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Abstract 
How do different object properties combine for the purposes 

of object identification? We developed a paradigm that allows us 
measure the degree to which human observers rely on one object 
property (e.g., color) vs. another (e.g., material) when they make 
forced-choice similarity judgments. On each trial of our 
experiment, observers viewed a target object paired with two test 
objects: a material match, that differed from the target only in 
color (along a green-blue axis) and a color match, that differed 
from the target only in material (along a glossy-matte axis). Across 
trials, the target was paired with different combinations of 
material-match and color-match tests and observers selected the 
test that appeared more similar to the target. To analyze observer 
responses, we developed a model (a two-dimensional 
generalization of the maximum-likelihood difference scaling 
method) that allows us to recover (1) the color-material weight, 
reflecting the relative importance of color vs. material in object 
identification and (2) the underlying positions of the material-
match and color-match tests in a perceptual color-material space. 
Our results reveal large individual differences in the relative 
weighting of color vs. material.  

Introduction 
Object properties — such as color, material, texture or shape 

— all contribute to object identification and guide our interaction 
with objects in daily life. For example, color helps us select which 
tomato from the garden is ripe enough to eat and knowing whether 
a cup is made out of porcelain or plastic can help us decide how to 
handle it. 

The visual processing underlying the extraction of each of 
these object properties from the retinal image has been extensively 
studied [1-5]. Little is known, however, about how these different 
properties combine to help us identify objects. To investigate this 
we developed a paradigm that allows us to measure the relative 
contribution of one property (e.g., object color) relative to another 
(e.g., object material) in identification. 

In our method, we use an object selection task to measure 
how perceived object color and material trade-off in identification. 
The task is a generalization of the forced-choice color selection 
task we developed previously to study the stability of perceived 
object color across changes in illumination [6]. In the task, the 
observers are shown three objects — a target and two tests, all 
under equal illumination — and asked to select the “test that is 
most similar to the target”. On each trial, the tests differ relative to 
the target in either color or material, to varying degrees. The 
criterion on which the observers are asked to make the similarity 
judgments is intentionally left unspecified. 

To analyze the selection data we developed a model of 
selection behavior, which allows us to infer parameters that 
describe the perceptual representation of the stimuli and the 
relative weight observers place on perceived color versus 
perceived material. More specifically, the model parameters 

include: (1) the positions of the target and tests objects in a two-
dimensional perceptual space (where the dimensions represent 
color and material) and (2) a color-material weight that determines 
how the overall perceptual distance between two stimuli depends 
on distances on each of the two-dimensions. 

Methods 
Apparatus 

Stimuli were presented on a calibrated 27-in. NEC MultiSync 
PA241W LCD color monitor driven at a pixel resolution of 1920 x 
1080 and at a refresh rate of 60 Hz , with eight-bit resolution for 
each RGB channel via an NVIDIA GeForce GTX 780M video 
card. The subject’s head position was stabilized using a chin rest. 
The distance between the subject’s eye and the center of the screen 
was 70 cm. The host computer was an Intel Core i7 Apple 
Macintosh. The experimental programs were written in Matlab and 
relied on routines from Psychtoolbox [7, 8] http://psychtoolbox.org 
and mgl (http://justingardner.net/doku.php/mgl). 

 
Object identification task 

On each experimental trial, three identical rendered scenes 
were displayed on the monitor, each containing a blob-shaped 
object (Figure 1). The object in the center scene was the target 
object, while the objects in the left and right scene were the test 
objects. The observers’ task was to select the test object that was 
most similar to the target. They were instructed to use a mouse to 
“click” on the test object of their choice. A black dot then briefly 
flashed above the selected test to signal the response has been 
recorded. The screen then turned black for 1 second, after which 
the next trial started. Instructions verbatim are available in the 
online supplement (see below).   

 

 
 
Figure 1. Example trial from the object identification task. Observers 
select which of the two test objects (left or right) is most similar to the target 
object (center). Across trials, the degree of similarity of test objects relative to 
the target varies in both color (the material match, on the right, is bluer) and 
material (the color match, on the left, is more matte). The stimuli were 
presented against a black background (the background covered the entire 
display and is not shown here in its entirety).  

The experiment consisted of three different types of trials: (1) 
color-material-vary trials, (2) color-vary trials and (3) material-
vary trails. On color-material-vary trials, one of the tests was 
always a material match for the target while the other test was a 
color match for the target. There were total of 48 color-material-
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vary trials. The trail where the target is paired with two tests 
identical to itself was not included, as the performance for such a 
trial would be equal to chance, up to measurement variability. On 
color-vary trials, both tests were material matches and differed 
from the target only in color, each to a different degree (7 levels: 
from -3 to +3, including a 0 difference step). On material-vary 
trials, both tests were color matches and differed from target only 
in material, each to a different degree (also 7 levels). There were 
total of 21 material-vary and 21 color-vary trials (all pairwise 
comparisons of stimuli at 7 difference levels).   

 

Stimuli  
The stimulus scene was modeled in Blender, an open-source 

3D modeling package (https://www.blender.org/). The scene 
consisted of room, whose walls were mid-gray. The floor was 
covered with a checkered pattern consisting of dark-gray and light-
gray tiles. A blob-shaped object, resting on a square gray pedestal, 
was placed in the center of the room. The scene was illuminated by 
an area light that covered the entire ceiling. The illumination 
spectrum was a CIE daylight of 6500 K correlated-color 
temperature (D65). We generated a blob-shaped object from an 
icosahedral mesh that approximates a sphere. We subdivided each 
side of the mesh into 64 facets and then added a sinusoidal 
perturbation separately to the x, y and z coordinates of each facet 
vertex (with one sinusoid each for x, y, and z coordinates).  

 
 

 
 

Figure 2. Example test stimuli. Left column shows color matches (the tests 
are equal to the target in spectral reflectance but vary in gloss level). Right 
column shows material matches (the tests are equal to the target in material, 
but vary in spectral reflectance). Labels indicate the nominal degree of 
material/color difference relative to the target. Both columns show only 4 out 
of the 6 tests used in the experiment.   

We rendered total of 13 stimulus scenes. Scenes were 
identical in all respects, except for the target object characteristics. 
There were 1 scene with the target object, 6 with color-vary 
material matches and 6 with material-vary color matches. The 
color variation of the test objects was achieved by varying their 
assigned diffuse spectral reflectance component, by combining two 
different reflectance samples (a greenish one and a bluish one) in 
different proportions. For example, the target reflectance was 60% 
bluish and 40% greenish. For the remaining material matches 
diffuse reflectance mixtures had the following proportion of bluish 
reflectance sample (relative to the greenish one): 0.5 (∆C = -3), 
0.53 (∆C = -2), 0.57 (∆C = -1), 0.63 (∆C = +1), 0.67 (∆C = +2), 
0.70 (∆C = +3). The specular reflectance component for the 
material match test objects was fixed across all stimulus scenes 
(0.30 across all wavelengths).  

The variation in gloss level of the test objects was achieved 
by varying the αU and αV parameters of their surface reflectance 
specification (in Mitsuba renderer notation, see below). These 
parameters control the anisotropic roughness of the material along 
the tangent and bitangent directions of reflected light [9]. Low αU 

and αV levels correspond to a glossy-appearing surface whose 
microstructure has small imperfections, while high levels 
correspond to a matte-appearing surface with rough microstructure. 
We set both αU and αV for the target object to 0.10. The levels for 
the remaining color matches were as follows: 0.007 (∆M = -3), 
0.02 (∆M = -2), 0.05 (∆M = -1), 0.15 (∆M = +1), 0.20 (∆M = +2), 
0.40 (∆M = +3). 

We determined the spacing of tests in color and glossiness by 
eye, aiming to have adjacent tests along each dimension 
distinguishable from one another and the spacing between them 
roughly perceptually uniform. In the color domain, estimated 
differences between two nearest tests under our experimental 
illumination were 5.33 CIELAB ∆E units, on average (with 
standard deviation of 0.15 ∆E).  

The stimuli were rendered in Mitsuba, a physically-based 
rendering package, (http:// www.mitsuba-renderer.org/), using a 
bidirectional path tracer integrator and low discrepancy sampler 
(sample count: 1024). RenderToolbox3 [10] routines were used to 
facilitate the rendering and to assign surface reflectance functions 
and illumination spectra to the elements in the scene. Each 
rendered stimulus scene led to a 31-plane hyperspectral image (960 
x 720 pixels per plane). The hyperspectral images were converted 
into a three-plane LMS image by computing the excitations that 
would be produced in the human L-, M-, and S-cones at each pixel 
(using Stockman–Sharpe cone fundamentals [11, 12]). Then, the 
LMS images were converted into RGB stimulus images for 
presentation, based on display calibration measurements and using 
standard methods [13]. Calibration measurements were made using 
a PhotoResearch PR-670 spectral radiometer and included the 
characterization of spectral power distribution of the display 
primaries as well as the display gamma function for each channel.  

At the 70 cm distance from the screen, each stimulus image 
subtended 14.7° x 11° degrees of visual angle (18 x 13.5 cm). The 
size of each test object was approximately 6.7° x 6.5° (8.2 x 7.9 
cm).  

 
Observers 

Five observers (University of Pennsylvania undergraduates) 
participated in the experiment (4 female, 1 male; age: 18-19). They 
all had normal or corrected-to-normal visual acuity (20/25 or better 
in both eyes, as assessed via a Snellen chart) and normal color 
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vision (0 plates incorrect on Ishihara color plates) [14]. Observers 
received course credit for their participation. 

 
Experimental Procedures 

Each observer completed 25 blocks of trials, over 4 sessions 
(6-7 blocks per session). Each session lasted approximately an 
hour and was run on a different day. Each experimental block 
consisted of 76 trials (48 color-material-vary trials, 21 color-vary 
and 21 material-vary trials). 

At the beginning of an experiment observers completed a 
brief training block, consisting of four trials. In the training trials, 
one of the test objects was always identical to the target while the 
other test was either the most-different color match (∆M = +/-3) or 
the most-different material match (∆C = +/-3). 

 
Preregistration and supplementary materials 

A document describing the experimental design and the data 
analysis plan for this study was preregistered before the start of 
data collection and is publically available at https://osf.io/jtqs2/. 
The model we present was developed after data collection was 
completed and is not described in detail in the preregistration. 

Supplementary materials available online (URL: 
http://color.psych.upenn.edu/supplements/colormaterialEI2018) 
include rendering materials (surface reflectance functions and 
illumination spectra, the model of scene geometry, conditions and 
mappings files used to assign properties to each element in the 
scene) as well as the selection data and visualization of model fits 
(corresponding to Figures 3 and 4 below) for each observer.   

Results 
 

Aggregating the data 
Figure 3 shows the results for one observer, for the color-

material-vary trials. Each point shows data for one color 
match/material match pair, and plots the proportion of trials on 
which the color match was chosen. The symbol color indicates the 
levels of material difference for the color match, while abscissa 
gives the color difference of the material match. The smooth lines 
show the fit of our model, which we describe below. Note that 
although only a subset of data is shown in the figure, the full data 
set was used in fitting the model. Corresponding figures for all 
observers are provided in the online supplement. 

To understand Figure 3, consider first the black symbols, 
which indicate observer choices when the color match identical to 
the target (∆M = 0) is paired with material matches that vary in 
color (x-axis). As the material match deviates from the target 
(points away from ∆C = 0 on the x-axis), the observer consistently 
chooses the color match, as one would expect.  Next consider the 
red symbols, which represent a color match that differs 
considerably in material from the target (∆M = +/-3). When the 
material match is identical to the target (∆C = 0), then the observer 
always selects the material match (ordinate of 0), again as one 
would expect. As the color difference of the material match 
increases, however, the proportion of trials on which the color 
match is chosen also increases, as now the observer must select 
between two tests that each differ from the target, but in different 
ways. The rate at which the selections in this case transition from 
material match to color match choices is related to how the 
observer trades off color and material differences in selection. 
Finally, for the small and medium material difference steps of the 
color match (∆M = +/-1 in blue; ∆M = +/-2 in green) the data fall 

in between the two extremes. This shows that the smaller the 
difference in material of the color match, the faster the observer 
transitions between selecting the material match to selecting the 
color match. Again, this makes intuitive sense.  

 

 
Figure 3. Data and model fit for one observer (zhr). The proportion of trials 
on which the color match was chosen is plotted against the size of the 
deviation in color between the material match and the target object. Each set 
of points (black, blue, green, red) shows data for a different magnitude of 
material deviation of the color match from the target (zero deviation is plotted 
in black, small in blue, medium in green and large in red). Open circles show 
negative and full circles show positive differences. The smooth lines show the 
model fit to the data. Model prediction line colors correspond to the symbol 
colors used to plot the same material difference level of the color match. 
Dashed lines show fit to open circles (negative difference steps); solid lines 
show fit to full circles (positive difference steps). The black curve is, sensibly, 
forced by the structure of the model to pass through ordinate 0.5 at abscissa 
0, which corresponds to the hypothetical case of two tests are identical to the 
target in both color and material (∆M  = 0 and ∆C = 0). 

Modeling the data 
Although Figure 3 provides a qualitative sense of how color 

and material trade off in selection, quantitative statements require a 
model. To this end, we extended our earlier work on modeling of 
object selection based on color [6, 15, see also 16] to handle the 
case where both color and material vary. The model fits our full 
data set in terms of small number of interpretable parameters that 
efficiently characterize the underlying perceptual representation of 
the stimuli as well as the relative weighting of color and material 
used in selection. The model assumes that on each trial, each 
stimulus — the target and test objects — is represented as a point 
in a two-dimensional perceptual space, where the dimensions 
represent variation in color and material respectively. Because 
perceptual representations are noisy [17], the model characterizes 
each stimulus as a noisy distribution centered around its mean 
position in the perceptual space. To model what happens on a trial, 
the trial-specific positions of the target and two tests are obtained 
as draws from their underlying distributions, and the observer’s 
choice is determined as a function of these trial-specific positions. 
More specifically, in the model observer chooses the test whose 
position is closest to the target on that trial, with distance obtained 
using a Euclidean metric that differentially weights differences in 
the color and material dimensions. In other words, we compute the 
distance from the target to the first test (dT-T1) as:  
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(1)  
 
where ∆C denotes color difference between the target T and 

the first test T1, weighted by a color-material weight w and ∆M 
denotes a material difference between target and the first test, 
weighted by 1-w. Analogously, the distance from the target to the 
second test T2 (dT-T2) is computed as:  

  

(2)   
 

On a given trial, the observer selects the first test if dT-T1 < dT-T2  
and the second test otherwise. 

In fitting the model, we lock the mean position of the target at 
[0,0] and set the Gaussian perceptual noise of the two dimensions 
(σC, σM) to be equal to 1. These choices determine the origin of the 
perceptual space and set the scale of the two axes to be equal when 
we perceptual distance is characterized in units proportional to 
perceptual precision. The model then has thirteen free parameters. 
One parameter (the weight w) describes the color-material trade-
off. The other twelve free parameters describe the mapping from 
physical stimuli to the perceptual representation. That is, each 
parameter defines the position of one of the test stimuli in the two-
dimensional color-material space (6 color matches and 6 material 
matches). For each of the 6 color matches, the free parameter 
controls only the position on the material dimension, while the 
position on the color dimension is set to be equal to that of the 
target (0). Similarly, for each of the 6 material matches, the free 
parameter controls only the position on the color dimension, while 
the position on the material dimension is equal to that of the target 
(0). These parameters accommodate the possibility that in the 
perceptual space, the stimuli are not distributed uniformly along 
either axis.  

 

  
 

Figure 4. Inferred stimulus positions in the perceptual color-material 
space for one observer (zhr). Circle in the center indicates the target 
position, which was fixed in our model. Circles along the x-axis indicate the 
position on the color dimension for each material match (from ∆C -3 on the left 
to ∆C +3 on the right). Circles along the y-axis indicate the position on the 
material dimension for each color match (from ∆M -3 on the bottom to ∆M +3 
on the top). The inferred color-material weight for this observer was 0.76. 

For each observer, we fit the model’s parameters to the data 
via numerical search, using a maximum likelihood criterion. Figure 
4 shows the stimulus positions obtained from the model fit for 
observer zhr, whose data are shown in Figure 3, along with the 
predictions from the model (smooth curves in figure). The inferred 
color-material weight for this observer is equal to 0.76. Clearly, for 
this observer the model accounts well for the data. Fits for the 
remaining four observers are shown in the online supplement, 
together with the corresponding inferred stimulus positions.  

We estimated the precision of the inferred color-material 
weights using a bootstrap procedure [18]. For each observer, we 
generated new selection data sets (78 trials x 25 blocks) by 
resampling responses (with replacement, from the original data 
set), for each trial type independently. We repeated this procedure 
until we obtained 150 sets of resampled data. We then searched for 
the best-fitting model parameters for each set. Figure 5 shows for 
all observers the mean inferred color-material weight, across the 
150 repetitions of resampling of the original data (green symbols), 
with error-bars indicating +/-1 standard deviation of the 150 
repetitions. Black symbols show the color-material weight 
inferred, by our model, from the actual set of observer’s responses. 

 

 
Figure 5. The relative importance of color and material as cues to object 
identity varies across observers. The mean bootstrapped weight (across 
150 repetitions) is shown for each of our five observers (green symbols). 
Larger weights indicate observers who rely more heavily on color relative to 
material. Error bars determined through bootstrapping show +/- 1 standard 
deviation. Black symbols indicate the color-material weight inferred from the 
actual selection data set for each observer. 

Figure 5 illustrates a key feature of our dataset: the color-
material weight varies considerably across observers. For observer 
zhr the color-material weight is high, indicating that this observer 
relied predominantly on color when making similarity judgments. 
In contrast, for observer scd the color-material weight is low, 
indicating that selection is predominantly driven by object 
material. The weights for the remaining three observers are similar 
and indicate more balanced color-material weighting in selection. 
Although the error bars are larger for some subjects than others, 
those between zhr and scd do not overlap, suggesting that these 
differences in weight are statistically reliable. 
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Discussion 
 
The work we describe provides the first quantification of 

color-material weighting for object identification and indicates that 
there are large individual differences in how these two object 
properties are used. A key innovation of the work is the 
development of a model that allows us to derive both the 
perceptual representation of the stimulus set and the color-material 
weight, so that our conclusions do not require a priori assumptions 
about the perceptual distances between the stimuli along the color 
and material axes. In recent related work, Saarela and Olkkonen 
showed that the visual system can combine information about 
object color and glossiness to improve performance in an object 
discrimination task [19]. This finding is consistent with our result 
showing that observers use both color and material in selection. 

We investigated color-material trade off using a single type of 
object material change, a single object color range and a single 
object shape. It would be interesting to expand the range of 
stimulus variations studied. It would also be interesting to use 
dynamic stimuli and have observers compare target and test 
objects while they rotate, each with a different orientation phase. 
This would preclude direct comparisons of specific regions of the 
images (e.g., the specular highlight at one image location) and 
encourage observers to make their similarity judgments based on 
global object appearance. 

An intriguing question for future work is whether, for a 
particular subject, the relative weighting of color and material 
varies in response to variation in their relative reliability. Color 
might be less reliable when the target and tests are viewed across a 
change in the spectral properties of the illumination, while material 
might be less reliable when there is a change in the geometric 
properties of the illumination under which the object is viewed. 

There are some limitations of the current modeling. First, our 
model is based on assumptions that may be overly strong. For 
example, we assume that the material matches have their mean 
positions aligned precisely along the perceptual color axis and that 
the color matches lie precisely along the perceptual material axis. 
Previous work has shown that the perceptual representation of 
physical surface glossiness varies with changes in the physical 
roughness of an object surface, and that perceived roughness varies 
with changes in physical glossiness [20], so we are alert to this 
possibility for color and material [21]. In addition, we neglect 
noise added to the distance comparison and place all of the model 
variability in the perceptual stimulus representation. Indeed, there 
are maximum likelihood approaches to multidimensional scaling 
that allow for decision noise, but not for perceptual noise [22, 23]. 
Finally, we have so far restricted attention to a Euclidean distance 
metric, but it may also be interesting to consider other metrics 
(e.g., “City-Block” [24]). 

Relaxing model assumptions is not trivial, however. As we 
have proceeded, we have found that adding model parameters to 
account for realistic factors increases the amount of data required 
to estimate model parameters with sufficient precision, as 
parameters can be co-varied with only a small effect on the 
model’s predictions. We have begun to approach this by including 
tests that differ from the target in both color and material, and by 
using an adaptive psychophysical procedure [25] to choose the test 
pairs to be presented on each trial. In the end, however, the 
complexity of the models we can consider and the precision to 
which parameters can be estimated may be limited by 
considerations of parameter identifiability. This in turn means that 

it is important to frame our conclusions within the context of the 
specific modeling assumptions we make.  
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