
Investigating Potential Human Tetrachromacy in Individu-
als with Tetrachromat Genotypes Using Multispectral Tech-
niques
Vladimir A. Bochko, Department of Electrical Engineering and Energy Technology, University of Vaasa, FIN-65101 Vaasa, Finland.
Kimberly A. Jameson, Institute for Mathematical Behavioral Sciences, University of California, Irvine, CA, USA.

Abstract
This article uses multispectral techniques to investigate color

processing in two individuals possessing photopigment genotypes
allowing potential human tetrachromacy. In our investigations
we measure spectral reflectances from empirically reproduced color
sensations of potential tetrachromat observers, and investigate
color processing basis functions underlying the observed set of
tetrachromat spectra. Our investigations provide new empirical
and quantitative methods for estimating trichromat individual’s
personalized spectral sensitivities, and, as shown in one poten-
tial tetrachromat examined, permit estimation of cone response
sensitivities for cases that may not conform to the kind of stan-
dard dimensional solutions typically associated with trichromat
models.

1. Introduction
Conventional color technologies — such as digital cam-

eras, computer displays and television systems — are typi-
cally based on three display primaries or filters, and are thus
inherently constrained by device-dependent metamerism in
the reproduction of high quality color images. Constraints
on high quality color reproduction that arise from device-
dependent metamerism occur when a device’s display pri-
maries (or filters) do not provide adequate gamut or inten-
sity ranges to approximate those typical of the human color
vision system. When such limitations exist, subtle color
appearance variations that may be apparent to a human ob-
server engaged in naturalistic viewing of a scene, can be
lost when an image of that scene is reproduced on a display
device.

Historically display engineers have addressed device-
dependent metamerism by identifying sets of primaries that
best accommodate human visual system sensitivities and
variations. While three-color-channel systems have long
been considered standard, advances in digital display and
camera industries now make it both technologically possi-
ble and economically feasible to consider extending device
primaries beyond the three typically used.

The present article investigates (a) potential image re-
production enhancements made possible by extending the
number of display primaries of a color system, and (b) what
such advances might imply for not only observers with nor-
mal color vision, but also for observers with exceptional
color vision owing to color vision photoreceptor process-
ing that potentially confers richer color experience. Here
we describe how analyses of potential tetrachromat color vi-

sion can lend insight into effectively addressing the device-
dependent metamerism problem, as well as suggest how
to generally enhance color representation in digital imaging
technology. In addition, results show that studying color vi-
sion in potential tetrachromat observers clarifies some color
vision features associated with four-photoreceptor color vi-
sion phenotypes, which may aid in extending display tech-
nologies towards multispectral imaging systems.

Potential Human Tetrachromacy
Potential tetrachromacy is a recently noted form of hu-

man color perception [25], made possible by inheritance
of altered X-chromosome-linked photopigment opsin genes
responsible for human color vision. Potential tetrachromat
individuals carry gene sequences that permit expression of
four distinct classes of daylight-sensitive retinal photore-
ceptors used in the visual processing of environmental color
stimuli. Individuals with retinas expressing a tetrachromat
potential differ from the majority of people who typically
possess genes for three distinct photopigmet opsins, and
who, as a result, retinally express up to three classes of day-
light photosensitive cells. The latter configuration is analo-
gous to that engineered in standard three-primary display
devices, and models with three distinct classes of photore-
ceptors, which, when neurally represented as a trivariant
color code, have long been accepted as the standard for nor-
mal human color vision and widely considered the basis for
typical ranges of normal perceived color appearance.

Genetic variations most often linked to human poten-
tial tetrachromacy derive from individual’s X-chromosome-
linked photopigment opsin genes. Genetic variants, or
opsin sequence alleles, of standard medium-wavelength
and long-wavelength sensitive photoreceptors (”M-cone”
and ”L-cone”, respectively) provide sequence variations
that make tetrachromacy possible. Females with two X-
chromosomes are capable of retinal expression of four dif-
ferent wavelength-sensitive photoreceptor classes (S-, M-,
L- plus a distinct alternative, presumably a variant of the
usual L-cone class, often referred to as L’-, or L-prime) mak-
ing them “retinal tetrachromats”, while males with a full
complement of X-linked opsin genotype on their single X-
chromosome are presumed to express some form of three
different wavelength-sensitive photoreceptor classes, con-
ferring such males with color vision trichromacy.

Since the 1980’s empirical results have emerged sug-
gesting that retinal tetrachromacy may provide a photopic
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response that allows observers to distinguish more colors
than that experienced by conventional trichromat color vi-
sion. [24–26]. Individuals genotyped as having a potential
for tetrachromacy have since been empirically investigated
by several different groups, with the general result being
that some potential tetrachromats experience color percep-
tion, which, in some cases, seems better than normal, and is
not fully captured by a normal model of trichromat color
vision (see [4, 12–14, 18, 19, 27]). Recent empirical investiga-
tions compare one specific potential tetrachromat individ-
ual (CA) to other control participants and finds empirical
results suggesting observer CA, (i) sees more colors under
conditions of dim illumination (especially for stimuli having
dominant wavelengths coincident with the putative peak of
her extra photopigment’s sensitivity response), and (ii) es-
sentially judges some appearances as “colorful” for which a
normal trichromat observer’s performance suggests are rel-
atively colorless appearances. [16, 17] In general, potential
tetrachromat CA’s results suggest a psychophysical trans-
formation reflecting non-uniform variation compared to a
normal observer’s performance – that is, it includes regions
of deviation from normal for some color stimuli, while other
color space regions showed CA’s processing was indistin-
guishable from normal processing. [16, 17]

The present article empirically explores the potential
perceptual consequences of retinal tetrachromacy through
investigations of color perception and the modeling of color
processing behaviors using multispectral analysis tech-
niques. Owing to their general utility and efficiency in
data inspection, we employ machine learning algorithms to
investigate color processing underlying the observed phe-
nomena: That is, estimating optimal color matching func-
tions from tetrachromat behavioral data.

One typical way to address this problem would be to
estimate observer’s spectral basis functions based on empir-
ical observations using principal component analysis (PCA)
methods. A concern, however, is that due to dimensional
orthogonality in the present case, PCA basis function solu-
tions of these data are likely to contain negative coefficients
that make physical implementation problematic. An appro-
priate alternative approach is Non-negative Matrix Factor-
ization (NMF) or Non-negative Tensor Factorization (NTF)
which could provide useful non-negative decompositions
of these data. Previously NMF and NTF were used to de-
fine optimal non-negative representations of spectral colors
for data from different sets of stimuli, including the Macbeth
ColorChecker (MCC), a Munsell spectral color set and paint
spectral sets [1, 5, 20].

As described below we present two distinct investiga-
tions of potential tetrachromat processing. First, we collect
empirical observations for two observers’ color perception
variations of a standardized color stimulus. And, second,
we employ the NMF genetic algorithm to calculate approxi-
mate basis functions for spectra associated with a tetrachro-
matic color vision model.

We implement two algorithms to calculate the basis
functions. The first algorithm finds basis functions by min-
imizing mean–squared errors between given spectra and
their approximations, and is performed in spectral space.

The second algorithm finds basis functions minimizing color
differences when spectra and spectral approximations are
converted into the domain of color, thereby providing opti-
mizations in a standard color space. To convert spectra to
color we use an existing three channel algorithm [7]. While
the first algorithm solves the task in an appropriate way,
the second algorithm may over specify its solutions by the
assumption of a three–channel color reproduction for tetra-
chromatic data. Despite this potential limitation, results
presented below suggest that it is nevertheless useful to
examine three–channel color reproductions from simulated
tetrachromatic spectral reflectance. We consider such repro-
ductions as mappings to a three–dimensional space that pro-
vides valuable characteristics of calculated basis functions.
Three channel reproduction helps to obtain the smoother
and better localized basis functions that cannot be achieved
with methods working in spectral space. In addition, our
experiments with the three–channel system indicate signif-
icant modeling improvement in color reproduction com-
pared to spectral optimization, which agrees with existing
investigations using three channel systems [5]. Therefore,
as detailed below, results obtained suggests that the three–
channel color reproduction method in color space is useful
for understanding some potential tetrachromat color per-
ception differences explored in the present study.

The remainder of the present paper is organized as
follows: Color vision models based on empirically ob-
served color perception behaviors are considered in Section
2, empirical methods for collecting tetrachromat spectral re-
flectance stimuli are described in Section 3, data dimension-
ality and basis function calculation are explained in Section
4, experimental results are given in Section 5, and results
interpretation and discussion are presented in Section 6.

2. Two color vision models
Color vision models provide a principled basis for un-

derstanding human color perception. In modeling devel-
oped here we first consider a trichromat color vision model
[11]. We assume that the composition of the spectral power
E(λ) of an illuminant and the spectral reflectance s(λ) of an
object are sufficient to physically characterize the subjective
color of a spectral stimulus ϕ(λ). The Standard Observer
senses these physical stimulus values and integrates them
to provide spectral color stimuli using three color matching
functions: x(λ), y(λ) and z(λ). The result of the integration
can be described as tristimulus values which specify color
sensations (Fig. 1) for a trichromat observer as X, Y, and
Z. [31]

Similarly, initial color vision processing in a retinal
tetrachromat can be characterized by altering the underly-
ing color matching functions, varying their number, shape
and wavelength range. In such cases, tetrachromat process-
ing can be denoted as tl(λ), tml(λ), tm(λ) and ts(λ) corre-
sponding to the long, middle-long, middle and short sub-
range of wavelengths. Tetrastimulus values Tl, Tml, Tm,
and Ts thus depend on the integration of the product of four
color matching functions and color stimulus spectra (Fig. 1).
The tetrastimulus values provide a basis for color sensations
arising from tetrachromat retinae. Thus, the two color vi-
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sion models presented provide formal descriptions for color
sensation variations occurring in a standard trichromat ob-
server compared to a tetrachromat observer.

Figure 1. Two color vision models based on tristimulus and tetrastimulus

values.
An important component for understanding tetrachro-

mat color perception is the accurate estimation of tetrachro-
mat color matching functions, or chromatic response func-
tions that arise from the initial limiting constraints found in
cone spectral sensitivity variants [8, 21]. Previous research
suggests how cone fundamentals can be simulated for a
potential tetrachromat [19]. By comparison, here we simu-
late cone fundamentals using a machine learning algorithm
which provides approximations of the color matching func-
tions underlying observed color perception behavior, and
provides a new engineering-based approach for studying
the perceptual consequences of retinal tetrachomat color vi-
sion processing.

3. Color Reproduction Experiment
The analytic methods developed in Section 4 make use

of personalized color perception variation that is assessed
through empirically observed color reproduction.

3.1 Participants
As shown in previous photopigment opsin genotyping

research molecular genetics research has determined that
genotypes involving more than three normal photopigment
opsin variants are not uncommon, [3,4,8,13,14,19,21,27] and
it is thought that mechanisms governing expression of such
photopigment opsin genes does not rule out the possibility
that an individual will express more than three classes of
retinal photopigments. The aim of much of the research
into potential human tetrachromacy has been to discover
(a) how the possession of extra photopigment opsin genes
may alter perceptual processing of color, and (b) what the
X-chromosome linked features of the L-cone and M-cone
opsin genes implies for potential human tetrachromacy and
gender-linked color vision processing differences. [15]

Here we describe preliminary investigations of color
perception in two opsin genotyped observers. The first indi-
vidual is female participant “CA” who is assessed as having
superior color perception on standardized color vision tests,

and who was previously studied and genetically confirmed
as possessing a potential tetrachromat genotype. [16,17] The
second participant is female participant “LG,” also assessed
as having superior color perception, but whose photopig-
ment opsin genotype was unknown prior to the color per-
ception assessment presented here, and who, based on fa-
milial color vision information, was considered to be ap-
propriate as a trichromat control participant prior to opsin
genotyping. Surprisingly, however, participant “LG” once
genetically assessed was found to possess a potential tetra-
chromat genotype. [17] Thus, in the present investigations
we present and compare two participants with genotypes
for potential retinal tetrachromacy.

In addition to being genotyped as potential tetrachro-
mats, CA and LG both have (i) varying experiences in art
education, training and practice; and (ii) have portfolios
as oil painters that include art works on diverse ranges of
naturalistic objects and scenes, and have sold and/or ex-
hibited their paintings for profit. Thus, both participants
are confirmed as having a genetic potential for color vision
tetrachromacy, have considerable color perception learning
experience through art education and practice, and have
excellent art skills.

As previously reported [16,17], CA and LG volunteered
for participation in a series of investigations involving color
perception for which participants’ opsin DNA sequences
were genotyped using a novel implementation of poly-
merase chain-reaction (PCR) methods. [2, 13, 28] All geno-
typing was performed with participants’ informed written
consent using procedures that adhere to protocols compliant
with the world medical association declaration of Helsinki
ethical principles for research involving human subjects,
and were approved by the ethical review board of the Uni-
versity of California, Irvine. Figure 2 shows the L-opsin
Exon 3 Ser-180-Ala genetic sequence excerpts for the two
participants discussed here.

Figure 2. Genetic sequence detail of the L-opsin gene for two different po-

tential tetrachromat participants. Top panel depicts an excerpt of the L-opsin

gene sequence for CA, and the bottom panel shows the corresponding se-

quence for LG. Curved peaks depict the intensity of the nucleotides (ddNTPs)

observed in the DNA. For both participants column 6 of the sequences show

L-opsin Exon 3 codon 180 loci where two allelic variants – corresponding to

serine and alanine – are apparent.

3.2 Methods
Subjects and Design. Phase 1 involved 1-2 hours of

testing to assess color vision using standardized methods.
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Phase 2 involved collecting self-paced painted color sam-
ples from participants. Total approximate duration of ex-
perimental participation during a single session was be-
tween 4 and 4.5 hours. All behavioral investigations were
performed with participants informed written consent, as
approved by the ethical review board of the University of
California, Irvine.

Phase 1: Participants were assessed using standard-
ized procedures and some novel analysis approaches. Di-
agnostics for color deficiency used were Ishihara Pseudo-
isochromatic Plates, the Farnsworth-Munsell 100-hue Test,
and the O.S.C.A.R. flicker photometric test and the Neitz
anomaloscope matching task. Both participants were clas-
sified on all tests as having normal color vision.

Phase 2: Following standardized color testing, both
participants were assessed in a color reproduction exper-
iment to obtain (i) observer-specific reproductions of the
Munsell Color Checker standard stimulus [22], for evalu-
ating observer’s individual variation in color perception;
and (ii) quantification of personalized color perception vari-
ations relative to a known standard observer model, for the
purposes of designing color vision models described in Sec-
tion 4 below.

a) b)

c) d)
Figure 3. Color Reproduction Experiment. Two research participants re-

produced the 24 color appearances of the Munsell Color Checker. Panels

shown depict a set-up that was identical across both participants’ experi-

mental sessions. Both artists a) started with identical paint pigment palettes.

b) Reproduced the 24 MCC squares under the same illuminant (D65), at the

same viewing distance, and in the same physical viewing booth set up. c)

Were permitted as much time as needed to reproduce the 24 MCC colors,

and finished when they were satisfied that their painted version faithfully re-

produced the color appearances of the MCC. d) Completed the MCC repro-

ductions (shown beside the MCC stimulus) in separate self–paced sessions

in under 40 minutes.

Fig. 3 depicts the empirical setting, pigment palettes
used, and reproductions produced by participants CA and
LG. At the start of each session a palette of agreed–upon
pigments was created and two identical copies of the palette
were made for use in the individual experimental sessions.
The palettes were comprised of 18 blobs of unique oil pig-
ments. In addition, the palette included 16 additive mix-
tures of white pigment blended with one of four possible

primaries, where the four were from among the 18 pigments
employed. Thus, the palette consisted of 18 unique pigment
blobs, and 16 pre-mixed blobs of pigment–plus–white. (see
Fig. 3a). As shown in Fig. 3b, the viewing booth set up
was illuminated from above by a standardized lightsource
approximating a D65 illuminant using 4 lightbulbs in a fix-
ture designed for optimal light distribution, and standard-
ized for industrial proofing and color control [10]. Lamps
were warmed-up 1-hour prior to start of the experimental
session and participants were adapted to the environment
for a minimum of 30 minutes. During the session partici-
pants were permitted free viewing of the stimuli, the palette
and a canvas (configured with a dark MCC stimulus sur-
round overlay that outlined 24 segments, of 4 cm. square,
of blank canvas to be painted), which were viewed at esti-
mated distances of ∼75 cm., ∼40 cm., ∼60 cm., respectively.
The two participants were run under two illuminant con-
ditions: First, for a D65 illuminant and, second, adapted
under a filtered chromatic illuminant (only results from the
D65 illuminant condition are reported here). Fig. 3c depicts
one participant’s completed reproduction set shown in the
experimental setup. Fig. 3d depicts both participant’s com-
pleted reproduction sets adjacent to the MCC.

Color reproduction task rationale
Using a color reproduction task for assessing individual

variation in color perception is, admittedly, a nonstandard
empirical design. Nevertheless, we chose it based on the
pragmatic rationale that both participants (a) have substan-
tial color training and expertise, and (b) are accomplished
painters who demonstrate high-level skill at reproducing
their color experiences using paints on canvas. The task as-
sumes that to the degree that the observers could accurately
reproduce the appearance of color stimuli with pigments,
comparing individual differences of participants relative to
a standard observer model could provide useful informa-
tion on the color perception variation across the individual
observers. The instructions to participants were to “take
as much time as needed to exactly duplicate the 24 colors
shown [the MCC stimulus] using the pigment palette pro-
vided, paying the utmost attention to color reproduction
accuracy” ... “you may return to adjust any one of the color
patches at time,” before signaling to the experimenter that
you have either (1) achieved an identical color match be-
tween the samples and reproductions, (2) achieved an iden-
tical, or satisfactory, color match between some samples, but
not all samples (please specify which), or (3) were unable to
achieve a satisfactory color match between the samples and
their reproductions using the pigment palette provided.

Here we use reflectance measures of the Macbeth Col-
orChecker stimuli and measures of the empirically painted
reproductions of the MCC that are independently gener-
ated by each potential tetrachromat participant. Paintings
of MCC color patches are made under laboratory conditions
at constant illumination. The observed colors of MCC and
painted patches are a composition of spectral reflectance and
illuminant spectral power distribution. We assume that if a
trichromat model of color appearance is appropriate, then,
for a given potential tetrachromat observer, if they
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Figure 4. MCC spectra for chromatic stimuli (panels 1-18) and for composite graphs depicting MCC curves for 6 achromatic stimuli with the corresponding

participant curves (panels 19-20). Panel enumeration corresponds to the series shown in Fig. 5, such that MCC row 1 colors from left to right correspond to

panels 1-6 shown here, MCC row 2 colors correspond to panels 7-12 shown, and MCC row 3 colors correspond to panels 13-18 shown. Panels 1-18 depict

spectra for MCC (solid line), CA (dash line) and LG (dash dotted line). Panel 19 shows CA’s spectra (dashed) compared to 6 achromatic MCC spectra. Panel

20 shows LG’s spectra (dot-dashed) compared to 6 achromatic MCC spectra. Six achromatic stimuli are depicted as Fig. 5’s achromatic series shown. Color

nomenclature from [23]
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empirically report that a painted patch visually matches
an MCC patch, then the measured spectral reflectance of
painted patches should have the same X,Y,Z tristimulus
values as the spectral reflectance of MCC. Moreover, we as-
sume that if we observe that measured MCC and painted
patch colors that have the same X,Y,Z tristimulus values
appear different to a given potential tetrachromat observer,
then we suppose that such differences in appearance pri-
marily depend on features of observer perceptual process-
ing that differ from the tristimulus model (however, see fur-
ther discussion below). Thus, regardless of which situation
obtains, individuals’ underlying observer models can be in-
vestigated using analyses of measured spectral reflectances
of painted patches compared to reflectances of the MCC
standard.

For modeling purposes we use spectral reflectance mea-
sures of the 24 painted reproductions of the MCC stim-
uli to compare with the reflectance measures of the stan-
dard MCC stimulus, which provides us with an informative
database for analyzing each participant’s individual color
vision mechanisms. That is, because every painted color
patch has particular spectral reflectance, we posit that to the
degree spectral reflectance measures of a painted patch dif-
fers from spectral reflectance measures s(λ) of a correspond-
ing MCC patch, that difference relates to each participant’s
individual metameric color sensations.

Of relevance here are remarks of Foster et al.:
“...metamerism occurs when light with different spectra ap-
pear the same to the eye/sensor system. Metamerisms arise
because the number of degrees of freedom in a sensor system
— three for the cone receptors in the normal human eye or
filters of a typical RGB camera — is smaller than the degrees
of freedom needed to accurately represent light spectra.” [9]
And, in the present investigations the dimension of a sen-
sor space could be 3 or 4, and the dimension of a spectral
space is generally higher (e.g., here it equals 61, as defined
in Section 5.1). Thus, here mappings from color (colored
patch) to spectra (simulated spectra) are one-to-many, and
observed X,Y,Z correspondences between simulated spec-
tra and MCC spectra can be effected by at least two different
sources of influence.

For example, influences may arise from, (1) percep-
tual experience variations attributable to tetrachromacy that
provide evidence (in the form of disrupted metameric ap-
pearance equivalence relations between classically mod-
elled pairs with equivalent tristimulus values) against a tris-
timulus model as appropriate for describing tetrachromat
color processing. Or, (2) cases where identical appearances
arising from tristimulus metamers (colors are the same but
reflectance spectra are different) turn out by chance (see [9])
to be similarly metameric for a tetrachromat, thereby incor-
rectly providing support for a tristimulus model of tetra-
chromat color processing when a trichromat model is ac-
tually either inappropriate or only locally appropriate (fol-
lowing a possible dimensional degeneracy in some spectral
region).

Based on the foregoing, we generally assume that a
spectrum of a painted sample can be described as a “sim-
ulated spectrum” for that observer. An observer’s set of

simulated spectra can be represented by some number of
basis function that accurately describes the entire set of re-
produced spectra. An Ocean Optics USB 2000 spectrometer
(Fig. 1) was used to measure each participant’s 24 color re-
productions which were compared to the know measures
of the MacBeth Color Checker Classic. [22]

MCC stimulus measurements are shown in Fig. 4, and
Fig. 5 shows approximations of color appearances found in
the MCC standard stimulus. [23] Inspection of the measure-
ments reveal that the spectra corresponding to yellow/green
(Fig. 5’s panel 11) and some orange/yellow colors (Fig. 5’s
panels 7, 12 and 16) are less uniform for CA and LG rela-
tive to measures for those MCC spectra. The manner with
which they were found to vary from the MCC standard
qualitatively suggests that participant CA and LG render
the noted stimuli as more saturated as reproduced colors.
The achromatic spectra for CA clearly indicate that CA has
enhanced sensitivity for dark gray shades. Her spectral val-
ues for patches 21–24 are higher than MCC spectra. The LG
achromatic spectra are close to MCC spectra.

The qualitative differences seen in the reflectance spec-
tra comparisons shown by Fig. 4’s panels are further inves-
tigated in Sections 4 and 5 below.

Figure 5. Approximate colors appearances simulating the MCC standard

stimulus.

4. Data dimensionality and basis functions
To provide a more objective assessment of Fig. 4’s re-

flectance spectra comparisons, non-negative matrix factor-
ization (NMF) is used to define the optimal non-negative
representation of color spectra for each participant’s simu-
lated spectra of MCC. The NMF method represents spectra
by a few non-negative basis functions. NMF determines
non-negative factors W and H using non-negative factoriza-
tion of the given spectral data V as follows: V = WH. The
matrix size is defined as: V ∈Rd×n, W ∈Rd×l and H ∈Rl×n,
where d is the number of wavelengths, n is the number of
spectral colors, and l is the number of basis functions. Thus,
the columns of W are the basis functions, and H is a matrix
of weights, that minimize the error of the approximation.

4.1 Data dimensionality
We define the data dimension for MCC and simulated

MCC spectra. We use an ISOMAP technique which finds a
low-dimensional embedding from a high-dimensional ob-
servation. For estimating data dimensionality ISOMAP is
superior to methods such as Principle Component Analysis
(PCA) and Multi-Dimensional Scaling (MDS) [29]. To de-
fine data dimensionality ISOMAP analyzes the data matrix
V and calculates a residual variance against the number of
embedded components.
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The ISOMAP residual variance is defined:

1−R2(DG,DY), (1)

where R is the correlation coefficient taken over all elements
of DG and DY, DY is the matrix of Euclidean distances in the
low dimensional subspace recovered by ISOMAP and DG is
the graph distance matrix of input data V .

4.2 Basis functions for simulated spectra
Elsewhere we propose two NMF approaches minimiz-

ing spectral differences and color differences, both of which
use a genetic algorithm (GA). [5] Bochko et al.’s first ap-
proach used spectral differences which provided results
similar to standard NMF. Their second approach, however,
was based on color differences and produced much more
desirable results compared to the first approach based on
spectra differences. In the latter case, the basis functions are
more orthogonal and bell-shaped because their tails decay
fast.

As reported previously, [5] the approach based on spec-
tral differences utilizes an optimization method with a non-
negativity constraint. The non-negative matrix factorization
solves the following objective function in spectral space:

min
W,H

n∑
i=1

‖vi−Whi‖
2 subject to W,hi ≥ 0, (2)

where vi and hi are the columns of the matrices V and H,
respectively, and W and hi have all non-negative elements.

The NMF method gives surprisingly good results when
comparing MCC spectra with a model based on Standard
Observer color matching functions [31] and cone funda-
mentals [32] (Fig. 6). Although basis functions are not color
matching functions, they are positive and resemble color
matching functions in shape, and they serve as limiting con-
ditions for color matching, as well as capture operating char-
acteristics and information about receptor class functional
responses to spectral wavelengths (Fig. 6c).

By comparison, the approach based on color differences
adopts an objective function in color space. That is:

min
W,H

n∑
i=1

∥∥∥ f (vi)− f (Whi)
∥∥∥2

subject to W,hi ≥ 0, (3)

where f () is a spectrum-to-color conversion

function [7]. Then
∥∥∥∆E∗abi

∥∥∥2
=

∥∥∥ f (vi)− f (Whi)
∥∥∥2

,
where ∆E∗ab is a CIELAB color difference: ∆E∗ab =√(

L∗v−L∗Wh

)2
+

(
a∗v− a∗Wh

)2
+

(
b∗v−b∗Wh

)2
. We denote

[L∗v a∗v b∗v]T = f (v) and [L∗Wh a∗Wh b∗Wh]T = f (Wh). [6]

Fig. 6d shows that the basis functions optimized in color
space are well-formed and better localized than those ones
optimized in spectral space (Fig. 6c). The color space basis
functions are much more accurate than in spectral space
reducing the approximation error of spectral colors by a
factor of 6 for MCC colors [5].
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Figure 6. Spectral curves. a) CIE 1931 color matching functions of Stan-

dard Observer. [31] b) The Smith and Pokorny (1975) cone fundamentals.

[32] c) Normalized basis functions calculated using the MCC color spectra

and optimized in spectral space. d) The normalized basis functions calcu-

lated using the MCC color spectra and optimized in color space.

5. Simulation Investigations
Investigations were conducted to obtain empirically-

derived basis functions from sets of simulated tetrachromat
spectra.

5.1 Basis functions
Three distinct sets of basis functions were calculated

for MCC and two observers (LG and CA) from simulated
spectra using optimization in two spaces: spectral space
and color space (Eq. 2 and Eq. 3). For simplicity, a sub-
set of available wavelengths were employed in the range
[400,700] nm, producing sets of 61 values taken at 5 nm
intervals. We investigate scenarios that permit variation in
the number of basis functions in a solution. The number of
the MCC spectral colors was constrained to the 24 provided
in the standard stimulus (Fig. 5). Data from two potential
tetrachromats described earlier, LG and CA, were measured
from each participant’s painted color patches using a spec-
trophotometer (Fig. 1). Thus, we have three spectral sets:
MCC, MCC-LG and MCC-CA.

We first aimed to define the data dimension for each
data set. For that we use ISOMAP and plot a residual vari-
ance (Eq. 1) versus dimension (Fig. 7). The heuristic sug-
gests to select the point where the residual variance values
asymptote. ISOMAP was run with neighborhood param-
eter 4. ISOMAP shows that the solution obtained for the
MCC-CA spectral set is higher than the others and equals
a 4-dimensional solution. By comparison, the dimensional
solutions observed for both MCC and MCC-LG show resid-
ual variance appears to asymptote at 3 dimensions.

In addition, data dimensionality is taken into account
in our NMF algorithm. The NMF algorithm uses Singular
Value Decomposition (SVD) for initialization [30]. The SVD
method uses p + 1 leading components of SVD decompo-
sition, where p leading components contain less than 90%
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Figure 7. Data dimension shown by a vertical dash line. a) MCC spectra.

b) LG simulated spectra. c) CA simulated spectra.

of a total variance. The number p + 1 defines the rank of
factorization. For two leading components of the MCC-LG
set and three leading components of MCC and MCC-CA
sets the 90% threshold is not exceeded. Thus, a three ba-
sis function decomposition for MCC-LG data and four ba-
sis function decompositions for MCC and MCC-CA data
are observed. For MCC-LG data increasing the variance–
accounted–for threshold to 93% makes a four basis function
decomposition possible as well.

While our ISOMAP and SVD analyses indicate that
MCC’s dimensionality is either 3 (in the ISOMAP case) or
4 (in the SVD case), for reasons elaborated below we be-
lieve the correct interpretation of these results is that a three
dimensional model is appropriate for both MCC and LG
spectral data sets, and that a four dimensional model is re-
quired to characterize the CA spectral data.

Note, while we interpret the above mentioned results as
suggesting MCC and MCC-LG spectral data sets are three–
dimensional, we still evaluate all datasets using both 3 and
4 basis function factorization for the purposes of compara-
tively assess differences and similarities that may arise due
to factorization with a higher rank for the tested sets.

Moreover, we compute a four basis function decom-
position for LG because her photopigment opsin genotype
confers a potential for expressing four distinct classes of
retinal photopigments, and suggests that four distinct sig-
nals could arise in LG at the retina level. To cross-check
validity of our procedures, we also compute a four basis
function decomposition for the MCC because we expect to
verify that four–bases do not work equally well for the MCC
case, which was developed assuming a trivariant model of
color processing. Carrying out decompositions using 4 ba-
sis functions for all three test cases allows us to show the
procedures we use distinguish between the cases consid-
ered, and permits a means of evaluating the dimensional
assumptions used in the design of the MCC and inherent in
the standard normal trichromat observer model.

For MCC spectra, basis functions were calculated

(Fig. 6). Calculated basis functions were normalized twice.
NMF can produce ambiguous solutions with respect to fac-
tors W and H. To avoid this problem, we divided all el-
ements in each column of W by their sum. After that we
normalized all basis functions to make their total maximum
equal unity.

We compare the basis MCC functions with color match-
ing and cone curves. The correspondence between the color
matching functions and basis functions optimized in spec-
tral space and color space is rather good (Fig. 6). Except
for the L-cone estimates, the correspondences to cone fun-
damentals are also good. Most of basis functions are bell-
shaped like color matching or cone curves. The MCC ba-
sis functions based on optimization in a color space, are
for the most part, more “accurate” than those optimized in
a spectral space (Fig. 6 and Table 1). Thus, while Table
1’s data simply provide rule–of–thumb indices of correspon-
dences between estimated basis functions and psychophys-
ical measures in spectral and color spaces, the table shows
qualitatively, at least, that color space basis functions are bet-
ter correlated with matching curves and cone fundamentals
— a result that makes sense given that the MCC stimulus is
derived from a color appearance space model and not a spec-
tral space model. In addition, visual inspection suggests
they correspond more closely in shape and peak modes for
the middle and short wavelength curves. The long wave-
length curve, by comparison, does not strongly resemble
the empirical L–cone curve, and provides only an approx-
imate representation of the basis underlying the range of
longer wavelengths. Therefore correlation coefficients are
not given for cone fundamentals for long wavelengths.

Table 1. Correlation coefficients between color matching func-
tions and cone fundamentals and basis functions optimized in
spectral and color spaces.

Color matching functions
Wavelengths long medium short
Spectral space 0.10 0.99 0.83
Color space 0.16 0.95 0.90

Cone fundamentals
Wavelengths long medium short
Spectral space — 0.97 0.89
Color space — 0.98 0.91

In general the correspondence between optimization
results and color matching functions is good for the middle
range of wavelengths and for the short wavelengths and
not accurate for the long wavelengths. This suggests that
if, as modeled in the literature [23], the optimization for the
MCC set gives rise to a good trichromat result, in the sense
that it captures three bases resembling those used in the
original MCC model. Next we extend our measurements,
expecting a similar generalization when used as optimiza-
tion procedures for potential tetrachromat spectral sets, and
investigate the derived bases that best capture the potential
tetrachromat participant’s data.

In the next investigations we will employ the simulated
spectra measured using painted color patches by potential
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tetrachromats (Fig. 8 and Fig. 9), where spectral curves are
depicted as dashed (CA) or dot-dashed (LG) lines. To give
a general representation about color corresponding to each
curve we depict a color patch to give a qualitative approxi-
mate of each curve’s peak.

Consistent with earlier observations, results obtained
in spectral space are not as impressive as those obtained us-
ing color space optimization (Fig. 8 and Fig. 9). Moreover,
the basis functions obtained using spectral optimization and
corresponding to red, green and blue colors are less orthog-
onal. However, the curves behave similar to color space
curves.
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Figure 8. Optimization in spectral space. The normalized basis functions

calculated using the MCC spectra and the simulated tetrachromatic spectra.

a) Three basis functions (CA). b) Four basis functions (CA). c) Three basis

functions (LG). d) Four basis functions (LG). e) Four basis functions (MCC).

The optimization results in color space for three basis
functions (Fig. 9a and c) are rather close to the MCC test
(Fig. 6d). To test whether the MCC was also characteri-
zable with greater than three–dimensions, we conducted
analogous investigations assuming that the MCC was four–
dimensional. The results independently distinguished four
similar tetrachromat basis functions that CA and LG share
in common (Fig. 9b and d), which differ from the four basis
functions derived for the MCC (Fig. 9e). In this case there
is a correspondence between the MCC, CA and LG solu-
tions only for curves similar to those of a trichromat model,
while for the cases of the fourth bases obtained, the MCC’s
solution differs from those found for our two participants’
fourth basis functions. For participants’ simulated spectra
the fourth curve locates in the subrange in the “yellowish”
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Figure 9. Optimization in color space. Normalized basis functions calcu-

lated using the MCC spectra and two sets of simulated tetrachromatic spec-

tra. a) Three basis functions (CA). b) Four basis functions (CA). c) Three

basis functions (LG). d) Four basis functions (LG). e) Four basis functions

(MCC).

region of the spectrum, while the fourth curve of the MCC
spectra locates the fourth basis in the spectral subrange cor-
responding to bluish green (or cyan) color appearances. As
mentioned, the four basis functions for CA and LG are sim-
ilar (Fig. 9b and d)), and, interestingly, coincide with the
approximate spectral location where the sensitivity peak of
the putative fourth photopigment class is predicted to oc-
cur given the L-opsin codon-180 heterozygosity that both
observers possess [16, 17].

Comparing ISOMAP and NMF solutions
Given the interpretable basis function results found for

both potential tetrachromats assessed, it seems important
to elaborate on the ISOMAP finding that the data of poten-
tial tetrachromat LG exhibits a three–dimensional — and
not a four-dimensional — solution. In this regard it can be
noted that, following a perceptual learning rationale, it is not
unexpected that despite LG’s potential tetrachromat geno-
type, her spectral data set is modeled by only 3–dimensions
in conjunction with 3– or 4–basis functions. That is, in view
of what has been suggested elsewhere concerning the need
for perceptual learning in order to realize functional (i.e.,
dimensional) tetrachromacy [17], it may not be a surprise
that part–time artist LG — who although a skilled artist
does not have the extensive longitudinal exposure and con-
tinued daily immersion using color appearance judgments
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compared to full–time professional artist CA — shows evi-
dence of an extra basis that actually concurs with her geno-
type, but who does not show as substantial of dimensional
deviation (based on the ISOMAP results) as CA who previ-
ously was found to empirically exhibit deviations from nor-
mal trichromat color vision compatible with dimensionally
richer color experience. This pattern of results for LG and
CA is consistent with widely–observed finding that individ-
uals with the genetic potential for tetrachromacy frequently
do not empirically exhibit functional tetrachromacy. While
the idea is currently conjecture, presumably this is due to
the plausible scenario that in addition to a genetic potential,
exceptional training and perceptual learning is needed to re-
alize functional human tetrachromacy, and, in the absence
of a lifetime of color training and practice, many individuals
with tetrachromat genotypes, who also express four distinct
retinal photopigment classes, may still be found to exhibit
normal three-dimensional color vision.

For these reasons, we interpret this above mentioned
pattern of results to suggest that potential tetrachromat CA
most likely has four different photoreceptors with response
sensitivity characteristics that are approximated by the cal-
culated curves (Fig. 9b). The fourth basis function peaks
between the long-wavelength and middle-wavelength ba-
sis functions while the remaining functions are close to the
basis functions of a trichromat. This is in agreement with
what is known from participant CA’s photopigment opsin
genotype [16, 17], and is consistent with the simulated cone
fundamental results found in other investigations of poten-
tial tetrachromats [19]. The simulated cone fundamentals
derived here for potential tetrachromat CA contain a fourth
spectral sensitivity curve located between spectral curves of
M-cone and L-cone while the others curves correspond to
those seen in accepted standard models, such as the Smith-
Pokorny cone fundamentals for S-, M- and L-cone classes.
Previous empirical results for CA also support the existence
of an additional factor in the spectra region corresponding
to the four basis function here, that was found to influence
(and differentiate from trichromat control participants) CA’s
perception of color in minimum-motion isoluminance set-
tings. [16, 17]

Note, these findings agree with earlier results for CA
from minimum-motion at isoluminance tasks. [16, 17] That
is, comparisons of individual’s isoluminance settings found
CA’s results to differ markedly in some regions of color
space compared to normal trichromat controls. Jameson
and colleagues [16, 17] report that the comparative sensi-
tivity found in CA’s settings suggest she is expressing a
fourth cone class (presumed to be a long-wavelength sen-
sitive cone class variant, based on her genotype) which is
contributing to cues used to establish isoluminance equi-
libria, in addition to the usual signal contributions from
M-, L- and S-cones that normal trichromats possess. More-
over, the present basis function estimation results agree with
Jameson and colleagues [16, 17] findings that CA’s greatest
deviations from normal trichromat controls are found for
stimuli comprised of dominant wavelengths components
from regions between the standard normal M- and L-cone
peaks – or, the spectral region where her putative fourth

cone class is expected to be most sensitive based on her X-
linked opsin genotype. Both sets of results for CA suggest
that she possesses a potential tetrachromat genotype that
when phenotypically expressed permits richer color experi-
ence compared to trichromat controls. [13, 14]

6. Discussion
Here we describe preliminary results using new mod-

eling and analysis procedures for investigating spectral re-
flectance measurements of MacBeth Color Checker stimuli
compared to measures of painted MCC color reproductions
obtained from two potential tetrachromat artists. The sets of
reflectance measures reveal suggestive interpretable differ-
ences between simulated spectra and MCC spectra in differ-
ent subranges of wavelengths. Measurement of achromatic
spectra sets additionally indicate that, consistent with exist-
ing results, one potential tetrachromat (CA) has enhanced
sensitivity to chromatic content inherent in otherwise dark
achromatic, or gray, appearances.

Based on reflectance measure data from empirical color
reproduction tasks we derived individual color processing
basis functions for two potential tetrachromats (CA and
LG) by assessing NMF results while varying the number
of basis functions obtained by solutions. Interestingly, the
NMF analysis findings from our four basis function fac-
torization procedures show results consistent with existing
psychophysical and opsin genetics research, and suggest
that three of the four derived basis functions resemble three
basis functions typically seen in models of standard nor-
mal trichromat color vision. Moreover, for CA and LG
participants a fourth derived basis function was found to
agree with information from both participants’ opsin geno-
types, and accords with participant’s predicted photopig-
ment opsin phenotypes — that is, for both spectral space
and color space analyses, the fourth derived basis exhibits
peak response sensitivity occurring between basis response
functions are presumed to track normal medium- and long-
wavelength sensitive response curves. Such a result is sur-
prising, but would be expected if in a potential tetrachromat
a fourth class of L-cone photopigment is phenotypically ex-
pressed and is contributing to the visual processing of color
information.

By comparison, results from 4 basis function analyses
of MacBeth Color Checker (MCC) data produced variable
findings (Fig. 8e & Fig. 9e ). That is, optimization proce-
dures constrained to identify four basis functions for MCC
data identified discordant solutions across spectral space
and color space analyses, implying that while three bases
derived in MCC solutions resembled those from a stan-
dard trichromat model (Fig. 6c & 6d), ambiguity was seen
for the determination and interpretation of the fourth ba-
sis for MCC optimizations when compared across spectral
and color space. In conjunction with our other quantitative
measures we interpret this to imply that MCC reflectance
measure data was optimized by three basis function solu-
tions, but, unlike the data of CA and LG, was not uniformly
optimized across the four basis function analyses. Note that
compared to recent results examining much larger stimu-
lus sets (involving 1269 Munsell Color samples [33] and
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hyperspectral natural scene data [34]) our results can be in-
terpreted as consistent with findings suggesting that five
or more basis functions are needed for trichromat process-
ing of color information when more extensive datasets are
considered. Thus, in view of existing literature, the present
basis function findings for the MCC, and for our potential
tetrachromat data sets, provide confidence that our opti-
mization procedure is tracking color processing functions
represented in those data, and can be explored as an ana-
lytic tool for use in more extensive studies of color process
modeling.

To augment our basis function investigations we also
extended methods to conduct analyses examining dimen-
sionality of the three reflectance spectra datasets. We em-
ployed well–known ISOMAP procedures to explore the best
low–dimensional embeddings of the high–dimensional data
sets, and we derived the data dimensions inherent in the
three sets of spectra (MCC, CA, and LG). Our dimension-
ality results find that spectra from the MCC (which is a
color calibration stimulus based on a trichromat standard
observer model) was best fit by a three-dimensional color
appearance model. This result was expected and provides
further confidence in our methods because it suggests that
the MCC reflectance spectra dimensionality is well modeled
by a trichromat model.

In comparison to the ISOMAP results for the MCC,
ISOMAP dimensionality observed for empirically repro-
duced spectra data sets varied across our two potential
tetrachromat participants. That is, we found spectral mea-
surement data from one potential tetrachromat individual
(LG) were best fit by a three–dimensional model, similar
to the observed MCC dimensionality result. Whereas, the
measured spectra from our second potential tetrachromat
(CA) was best fit by a four-dimensional model.

These results suggests that although LG has a poten-
tial tetrachromat genotype, LG’s color appearance data is
best captured by only three dimensions in ISOMAP analy-
ses, whereas CA’s data is best modeled by four dimensions
of color experience using ISOMAP. While such a finding
may seem ambiguous, it is perhaps not surprising since it
is known that not every observer with the genetic poten-
tial for four distinct classes of retinal photopigments will
ultimately realize four dimensional color processing [19].
Thus, although further work, using more extensive stimu-
lus spaces, is needed to tease apart the details of the present
findings with respect to potential tetrachromat processing,
in light of other results [16, 17], the present dimensional-
ity findings suggest that the empirical and analytic proce-
dures described here might be sensitive enough to pick up
perceptual learning effects that possibly enhance potential
tetrachromat color processing.

Future investigations aim to investigate more extensive
sets of color stimuli to improve the ecological–validity of
the color reproduction task, and to develop a four–channel
color processing system with spectral characteristics similar
to tetrachromatic basis functions.
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