands or millions of statistical tests to be 
applied to a dataset.  
 
The alternative approach is to allow for some 
probability that any given result may have 
occurred by chance, scaled to the number of 
positive results in the dataset under study. The 
Benjamini-Hochberg procedure provides an 
implementation of this approach that can 
radically increase the number of underlying 
events detected in a data structure at the price 
of only a small decrease in the level of 
confidence in their validity. 
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