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Abstract. The perceptual process of images is hierarchical. Human
tends to first perceive global structural information such as shapes
of objects and further focus on local regional details such as
texture. Furthermore, it is widely believed that structure information
plays the most important role in task of utility assessment and
quality assessment, especially in new scenarios like free-viewpoint
television, where the synthesized views contain geometric distortion
around objects. We thus hypothesize that the degradation of
structural information in an image is more annoying for human
observers than the one of the textures in certain application
scenarios. In order to confirm our hypothesis, a bilateral filtering
based model (BF-M) is proposed referring to a recent subjective
perceptual test. In the proposed model, bilateral filters are first
utilized to separate structure from the texture information in images.
Afterward, features that capture object properties and features
that reflect texture information were extracted from the response
and the residual of bilateral filtering separately. A contour, a
shape related and a texture based estimator are then proposed
with the corresponding extracted features. Finally, the model is
designed by leveraging the three estimators according to target
tasks. With the task-based model, one can then investigate the
role of structure/texture information in certain task by checking the
correspondence optimized weights assigned to the estimators. In
this paper, the hypothesis and the performance of the BF-M is
verified on CU-Nantes database as utility estimator and on SynTEX,
IRCCyN/IVC-DIBR databases as quality estimator. Experimental
results show that (1) structure information does play greater role in
several tasks; (2) the performance of the BF-M is comparable to the
state-of-the art utility metrics as well as the quality metrics designed
for texture synthesis and views synthesis. It is thus validated
that the proposed model can also be applied as a task-based
parametric image metric. c© 2018 Society for Imaging Science
and Technology.
[DOI: 10.2352/J.Percept.Imaging.2018.1.1.010501]

1. INTRODUCTION
Human visual system (HVS) tends to perceive global
structure first and then fine-grained details of an image.
The procedure of processing a scene proceeds from top
of the hierarchy to the bottom (global to local) [1]. In
another word, the global structure of a visual object within a
human observer’s effective global spanwill be comprehended
before its local features. It has been pointed out in [1] that
the global precedence accelerates several possible advan-
tages including utilization of low-resolution information,
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economy of processing resources, and disambiguation of
indistinct details. Therefore, it is intuitively appealing to
assume that structure information (i.e., edges, contours etc.)
plays greater role in tasks like utility assessment where
the objectiveness is to evaluate the usefulness instead of
perceived quality of a distorted natural image. Because if
structure information captured by an imaging system is
useful, then the degradation will be tolerant as long as the
underlying task is performed reliably. Examples of use cases
include prevention of terrorist attack, fire control, emergency
services and the military use imaging systems in real-time
tactical scenarios for immediate decisions making on how
best to respond to an incident [2–4], and so on.

‘‘Visual texture’’ is usually defined as the portion of an
image that is filled with repeated elements and often subject
to some randomization in their location, size, orientation,
and so on [5]. First, natural texture provides an important
source of information of visible surfaces and details [6]. It
is thus important for tasks like quality assessment, where
texture descriptors were usually utilized as a proxy to
quantify blurriness. Second, texture cues in images provide
human observers with a potentially rich source of surface
and shapes of objects [7]. In the field of quality assessment,
distortions on both structure and texture regions affect
how human observers judge the quality of an image. For
instance, a three-component weighted SSIM (3-SSIM) has
been proposed in [8] by assigning different weights to the
SSIM scores according to the type of local regions: edge,
texture, or smooth area. Recently, as immersive multimedia
has developed in leaps and bounds, Free-viewpoint TV
(FTV), Virtual Reality (VR), and so on have engaged a great
amount of users and become the novel hot topic in the field.
Taking FTV as an example, virtual views are commonly
generatedwithDepth-Image-BasedRendering (DIBR) based
algorithms. Quality assessment is important for selecting
the appropriate view synthesis approach. Different from
common images, synthesized views generated based on
DIBR algorithms contain artifact mainly around disoccluded
regions, including objects shifting, twisted shape of objects,
blurriness along edges and even unfilled holes. It can be
visually observed that structure related distortion (e.g.,
geometric distortion) and texture related distortion (e.g.,
blurriness) affect unequally the process of evaluating the
quality of DIBR based synthesized images.

As discussed above, it is obvious that the effect of
degradation on structural and texture regions differs with

J. Percept. Imaging 010501-1 Jan.-June 2018
IS&T International Symposium on Electronic Imaging 2018 Human Vision and Electronic Imaging 2018

mailto:suiyi.ling@univ-nantes.fr


Ling, Callet, and Yu: The role of structure and textural information in image utility and quality assessment tasks

tasks. To the best of our knowledge, there is no related work
that explores how different the roles of structure and texture
information are playing in different tasks. If one knowswhich
information plays larger or vital role in certain task, the task
can be accomplished more accurately and efficiently toward
a right direction. In this paper, we hence hypothesize that
structure information and texture information play different
roles in different tasks within different application scenarios.

To verify our hypothesis, a perceptually inspired BF-M
is proposed. In the proposed scheme, a bilateral filter is first
adopted to extract the structure and texture information
separately based on a subjective study of human material
perception in [9], i.e., structural features are extracted from
the filter response while the texture features are extracted
from the residual of the filter. Then, a ‘‘NICE’’ based
edge estimator named bilateral Natural Image Contour
Evaluation (BI-NICE), a shape related estimator named
bilateral Histogram of Oriented Gradients estimator (BI-
HOG) and a texture estimator named bilateral Local Radius
Index estimator (BI-LRI) are introduced by calculating the
dissimilarity between the original and distorted images
with extracted features. Finally, the model is designed by
leveraging the weights of the three proposed basic estimators
to yield the best performance in different tasks. By doing so,
one can determine to what extend the disruption of different
information in an image affects the procedure of different
tasks. The proposed hypothesis and the performance of
the model are verified on CU-Nantes database as utility
estimator and on SynTEX, IRCCyN/IVC-DIBR database as
quality estimator.

Figure 1 is an example explaining the fundamental idea
of the proposed bilateral filtering based model (BF-M): (a)
By only observing the edge map of the response of bilateral
filtering (the fourth column in Fig. 1), it is obvious that one
can recognize the shape of the ‘‘teddy bear’’ easily from the
first image (i.e., first row in the fourth column), while it
is difficult to tell the second one (i.e., second row in the
fourth column) is an image of ‘‘wood floor.’’ (b) For the third
image from the IRCCyN-DIBR database, one can observe
not only the geometric distortion around objects but also the
blurred regions. Obviously, the former disruption is more
annoying considering the fake edges and changes of shape
around the girl. (c) For the fourth image from the SynTEX
database, one can see that the structure of the stones has
been emphasized by comparing the edgemaps of the original
image (i.e., fourth row and second column) and one of the
responses of bilateral filtering (i.e., fourth row and fourth
column). Unrelated texture of the stones has been removed
after bilateral filtering. It is thus more reasonable to extract
structure related features from the response instead of the
original image. (d) The last two images in Fig. 1 are from
CU-Nantes with different quality. The previous one (i.e., the
fifth row) is the reference of the other one (i.e., the sixth row).
By checking the last column of these two images (i.e., the
residual obtained by subtracting the response of the bilateral
filter from the original image), one can see that there is more
details/texture information maintained in the residual of the

reference image. An intuitive assumption on the basis of this
observation could be that texture plays more important role
in higher quality images in certain tasks.

The contribution of this paper is two-fold:

(1) This paper investigates the roles of structure and
information in different tasks and presents a model
to further explore and verify the weights of them in
different tasks.With the proposedmodel, our hypothesis
that structure information is more important in certain
tasks has also been validated.

(2) The proposed model can serve as a task-based paramet-
ric image metric for different application scenarios. The
performance of which has been tested and proven to be
comparable to the state-of-the-art metrics in different
tasks.

The remainder of the paper has the following organi-
zation. The second section introduces our hypothesis and
related theoretical foundations of the proposed model. The
third section describes the proposed basic estimators and
how those estimators are combined into one according to
specific application for the verification of our hypothesis. The
experimental results are reported and analyzed in the fourth
section. Finally, conclusions and future work are presented in
the last section.

2. HYPOTHESIS AND THEORETICAL FOUNDATION
As discussed in [10], on one hand, structure information in
visual scene provides HVS with more semantic information.
Continuous edges/contours of an image could clearly reveal
the visual objects inside the image, e.g., peoples. Those
structural edges are important to the HVS and should be
maintained as much as possible in digital image processing
and tasks like object detection; On the other hand, the
textures of a scene are usually the surface of objects which
can also be the material of the targets, such as texture
patterns of clothes on people, grass, sea and buildings’
surface. Texture contains details of objects, could thus further
augment the objects with more appealing properties, such
as fine texture, smooth gray-scale transition and rich color,
and make them vivid to human perception. In summary,
structure and texture jointly render the users impressive
perspective of visual scenes and structural contours provide
HVS with most of the semantic information while details are
provided by textures. Therefore, we hypothesize that features
that focusing on structural properties and feature measuring
details play different roles in different applications. To verify
this, in the following sub-sections, we first explain the reason
why local edge/contour can represent the structure and then
further discuss how we separate texture from structure and
extract different features separately as followed.

2.1 Local Edges/Contours Reveal Structure
According to [5], the perception of complex visual patterns
and objects appears from neural activity as it is transformed
through a cascade of areas in the cerebral cortex. Neurons

J. Percept. Imaging 010501-2 Jan.-June 2018
IS&T International Symposium on Electronic Imaging 2018 Human Vision and Electronic Imaging 2018



Ling, Callet, and Yu: The role of structure and textural information in image utility and quality assessment tasks

Figure 1. Example of separating structure information from texture information. First column: original image; Second column: edge map of the original
image; Third column: response of the bilateral filter on the image; Fourth column: edge map of the response of the bilateral filter; Fifth column: residual of
bilateral filtering obtained by subtracting the original image with the respond.

in the primary visual cortex (V1) are selective for local
orientation and spatial scale of visual input [11–13]. Down-
stream regions contain neurons selective for more complex
attributes, which is approximately achieved by assembling
particular combinations of their upstream afferents. Consid-
ering the ubiquity of orientation selectivity in primary visual

cortex [14], it is intuitive to make the assumption that its
computational purpose is to represent the local orientation
of edges.

Furthermore, over the past decades, the mainstream
view in both the biological and computational vision
communities is that later stages of processing should
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Figure 2. Overall framework of the proposed model based on separating structure and texture information using bilateral filtering.

somehow combine these local edge elements to construct
more extensive contours, eventually leading to shapes, forms,
and objects [15]. Until recently, most researches on object
recognition were built around this paradigm, as well as
much of the study of mid-level pattern perception, and
physiologicalmeasurements in areasV2 andV4of the ventral
stream.

It can thus be concluded that local edges and contours,
which are local structural information in images, are vital
foundation for the following process of higher level semantic
structure understanding of images. Edges and contours
features are important elements that reveal the structure
information of an image. Therefore, in the proposed model,
a contour based estimator as well as a histogram of oriented
gradient based estimator are designed to quantify the amount
of structural change due to disruption. Details of these
estimators will be given in the following sections.

2.2 Separating Structure from Texture
Subjective test done in [9] about human material perception
provides us with important clues about how to extract
structural features and texture features separately. In [9], the
subjective experiment is conducted in order to understand
which features are useful for the recognition of material
categories. In their experiments, images emphasizing local
surface information and global structure information were
generated separately with bilateral filtering, which is usually
used as a non-linear, edge-preserving and noise-reducing
smoothing filter for images.

More specifically, Sharan et al. followed the idea of
Bae et al. [16] to extract the micro-structure of the surface
by smoothing an image with bilateral filtering. Afterward,
they utilized the residual image for further texture analysis.
The residual image was obtained by subtracting the bilateral
filtered results from the gray-scale versions of the original

images to emphasize details of surface structure, which
is an operation similar to high-pass filtering. In their
subjective test, observers were asked to categorize those
distorted images into ten material categories. Based on their
results, they concluded that texture is the important attribute
of material appearance, while information about surface
micro-structure is often related to certain categories, i.e.,
higher level semantics.

Based on their conclusion, in this paper, bilateral
filtering is used as a proxy to separate structure and texture
information. In the proposed model, structure features
related to shape are extracted from the response of bilateral
filtering while texture features were extracted from the
residual.

3. THE PROPOSED BF-MMODEL FOR VALIDATING
THE PROPOSEDHYPOTHESIS

In order to verify the different roles that structure and
texture information are playing in different perceptual
related tasks, a model on the basis of separating these two
pieces of information is proposed and will be introduced
in detail in this section. Figure 2 is the overall framework
of our proposed model. First and foremost, structure and
details related features are extracted separately with bilateral
filtering from both the original and the degraded images.
More specifically, images are first separated into the base
image, i.e., bilateral responses, and the residuals after
bilateral filtering [9]. In order to generate the response more
efficiently, a faster approximation of bilateral filters [17]
is used. The scale σs of the spatial kernel and the range
value σr are set differently according to different tasks [18].
Then, structure related features including Histogram of
Oriented Gradients estimator (HOG) and the Natural Image
Contour Evaluation estimator (NICE) are calculated with the
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base image, while the texture related feature Local Radius
Index (LRI) is extracted from the residual image. With
the extracted features set f HOG, f NICE and f LRI from both
the reference and degraded images, dissimilarity scores are
then calculated. After normalization, the three estimators,
BI -NICE, BI -HOG, and BI -LRI are combined with different
assigned weights according to different applications. Finally,
the roles of different information can be investigated by
checking the optimized weights.

3.1 Bilateral Filtering Based Contour-Based Image
Evaluation Estimator (BI-NICE)
As discussed in the second section that local contours reveal
the structure of an image, in this section, a contour based
estimator is thus introduced. It has been confirmed that
fragments of contours can be used to successfully understand
semantics in images [19–21], which further showcases the
importance of structure information in semantics related
tasks. Since contours are important for global structure
understanding, the NICE estimator is improved by using
bilateral filter to emphasize important structural local
elements. First of all, the edge maps are generated only on
the responses of bilateral filtering using the Canny edge
detector. For the reference and the degraded images, the
obtained contour maps are then denoted as CBI and ˆCBI

correspondingly.
Before calculating the distance, to probe and expand

the shapes contained in the image, the contour maps are
subjected to morphological dilation with a 3× 3 ‘‘plus-sign’’
shaped structuring element E. In line with the one-scale
NICE estimator, the object score was computed by compar-
ing the binary contours map of the reference and the test
images. Afterward, the final contour error map is obtained
by exerting point-wise exclusive-or (XOR) operation of the
dilated binary images, since XOR is the commonly used
operation for contours maps comparison. In the end, the
overall BI -NICE score for a test image is defined as

BI -NICE =
dH (CBI

⊗E, ˆCBI ⊗E)
NBI
C

, (1)

where NBI
C is the number of contours elements, dH (X ,Y )

denotes the Hamming distance between the X and Y , and
CBI
⊗ E denotes the dilation operation of the contour map

CBI with the morphological structuring element E.

3.2 Bilateral Filtering Based Histogram of Oriented
Gradients Estimator (BI-HOG)
Considering the fact that HOG [22] is a powerful shape
related descriptor used in computer vision and image
processing for the purpose of object detection, action
recognition and so on, we extract HOG features from each
response of bilateral filtering as a higher level structure
feature. First, each image is divided into 8× 8 cells/blocks.
After calculating the histogram of each cell, spatial pooling
strategy based on visual importance proposed in [20] is
utilized to pool the dissimilarity values. This pooling strategy

was presented based on the perception study that humans
tend to perceive ‘‘poor’’ regions in an image more severely
than the ‘‘good’’ ones.

Finally, the shape related estimator named bilateral
HOG estimator (BI -HOG) is then defined as

BI -HOG=
1

|bij ∈ Bp|
∑
bij∈Bp

De(H -HOGR
ij ,H -HOGD

ij ), (2)

where H -HOGR
ij and H -HOGD

ij denote the histograms
correspond to the cells at the ith row and jth column of the
bilateral response of both the reference and distorted images.
Bp is the lowest 60% of cells ranked by the dissimilarity
values.De(X ,Y ) denotes the euclidean distance between the
two vectors X and Y .

3.3 Bilateral Filtering Based Local Radius Index Estimator
(BI-LRI)
To represent detail information in images, texture related
features are considered in this section. Different from [9],
instead of extracting micro-jet and micro-SIFT features, the
LRI [23] texture descriptor is extracted in this paper with
a size limit of K = 4 and a threshold T equaling to the
standard deviation of the image divided by 2. Similar to
BI -HOG, LRI texture descriptor is extracted based on 8× 8
cells/blocks. After extracting the LRI descriptors from the
residual of the bilateral filtering from both of the reference
and degraded images, the texture based estimator named
bilateral LRI estimator (BI -LRI ) is then defined as

BI -LRI =
1

|bij ∈ Bp|
∑
bij∈Bp

De(H -LRIRij ,H -LRIDij ), (3)

where H -LRIRij and H -LRIDij denote the LRI feature his-
tograms correspond to the cell at the ith row and jth column
of the bilateral residual of both the reference and distorted
images.

3.4 The Final Bilateral based Model
As discussed in the second section of this paper, different
information plays different roles in different application
scenarios. Therefore, we combine the three proposed es-
timators so that the weights of which can be tuned as
parameters according to certain applications. The output of
each estimator, which is the dissimilarity value calculated
based on different features, is normalized to a range of [0, 1].
Finally, the proposedBF-M model, which can also be utilized
as a tasks-based parametric image metric, is designed as

BF-M = 1− (α ·BI -NICE+β ·BI -HOG+ γ ·BI -LRI)
s.t . α+β + γ = 1, (4)

where α, β , γ are the aforementioned weights for fine-tuning
the roles of the contour, shape, and texture based estimators,
respectively and α+ β + γ = 1. The configurations of these
three estimators are set differently according to the specific
task in our experiments and will be further discussed for

J. Percept. Imaging 010501-5 Jan.-June 2018
IS&T International Symposium on Electronic Imaging 2018 Human Vision and Electronic Imaging 2018



Ling, Callet, and Yu: The role of structure and textural information in image utility and quality assessment tasks

Table I. Results summarizing the performance of the parametric metric with different
parameters in different quality ranges.

SROCC Quality Range

α, β, γ [1 , 2] [2 , 3] [3 , 4] [4 , 5]
1 ,0 ,0 0.687 0.752 0.659 0.661
0.9,0.1,0 0.696 0.756 0.719 0.854
0.8, 0.1,0.1 0.681 0.743 0.737 0.831
0.7, 0.1,0.2 0.694 0.755 0.728 0.888

the purpose of investigating the functionality of different
information in images in the following section.

4. RESULTS AND ANALYSIS
To verify the assumption that structure information like
edges/contours does not play the same role as detail
information like texture in different tasks, the proposed
BF-M model described in the previous section is served
as an utility estimator on CU-Nantes database [24] and as
a quality estimator on both SynTex database [25–27] and
IRCCyN-DIBR database [28, 29]. With the best-fit weights
assigned to BI -NICE, BI -HOG and BI -LRI , the roles of both
structure and texture information in the correspondence
tasks can be uncovered.

Task descriptions and baselines for utility/quality pre-
diction performance for each use case will be given at the
beginning of each following relative sub-sections. Addition-
ally, since the proposed model can also be applied for many
tasks by tuning the weights, performance of the metric and
related experimental results are also concluded and analyzed
in each sub-section. The performance of the model used
as task-based parametric metric is evaluated according to
Pearson’s Correlation Coefficient (PCC), Spearman Rank
Order Correlation Coefficient (SROCC), Kendall Rank
Order CorrelationCoefficient (KROCC), and the RootMean
Squared Error (RMSE).

4.1 Results: Objective Estimates of Perceived Utility
In utility assessment task, human observers estimate the
usefulness of a natural image as a substitute for a reference.
In such a task, structure information is important since
the main purpose is to quantify the amount of useful
information from an image instead of evaluating its quality.
For example, as long as the license plate numbers of vehicles
are captured by the surveillance camera, the image is useful
for tracking them.More interestingly, according to what have
been analyzed in [24] based on the results obtained on the
CU-Nantes database, there is a linear relationship between
perceived quality score and perceived utility score for images
with quality scores under 30, while the one is non-linear for
those whose quality scores are higher. It was concluded that
observers evaluate very low quality images in terms of the
ability to interpret the content. About why the relationship
between them is non-linear for higher quality images, one
possible explanation could be that texture information plays

different role in task of utility and quality assessment for
higher quality images. Because the higher the quality, the
more details will be maintained. Disruption of texture, e.g.,
blurriness, is annoying for human observers while judging
the quality of the image. For example, in Fig. 1, the image
in the last row is one degraded image while the one in the
second last row is its reference image. It can be observed
from the last columns of the two rows (i.e., the residual
of the correspondence images) that there are more texture
information in the residual of the reference image than
the one of the degraded images. For the task of quality
assessment of high quality images, details are important but
may not be the same case in utility assessment. Therefore,
we also hypothesize that the roles of structure and texture
information in the task of utility assessment vary with the
quality.

To affirm the assumption that (1) structure information
plays the main role in this task, (2) the role of texture and
structure differs in different quality ranges, the proposed
BF-M model is utilized as the utility estimator and is tested
on the CU-Nantes database [24]. The CU-Nantes database
consists of 9 reference gray-scale images and 235 distorted
images. Each image was degraded by one of the five processes
including JPEG compression, blocking, JPEG2000 with
dynamic contrast-based quantization, texture smoothing
(TS) and texture smoothing with high-pass filtering. To
further check how the weights of different information
vary with quality, one best configuration will be selected
for each sub-interval divided according to the perceived
quality score, i.e., themean opinion score (MOS). To confirm
the feasibility of using the proposed model as estimator,
ReDLOG [30], most apparent distortion (MAD) [31] metric,
multi-scale SSIM (MS-SSIM) [32], the visual information
fidelity criterion (VIF) [33], the contours based image eval-
uation (NICE) [2] metric, the multi-scale version of NICE
(MS-NICE) and themulti-scale difference of Gaussian utility
(MS-DGU) [34] metrics are chosen to be the compared
metrics for utility prediction performance evaluation.

In the experiment, since each sample in the database is
labeled not only with the utility score but alsowith the quality
score ranging from 1 to 5, we divide the whole range into
quarters and optimize one configuration for each sub-range.
Table I illustrates the correlation between objective and
subjective scores in different quality interval along with the
relative weights configuration. As it can be observed from
Table I, for images locate in the quality range of [1,3], the
proposed model performs the best with a configuration of
α = 0.9, β = 0.1, γ = 0, while for higher quality images
which locate in the range of [3,5], the model performs
better with a higher weight for the texture estimator. Overall
speaking, it can be concluded that structure plays a vital
role in utility assessment, especially for lower quality images.
Furthermore, it is also obvious that texture also plays certain
role in evaluating the utility of higher quality images. It
has been verified that the role of structure and texture
information is different among different quality ranges in
utility evaluation task.
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Figure 3. Examples explaining why structure related information plays greater role in the task of utility assessment.

For performance evaluation, best weights are selected
for the three basic estimators for images with different
quality according to Table I. The overall performance of
the metrics is concluded in Table II. Among the compared
metrics, the proposed BF-M performs the best. It is proven
that the proposed model is qualified for the task of utility
assessment.

To better understand why structure related information
is more vital in the case of utility assessment, the edge maps
and the extracted HOG descriptors are visualized in the
second and third rows of Figure 3. In the figure, the first
column is the reference image while the other two are the
degraded image and the one in the second column has higher
utility score than the third one (10.528>−47.638). By only
observing the edges andHOGmaps, one can observe that the
shapes of the ‘‘pumpkin lanterns’’ on the floor in the first and
second columns are recognizable while the ones in the third
column are not. It can be thus concluded that, for low quality

Table II. Results summarizing the performance of various estimators as utility estimator.

SROCC KROCC PCC RMSE

ReDLOG [30] 0.7757 0.5847 0.7575 39.89
MAD [31] 0.7303 0.5736 0.7241 42.1

MS-SSIM [32] 0.8510 0.6769 0.833 33.8
VIF [33] 0.959 0.821 0.943 12.4

NICEcanny [2] 0.937 0.785 0.935 13.3
MS-NICE [2] 0.959 0.821 0.911 15.4
MS-DGU [34] 0.960 0.825 0.961 10.3

BF-M 0.961 0.829 0.961 10.2

distorted images, where most of the texture information is
lost, structure is the most important information for judging
its utility.
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Figure 4. Examples explaining why texture related information plays greater role in the task of quality assessment for synthesis texture.

4.2 Results: Objective Estimates of Perceived Quality for
Synthesized Texture Images
Texture synthesis is a broadly and commonly used technique
for bit-rate saving in image, video compression, in-painting
(e.g., used for error concealment or disoccluded regions
filling for view synthesis in FTV system) and so on. The
purpose of quality assessment for texture synthesized images
is to estimate the perceived quality of the synthesized texture
referring to the original texture in images. Therefore, the role
of texture information is definitely more important than one
of the structure information in such case.

In verifying what has been discussed above, we test
the proposed BF-M model on the SynTEX Granularity
database [25–27]. This database contains 21 reference
textures and 105 synthesized texture images generated
with five different texture synthesis algorithms. For BF-M ,
relatives parameters of the model are set as described in
the previous section to obtain the most correlated objective
scores with the MOS. According to [35], CWSSIM [36],
WCWSSIM [37], parametric metric that proposed in [38]
and STQA [35] are the four most promising metrics on
the SynTEX Granularity database for evaluating the quality
of synthesized texture. Therefore, the performance of the
proposedmodel used as an estimator of perceived quality for
texture synthesized images is tested on the same database and
compared to these four methods.

During the experiment, when α = 0.2, β = 0.2, γ = 0.6
the proposedmodel gets themost consistent objective quality

Table III. Results summarizing the performance of various estimators as quality
estimator for synthesized texture.

SROCC PCC RMSE

WCWSSIM [37] 0.497 0.546 0.170
CWSSIM [36] 0.644 0.663 0.198
Parametric [38] 0.481 0.412 0.253
STQA [35] 0.755 0.766 0.799
BF-M 0.719 0.708 0.162

scorewith the subjective one. Since theweights for the texture
estimator (i.e., BI-LRI) account for the greatest proportion,
we can then draw the conclusion that texture is more
important than structure in the task of quality assessment
for texture synthesis. In addition, the overall performance of
themodel applied as quality estimator for texture synthesized
images is concluded in Table III. Although BF-M does not
outperform STQA, the performance is still comparable to the
others. This result proves the feasibility of using the proposed
model as a quality estimator for texture synthesized images.

For further interpreting why texture information ismost
important for quality assessment of synthesis texture, we
visualized the edges, HOG, LRI maps and the error map
between the LRI maps of the reference and the synthesis
texture images in the second to fourth columns in Figure 4.
In the figure, the first row corresponds to the reference image
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while the second and third rows correspond to synthesis
texture images and the second one has higher perceived
quality score (4.647> 1.235). For better observation, when
generating the visualized LRImaps, we select a slightly larger
block size 16 × 16 and crop only the top left part of the
image. In the visualized LRI map, each sub-figure is an
LRI histogram representing the texture information of the
local block. LRI is a statistical texture feature that considers
inter-edge distance distribution along different angles, i.e.,
eight directions by comparing the current pixel value to the
closest edge pixel value along each direction. The magnitude
of each bin in the histogram is decided by the pixel number
between the current pixel and the closest edge pixel along the
direction and the sign of the bin is decided by comparing
the two pixels’ value. Therefore, the more saturated the
histogram, the smoother the block. By comparing the edges,
HOG maps of the synthesis texture images with the ones
of the original image, it is almost impossible for human
observers to tell the difference between them, let alone
asking them to judge which one is better synthesized. On
the contrary, the LRI map can provide more clues about
the statistical difference between the texture in images.
By comparing the error maps calculated using Euclidean
distance between the LRI histograms of the original image
and the synthesized one, it can be observed that the overall
error in the third row is larger than the one in the second row,
which is consistent to the perceived quality score (bins in the
error map larger than 1.2 are labeled with red color). It can
be concluded from this sub-section that texture information
is more important when task involves mainly fine-granular
texture in the images. Since there is no clear main structure
(e.g., boundaries of objects) in these images, details of these
images (i.e., the texture) are the dominant factor in the task.

4.3 Results: Objective Estimates of Perceived Quality for
DIBR based Synthesized Views
Depth-Image-Based-Rendering (DIBR) techniques are in-
dispensable for three-dimensional (3D) video applications
including 3D Television (3DTV) and free-viewpoint video.
Views that synthesized with DIBR based techniques contain
specific distortions like object shifting, incorrect render-
ing, flickering, blurriness and geometry distortion around
disoccluded regions. Since HVS is more sensitive to local
severe disruptions than the global consistent ones [39],
we hypothesize that structure information plays greater role
than texture information during the process of assessing the
quality of synthesized views.

Targeting at evaluating the synthesized images’ quality
properly, several metrics have been proposed to improve
common used metrics. In [40], VSQA was proposed to
improve SSIM with three visibility maps which help in
characterizing complexity of the images. Federica et al. [41]
presented the 3DswIM on the basis of statistical features
of wavelet sub-bands. Considering the fact that multi-
resolution image quality assessment approaches perform
better than the single-resolution ones, Dragana [42] first
deployed morphological wavelet decomposition for quality

assessment of synthesized images named Morphological
Wavelet Peak Signal-to-Noise Ratio metric (MW-PSNR).
Later, they devised PSNR with morphological pyramids de-
composition (MP-PSNR) instead of morphological wavelet
decomposition to obtain better performances [43]. However,
none of the aforementioned researches has verified the
importance of structure information.

To verify our hypothesis, the proposed model is applied
as a quality estimator and is tested on the IRCCyN/IVC-
DIBR images database [28, 29]. Images from this database
were generated from three multi-view video plus depth
sequences including Book Arrival (1024× 768, 16 cameras
with 6.5 cm spacing), Lovebird1 (1024× 768, 12 cameras
with 3.5 cm spacing) andNewspaper (1024× 768, 9 cameras
with 5 cm spacing). Seven DIBR algorithms labelled as
A1–A7 [44–49] processed the three sequences to generate
four new virtual views for each of them. The database is
composed of 84 synthesized views and 12 original frames
extracted from the corresponding sequence along with
subjective score in the form of MOS. The difference mean
opinion score (DMOS) is then calculated measuring the
subjective difference between the reference and synthesized
images. In [42, 43], images synthesized with A1 are excluded
from the experiment due to the significant shifting artifacts
compared to the others. However, according to the MOS,
images synthesized with A1 have better quality compared to
the others, and thus aremore similar to advanced synthesized
algorithms. Since the main purpose of developing a quality
metric is to evaluate the performance of synthesis algorithms,
the tested database should be in line with the images/videos
synthesized with the state-of-the-art synthesis algorithms
to follow the trend. Based on the previous discussion, in
our experiments, we include the image set generated by A1
and check the performance on the full IRCCyn/IVC DIBR
database. As claimed in [42, 43, 50], MP-PSNR MW-PSNR
performed the best among the state-of-the-art metrics
designed for synthesized views. According to Dragana
et al. [50], PSNR is more consistent with human judgment
when calculated at higher morphological decomposition
scales. They thus proposed a reduced version of the
morphological multi-scale measures, which are reduced
MP-PSNR, and reduced MW-PSNR correspondingly, by
using only detail images from higher decomposition scales.
The reduced versions outperform the full ones. Therefore,
in this section, we mainly compare our proposed model
with MW-PSNRfull, MP-PSNRfull MW-PSNRreduced and
MP-PSNRreduced. To obtain the best performance of them, a
5× 5 size of SE is used forMP-PSNR and aminHaar wavelet
decomposition is used for MW-PSNR as reported in [50].

The overall performance of the metrics is concluded
in Table IV. In the experiment, by setting α, β, γ to 0.5,
0.2 and 0.3, the performance of the our model peaks.
This configuration indicates the fact that both structure
and texture information play roles in evaluating the quality
of synthesized views, and one of the structures is greater
than the other. In another word, artifact that interferes the
structure of the view is more annoying for HVS, which
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Figure 5. Examples explaining why both structure and texture information plays considerable role in the task of quality assessment synthesized views.

Table IV. Performance comparison of the proposed metric with state-of-the-art metrics
for synthesized views.

PCC SROCC RMSE

ReDLOG [30] 0.1400 0.3361 0.6271
MP-PSNRfull 0.6553 0.6239 0.5029

MP-PSNRreduced 0.6733 0.66 0.4923
MW-PSNRfull 0.6089 0.5738 0.4348

MW-PSNRreduced 0.6444 0.6218 0.5091
BF-M 0.6980 0.5885 0.4768

verifies our previous assumption. Moreover, according to
Table IV, the proposed BF-M achieves 0.6980 value of PCC,
which outperforms all of the compared metrics designed for
synthesis images. Compared to the second best performing
MP-PSNRredeuce our proposedmodel obtains a gain of 0.0247
in PCC,which verifies its capability of assessing the perceived
quality of synthesized views.

In order to understand how different information loss
affects the perceived quality in the scenario of quality
evaluation for synthesized views, the edges, HOG and LRI
maps of the synthesized image in the third row of Fig. 1
and one of its original images are made visible in Figure 5.
By only comparing the edges and HOG map, one can easily
notice the geometric distortion around the face of the girl,
specially at the right part where the entire regions are blurred.
Therefore, it is obvious that structure related information is
more important in this task since the deformation of objects’

shapes caused by synthesized algorithms is more eye catchy
and can be well captured by structure related descriptors.
More interestingly, by comparing the right part of the two
LRI maps, one can easily notice the big differences of the
histograms in that part. Due to the blurriness introduced by
theDIBR algorithms, texture information has beenmodified,
and start become annoying. That is why BI-LRI accounts for
20% in this task.

4.4 Discussion and Failure Cases
In summary, the optimized configurations of BI -NICE,
BI -HOG, and BI -LRI in tasks of utility assessment, quality
assessment for synthesized texture and views are concluded
in Figure 6. The setting of the weights is selected according
to the performance of the proposed model tested on the
Cu-Nantes, SynTEX, and IRCCyN-DIBR database corre-
spondingly. According to the optimized setting, two main
conclusions can be made:
(1) Our hypothesis has been verified: It is obvious that

structure information does play greater role than texture
information in tasks like utility assessment and quality
assessment for synthesized views. Nevertheless, in the
context of texture synthesis quality assessment, informa-
tion of details is more important.

(2) In the task of utility assessment, interesting result can
be found: the roles of structure and texture information
change as the quality of images varies. The fact that
texture starts to play greater important role with
increasing quality may also be true in the case of normal
image quality assessment and will be verified in the
future work.

J. Percept. Imaging 010501-10 Jan.-June 2018
IS&T International Symposium on Electronic Imaging 2018 Human Vision and Electronic Imaging 2018



Ling, Callet, and Yu: The role of structure and textural information in image utility and quality assessment tasks

Figure 6. Optimized configurations of BI–NICE, BI–HOG, and BI–LRI in tasks of utility assessment, quality assessment for synthesized texture and views.

Figure 7. Examples of failure cases that BF–M fails to measure.

Although our model manages to quantify the struc-
tural/textural errors for certain cases in different tasks, there
are still some cases that our model fails to handle. Examples
are shown in Fig. 7: (1) For quality assessment of synthesized
views, since BI-LRI and BI-HOGare calculated at block level,
the global shifting artifact has been over-penalized to some
extend. For example, in the fist row of Fig. 7, the three images
are the reference, synthesized image and the error map (the
darker the color the more errors there are) between them
correspondingly. There is an obvious shift of the object but
is not noticeable by only checking the synthesized image.
It is obvious that this shifting artifact is durable for human
observers compared to the severe local geometric distortions,
but it is over-penalized by our model. This can be improved
by block matching before dissimilarity calculation; (2) For
quality assessment of synthesis texture image, our proposed
BI-LRI estimator is not rotation invariant enough, meaning
that it is not invariant enough for acceptable rotation of

textures. For example, in the second row of Fig. 7, where
the first column is the original image and the rest are two
synthesized texture images with slightly different subjective
quality score. The characteristic of this ‘‘goldWeave’’ is that
it consists of a set of regular small geometric figures. Slight
rotation of the geometric figure does not affect significantly
the overall perceived quality, but will be over-penalized by
our model. In this paper, the LRI descriptor is chosen mainly
for its capability of being easily visualized, which makes it
easier for analysis. It can be improved significantly by using
more advanced texture descriptor, e.g., code-book based
model.

4.5 BF-M with other Features or Measures
As the main goal of this paper is to explore the role
of structure and texture information in different tasks,
simple structure and texture descriptors, which are easier,
clearer for visualization, are selected. However, with more
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Table V. Performance of the modified BF-M with more advanced features/measures.

PCC SROCC RMSE

BI-ST 0.8013 0.7556 0.3983
BI-CSF 0.7279 0.6409 0.4565
BF-M 0.6980 0.5885 0.4768

BF-Mnew 0.8105 0.7672 0.3752

powerful structural and texture relative features or measures,
the proposed model has the capability to achieve better
performance. In order to check how far BF-M can be
improved as well as to verify whether the weights will change
with different features, in this sub-section, we take quality
assessment of synthesized view as an example and replace the
simple descriptors with more complicated ones.

More specifically, themid-level contour descriptor based
measure ST-IQA proposed in [51] (other structure related
measures like [52, 53] could be utilized too) is used to replace
the structure related estimators BI -NICE and BI -HOG as
BI -ST , while the spatial contrast sensitivity (CSF) based
texture descriptor proposed in [54] is used to replace the
texture related estimator BI -LRI as BI -CSF . Thus, equation
(4) can be modified as

BF-Mnew = 1− [(α+β) ·BI -ST + γ ·BI -CSF]
s.t . α+β + γ = 1, (5)

and the performance of the BF-Mnew is summarized in
Table V. The optimized performance of BF-Mnew is obtained
while (α + β) is set as 0.8 and γ as 0.2. This best-fit
configuration is similar to the optimum configuration of
BF-M as described in the previous section. The conclusion
that structural information plays the major role in the
task of synthesized views’ quality assessment is still solid
in this case. As it can be seen from the table, the
performance of BF-M is much better than the one of
BF-M with more advanced structural/texture estimators. It
can be thus concluded that, (1) the weights of structural
and texture estimators do not fluctuate with different
features/measures; (2) the performance of the proposed
model can be improved significantly with more advanced
structure/textures measures.

5. FUTUREWORK
In the future, to obtain more robust model, subjective tests
will be conducted to generate larger database for parameters
training. Furthermore, we will try more powerful struc-
ture/texture descriptors by incorporating more perceptual
factors and explore more use cases with the proposed model
including: (1) Select appropriate patches for patch-based
training tasks, e.g., patch-based deep learning. (2) Select
appropriate images for material recognition training. (3)
Separate image/sequence into texture and contours regions
as a pre-process stage for object detection. (4) Select reliable

samples of subjective tests from crowd sourcing data. (5)
Quality evaluation for higher quality images/videos.

6. CONCLUSION
Human observers tend to perceive global structure first
then finer granularity details like texture. Based on which,
we hypothesize that structure and texture information
plays different roles in different tasks considering the
characteristics of the tasks. To validate this assumption, a
contour, a coarse-grained structure related, and a texture
estimator are first introduced using bilateral filtering. A
BF-M is then designed to combine the three estimators
differently according to different applications. Experiments
are conducted on three different databases for different tasks.
The optimized configurations of the model serve as a proxy
for checking the roles of structure and texture information
in those tasks. According to the experimental results, our
hypothesis has been verified and the performance of the
proposedmodel applied as a tasks-based parametricmetric is
proven to be comparable to the state-of-the-art utility/quality
metrics. In the future, more use cases will be explored and
tested with the proposed model.

REFERENCES
1 D. Navon, ‘‘Forest before trees: The precedence of global features in visual
perception,’’ Cogn. Psychol. 9, 353–383 (1977).

2 D. M. Rouse and S. S. Hemami, ‘‘Natural image utility assessment using
image contours,’’ 16th IEEE Int’l. Conf. on Image Processing (ICIP) (IEEE,
Piscataway, NJ, 2009), pp. 2217–2220.

3 Z. Wang and A. C. Bovik, Modern Image Quality Assessment (Synthesis
Lectures on Image, Video, and Multimedia Processing) (Morgan Claypool,
San Rafael, CA, 2006).

4 M. I. Leszczuk, I. Stange, and C. Ford, ‘‘Determining image quality
requirements for recognition tasks in generalized public safety video ap-
plications: Definitions, testing, standardization, and current trends,’’ IEEE
Int’l. Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB) (IEEE, Piscataway, NJ, 2011), pp. 1–5.

5 J. A. Movshon and E. P. Simoncelli, ‘‘Representation of naturalistic image
structure in the primate visual cortex,’’ Cold Spring Harbor Symposia
on Quantitative Biology (Cold Spring Harbor, NY, USA, 2014), Vol. 79,
pp. 115–122.

6 J. Aloimonos, ‘‘Shape from texture,’’ Biol. Cybern. 58, 345–360 (1988).
7 J. R. Kender, ‘‘Shape from texture: An aggregation transform that maps
a class of textures into surface orientation,’’ Proc. 6th Int’l. Joint Conf.
on Artificial Intelligence (Morgan Kaufmann Publishers Inc., Burlington,
MA, USA, 1979), Vol. 1, pp. 475–480.

8 C. Li and A. C. Bovik, ‘‘Three-component weighted structural similarity
index,’’ Proc. SPIE 7242, 1–9 (2009).

9 L. Sharan, C. Liu, R. Rosenholtz, and E. H. Adelson, ‘‘Recognizing ma-
terials using perceptually inspired features,’’ Int. J. Comput. Vis. 103,
348–371 (2013).

10 L. Xu, W. Lin, L. Ma, Y. Zhang, Y. Fang, K. N. Ngan, S. Li, and Y. Yan,
‘‘Free-energy principle inspired video quality metric and its use in video
coding,’’ IEEE Trans. Multimedia 18, 590–602 (2016).

11 D. H. Hubel andT. N. Wiesel, ‘‘Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex,’’ J. Physiol. 160, 106–154
(1962).

12 D. H. Hubel and T. N. Wiesel, ‘‘Receptive fields and functional architec-
ture of monkey striate cortex,’’ J. Physiol. 195, 215–243 (1968).

13 S. L. Brincat and C. E. Connor, ‘‘Underlying principles of visual shape
selectivity in posterior inferotemporal cortex,’’ Nature Neurosci. 7, 880
(2004).

14 N. J. Priebe and D. Ferster, ‘‘Mechanisms of neuronal computation in
mammalian visual cortex,’’ Neuron 75, 194–208 (2012).

J. Percept. Imaging 010501-12 Jan.-June 2018
IS&T International Symposium on Electronic Imaging 2018 Human Vision and Electronic Imaging 2018

https://doi.org/10.1016/0010-0285(77)90012-3
https://doi.org/10.1007/BF00363944
https://doi.org/10.1007/s11263-013-0609-0
https://doi.org/10.1109/TMM.2016.2525004
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1113/jphysiol.1968.sp008455
https://doi.org/10.1038/nn1278
https://doi.org/10.1016/j.neuron.2012.06.011


Ling, Callet, and Yu: The role of structure and textural information in image utility and quality assessment tasks

15 M. Riesenhuber and T. Poggio, ‘‘Hierarchical models of object recogni-
tion in cortex,’’ Nature Neurosci. 2 (1999).

16 S. Bae, S. Paris, and F. Durand, ‘‘Two-scale tone management for
photographic look,’’ ACM Transactions on Graphics (TOG) (ACM, New
York, NY, USA, 2006), Vol. 25, pp. 637–645.

17 S. Paris and F. Durand, ‘‘A fast approximation of the bilateral filter using
a signal processing approach,’’ Int. J. Comput. Vis. 81, 24–52 (2009).

18 F. Durand and J. Dorsey, ‘‘Fast bilateral filtering for the display of
high-dynamic-range images,’’ ACM Transactions on Graphics (TOG)
(ACM, New York, NY, USA, 2002), Vol. 21, pp. 257–266.

19 J. Shotton, A. Blake, and R. Cipolla, ‘‘Multiscale categorical object
recognition using contour fragments,’’ IEEE Trans. Pattern Anal. Mach.
Intell. 30, 1270–1281 (2008).

20 I. Biederman and G. Ju, ‘‘Surface versus edge-based determinants of
visual recognition,’’ Cogn. Psychol. 20, 38–64 (1988).

21 J. D. Winter and J. Wagemans, ‘‘Contour-based object identification and
segmentation: Stimuli, norms and data, and software tools,’’ Behav. Res.
Methods Instrum. Comput. 36, 604–624 (2004).

22 N. Dalal and B. Triggs, ‘‘Histograms of oriented gradients for human
detection,’’ IEEE Computer Society Conf. on Computer Vision and Pattern
Recognition, 2005. CVPR 2005 (IEEE, Piscataway, NJ, 2005), Vol. 1,
pp. 886–893.

23 Y. Zhai, D. L. Neuhoff, and T. N. Pappas, ‘‘Local radius index-a new
texture similarity feature,’’ IEEE Int’l. Conf. onAcoustics, Speech and Signal
Processing (ICASSP) (IEEE, Piscataway, NJ, 2013), pp. 1434–1438.

24 D. M. Rouse, R. Pepion, S. S. Hemami, and P. Le Callet, ‘‘Image utility
assessment and a relationship with image quality assessment,’’ Proc. SPIE
7240, 724010 (2009).

25 S. Varadarajan and L. J. Karam, ‘‘A reduced-reference perceptual quality
metric for texture synthesis,’’ IEEE Int’l. Conf. on Image Processing (ICIP)
(IEEE, Piscataway, NJ, 2014), pp. 531–535.

26 S. A. Golestaneh, M. M. Subedar, and L. J. Karam, ‘‘The effect of texture
granularity on texture synthesis quality,’’ Proc. SPIE 9599, 959912 (2015).

27 S. Varadarajan and L. J. Karam, ‘‘A no-reference perceptual texture
regularity metric,’’ IEEE Int’l. Conf. on Acoustics, Speech and Signal
Processing (ICASSP) (IEEE, Piscataway, NJ, 2013), pp. 1894–1898.

28 E. Bosc, R. Pepion, P. Le Callet, M. Koppel, P. Ndjiki-Nya, M. Pressigout,
and L. Morin, ‘‘Towards a new quality metric for 3-d synthesized view
assessment,’’ IEEE Journal of Selected Topics in Signal Processing (IEEE,
Piscataway, NJ, 2011), 5, pp. 1332–1343.

29 ‘Irccyn ivc dibr database website,’’ http://ftp.ivc.polytech.univnantes.fr/I
RCCyN_IVC_DIBR_Images/.

30 S. Golestaneh and L. J. Karam, ‘‘Reduced-reference quality assessment
based on the entropy of dwt coefficients of locally weighted gradient
magnitudes,’’ IEEE Trans. Image Process. 25, 5293–5303 (2016).

31 E. C. Larson and D. M. Chandler, ‘‘Most apparent distortion: full-
reference image quality assessment and the role of strategy,’’ J. Electronic
Imaging 19, 011006 (2010).

32 Z. Wang, E. P. Simoncelli, and A. C. Bovik, ‘‘Multiscale structural
similarity for image quality assessment,’’ Conf. Record of the Thirty-
Seventh Asilomar Conf. on Signals, Systems and Computers, 2004 (IEEE,
Piscataway, NJ, 2003), Vol. 2, pp. 1398–1402.

33 H. R. Sheikh and A. C. Bovik, ‘‘Image information and visual quality,’’
IEEE Trans. Image Process. 15, 430–444 (2006).

34 E. T. Scott and S. S. Hemami, ‘‘Image utility estimation using difference-
of-gaussian scale space,’’ IEEE Int’l. Conf. on Image Processing (ICIP)
(IEEE, Piscataway, NJ, 2016), pp. 101–105.

35 S. A.Golestaneh and L. J. Karam, ‘‘Reduced-reference synthesized-texture
quality assessment based on multi-scale spatial and statistical texture
attributes,’’ IEEE Int’l. Conf. on Image Processing (ICIP) (IEEE, Piscataway,
NJ, 2016), pp. 3783–3786.

36 Z. Wang and E. P. Simoncelli, ‘‘Translation insensitive image similarity
in complex wavelet domain,’’ Proc. IEEE Int’l. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP’05) (IEEE, Piscataway, NJ, 2005), Vol. 2,
pp. ii–573.

37 A. C. Brooks, X. Zhao, and T. N. Pappas, ‘‘Structural similarity quality
metrics in a coding context: Exploring the space of realistic distortions,’’
IEEE Trans. Image Process. 17, 1261–1273 (2008).

38 D. Siddalinga Swamy, ‘‘Quality Assessment of Synthesized Textures,’’ Ph.D.
dissertation, (Oklahoma State University, 2011).

39 A. K. Moorthy and A. C. Bovik, ‘‘Visual importance pooling for image
quality assessment,’’ IEEE J. Sel. Top. Signal Process. 3, 193–201 (2009).

40 P. H. Conze, ‘‘Objective view synthesis quality assessment,’’ Proc. SPIE
8288, 53 (2012).

41 F. Battisti, E. Bosc, M. Carli, P. L. Callet, and S. Perugia, ‘‘Objective image
quality assessment of 3d synthesized views,’’ Signal Process, Image
Commun. 30, 78–88 (2015).

42 D. Sandić-Stanković, D. Kukolj, and P. Le Callet, ‘‘Dibr synthesized
image quality assessment based on morphological wavelets,’’ Seventh
Int’l. Workshop on Quality of Multimedia Experience (QoMEX) (IEEE,
Piscataway, NJ, 2015), pp. 1–6.

43 D. Sandic-Stankovic, D. Kukolj, and P. Le Callet, ‘‘Dibr synthesized image
quality assessment based on morphological pyramids,’’ 3DTV-Conf.: The
True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON)
(IEEE, Piscataway, NJ, 2015), pp. 1–4.

44 C. Fehn, ‘‘Depth-image-based rendering (dibr), compression, and trans-
mission for a new approach on 3d-tv,’’ Proc. SPIE 5291, 93–104 (2004).

45 A. Telea, ‘‘An image inpainting technique based on the fast marching
method,’’ J. Graphics Tools 9, 23–34 (2004).

46 Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, ‘‘View
generation with 3d warping using depth information for ftv,’’ Signal
Process. Image Commun. 24, 65–72 (2009).

47 K. Mueller, A. Smolic, K. Dix, P. Merkle, P. Kauff, and T. Wiegand, ‘‘View
synthesis for advanced 3d video systems,’’ EURASIP J. Image Video
Process. 2008, 1–11 (2009).

48 P. Ndjiki-Nya, M. Koppel, D. Doshkov, H. Lakshman, P. Merkle,
K. Muller, and T. Wiegand, ‘‘Depth image-based rendering with
advanced texture synthesis for 3-d video,’’ IEEE Trans. Multimedia 13,
453–465 (2011).

49 M. Köppel, P. Ndjiki-Nya, D. Doshkov, H. Lakshman, P. Merkle,
K. Müller, and T. Wiegand, ‘‘Temporally consistent handling of
disocclusions with texture synthesis for depth-image-based rendering,’’
IEEE 17th Int’l. Conf. on Image Processing (IEEE, Piscataway, NJ, 2010),
pp. 1809–1812.

50 D. Sandić-Stanković, D. Kukolj, and P. L. Callet, ‘‘Dibr-synthesized image
quality assessment based on morphological multi-scale approach,’’
EURASIP J. Image Video Process. 2017, 4 (2016).

51 S. Ling and P. Le Callet, ‘‘Image quality assessment for free viewpoint
video based on mid-level contours feature,’’ IEEE Int’l. Conf. on
Multimedia and Expo (ICME) (IEEE, Piscataway, NJ, 2017), pp. 79–84.

52 S. Ling, P. Le Callet, and G. Cheung, ‘‘Quality assessment for synthesized
view based on variable-length context tree,’’ IEEE 19th Int’l. Workshop
on Multimedia Signal Processing (MMSP) (IEEE, Piscataway, NJ, 2017),
pp. 1–6.

53 S. Ling and P. Le Callet, ‘‘Image quality assessment for dibr synthesized
views using elastic metric,’’ Proc. ACM on Multimedia Conf. (ACM, New
York, NY, USA, 2017), pp. 1157–1163.

54 Y. Rai, A. Aldahdooh, S. Ling, M. Barkowsky, and P. Le Callet, ‘‘Effect of
content features on short-termvideo quality in the visual periphery,’’ IEEE
18th Int’l. Workshop on Multimedia Signal Processing (MMSP) (IEEE,
Piscataway, NJ, 2016), pp. 1–6.

J. Percept. Imaging 010501-13 Jan.-June 2018
IS&T International Symposium on Electronic Imaging 2018 Human Vision and Electronic Imaging 2018

https://doi.org/10.1038/14819
https://doi.org/10.1007/s11263-007-0110-8
https://doi.org/10.1109/TPAMI.2007.70772
https://doi.org/10.1109/TPAMI.2007.70772
https://doi.org/10.1109/TPAMI.2007.70772
https://doi.org/10.1016/0010-0285(88)90024-2
https://doi.org/10.3758/BF03206541
https://doi.org/10.3758/BF03206541
https://doi.org/10.3758/BF03206541
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
ftp://ftp.ivc.polytech.univnantes.fr/IRCCyN_IVC_DIBR_Images/
https://doi.org/10.1109/TIP.2016.2601821
https://doi.org/10.1117/1.3267105
https://doi.org/10.1117/1.3267105
https://doi.org/10.1117/1.3267105
https://doi.org/10.1109/TIP.2005.859378
https://doi.org/10.1109/TIP.2008.926161
https://doi.org/10.1109/JSTSP.2009.2015374
https://doi.org/10.1016/j.image.2014.10.005
https://doi.org/10.1016/j.image.2014.10.005
https://doi.org/10.1016/j.image.2014.10.005
https://doi.org/10.1080/10867651.2004.10487596
https://doi.org/10.1016/j.image.2008.10.013
https://doi.org/10.1016/j.image.2008.10.013
https://doi.org/10.1016/j.image.2008.10.013
https://doi.org/10.1109/TMM.2011.2128862
https://doi.org/10.1186/s13640-016-0124-7

	Introduction
	Hypothesis and Theoretical Foundation
	Local Edges/Contours Reveal Structure

	F1
	F2
	Separating Structure from Texture

	The proposed BF-M model for validating the proposed hypothesis
	Bilateral Filtering Based Contour-Based Image Evaluation Estimator (BI-NICE)

	E1
	Bilateral Filtering Based Histogram of Oriented Gradients Estimator (BI-HOG)

	E2
	Bilateral Filtering Based Local Radius Index Estimator (BI-LRI)

	E3
	The Final Bilateral based Model

	E4
	T1
	Results and Analysis
	Results: Objective Estimates of Perceived Utility

	F3
	T2
	F4

	Results: Objective Estimates of Perceived Quality for Synthesized Texture Images
	T3
	Results: Objective Estimates of Perceived Quality for DIBR based Synthesized Views

	F5
	T4
	Discussion and Failure Cases

	F6
	F7
	BF-M with other Features or Measures

	T5
	E5
	Future Work
	Conclusion
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41
	B42
	B43
	B44
	B45
	B46
	B47
	B48
	B49
	B50
	B51
	B52
	B53
	B54

