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Abstract

First-Person Videos (FPVs) captured by body-mounted cam-
eras are usually too shaky to watch comfortably. Many ap-
proaches, either software-based or hardware-based, are proposed
for stabilization. Most of them are designed to maximize stability
of videos. However, according to our previous work [1], FPVs
need to be carefully stabilized to maintain their First-Person Mo-
tion information (FPMI). To stabilize FPVs appropriately, we pro-
pose a new video stability estimator Viewing Experience under
“Central bias + Uniform” model (VECU) for FPVs on the basis
of [1]. We first discuss stability estimators and their role in ap-
plications. Based on the discussion and our application target,
we design a subjective test using real scene videos with synthetic
camera motions to help us to improve the human perception model
proposed in [1]. The proposed estimator VECU measures the ab-
solute stability and the experimental results show that it has a
good interval scale and outperforms existing stability estimators
in predicting subjective scores.

Introduction

As wearable cameras, such as GoPro or Pivothead, become
popular, many people start to capture and share their own First-
Person Videos (FPVs). FPVs allow viewers to revisit recorders’
life-logs in the First-Person Perspective. The interesting parts of
FPVs are not only the objects recorded in the video, but also the
recorder’s reactions reflected by their First-Person Motions. How-
ever, there is a problem with FPVs: most of them are too shaky
for humans to watch comfortably.

To solve this problem, both software-based and hardware-
based approaches can be applied. Hardware-based approaches
are mainly based on gimbals. Software-based approaches [2—-10]
estimate the camera motion in either 2D or 3D and then use filters
to smooth the computed camera motion and re-project frames to
create a stabilized sequence.

Nevertheless, these approaches treat the FPVs as normal
shaky videos and try to stabilize them as much as possible, which
damages the First-Person Motion Information (FPMI) with high
probability [1]. When the FPMI is damaged, the viewing experi-
ence is limited, which degrades FPVs to normal videos. To ap-
propriately stabilize a FPYV, it is necessary to have an accurate
estimator of its stability.

Quality estimators (QEs) characterize the quality of images
or videos, which is useful for many applications. For a stabil-
ity estimator, two relevant applications are algorithm optimiza-
tion and product benchmarking [11]. Usually, QEs are classified
into No-Reference, Reduced-Reference and Full-Reference esti-
mators, but they can also be categorized by their purpose [11].
Using this principle, we partition stability estimators in 3 ways,
which are: (1) Whether the estimator measures the relative or ab-
solute stability of the video, (2) Whether the estimator is based
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on an objective model or a perceptually-motivated model, (3)
Whether the estimator measures the ordinal scale or interval scale
of stabilities of different videos.

Relative or Absolute: Some applications are only inter-
ested in comparing relative video stability or relative stabilization
performance of different algorithms. In this situation, the rela-
tive measurement is sufficient. The Motion-Vector-based Mean
Squared Error (MV-MSE) [12] is an example of such an estima-
tor. MV-MSE measures the MSE between the intentional motion
and the original motion. The intentional camera motion can be
computed in many ways. For example, in [12], the original mo-
tion is transformed into the frequency domain and low-pass fil-
tered to generate the intentional motion. However, no matter how
accurate the computed intentional motion is, MV-MSE can only
measure the instability of the original motion with respect to the
intentional motion. The results in [1] indicate that the subjective
stability of intentional motions strictly depends on their ampli-
tude and frequency characteristics, which means the intentional
motions themselves are seldom fully stable. As a result, it is hard
for MV-MSE to measure the absolute stability of videos.

Some applications want to know the absolute stability of
videos, for example the video stabilization systems. Based on
their criteria of “stable”, they can stabilize the video to the de-
gree they want. Several works [6—10] for video stabilization tech-
niques implicitly generate stability estimators as side-products.
When creating the smooth camera path, they perform optimiza-
tion processes which minimize the sum of squared values of the
second derivative of motion curves. This objective function can be
thought of as a stability estimator. Smaller values indicate higher
stability. Some other objective functions are also adopted. For
example, in [7], the mean square value of the third derivative of
motion curves is also used. In [6], the difference of simplified
affine motion parameters between adjacent frames is used.

Objective or Perceptually-motivated: Applications that
need fast computation or fair comparison prefer to use objective
estimators. These estimators mainly use objective information of
the video. As a result, these estimators are not favorably biased
toward any stabilization techniques. However, the scores of these
estimators may not have high correlation with subjective scores.
A good example is the Inter-frame Transformation Fidelity (ITF),
which was proposed in [13] and used by many works [14—17] for
comparing performance of different stabilization methods. First,
the Peak Signal-to-Noise Ratio (PSNR) between adjacent frames
are computed. The mean value of PSNR of all adjacent pairs is
the ITF of the video, which can be computed easily and quickly.
It is believed that the PSNR does not have a high correlation with
subjective quality scores [18, 19], which means ITF is objective.

For applications that are interested in specific problems of
video stability, perceptually-motivated estimators are more use-
ful. In our previous works [1,20], we focused on stabilizing FPVs

0.2352/1SSN.2470-1173.2018.14.HVE-510



while preserving their First-Person Motion Information (FPMI).
In [20], we first explored the stabilization technique by consid-
ering the human perception model. Then in [1], we carefully
modeled the perception model and proposed a video stability es-
timator, the Viewing Experience (VE) score. By modeling the
smooth pursuit eye movements of a viewer, the VE score esti-
mates the fraction of the FPV that the viewer can watch com-
fortably. [1] showed that VE scores correctly characterized the
rank order of 3 versions of stabilized videos for several scenes.
Also, the stabilization algorithm based on VE scores has similar
stabilization performance with Microsoft Hyperlapse [8,21] and
preserves much more FPMI.

The estimators from stabilization techniques [6—10] are
somewhere between these two categorizations. They consider that
viewers prefer smooth motion but do not explore the perception
model. As a result, they do not have high correlation with sub-
jective scores and are also not fair enough for comparing different
algorithms.

Ordinal scale or Interval scale: The results in [1] show
that VE scores based on this model well reflect human subjective
scores. However, they only have similar rank to subjective scores,
which means they have a good ordinal scale [22]. For example,
if the subjective scores of three version of the videos have the
relationship: SJ; < SJ» < SJ3,then our VE scoreis: VE| <VE; <
VEj3. Itis hard to use VE; to accurately predict SJ;, which means
VE; and SJ; do not have similar interval scales [22].

An estimator that has a good interval scale is more valu-
able. For example, watching videos with First-Person Motion
may cause dizziness or motion sickness. It is useful to measure
the impact of these side-effects, which is possible if the estimator
can precisely predict the subjective video stability.

In this paper we aim to find a such video stability estimator
than can help us predict the subjective video stability and guide
us to appropriately stabilize FPVs. To achieve this target, the es-
timator needs to measure the absolute stability and be based on
a perceptually-motivated model, which is satisfied by our pre-
cious VE score. For this reason, we only need to design a subjec-
tive test to improve the VE score to have a good interval scale
by considering saliency models and refining the basic human per-
ception model. In the next section, we briefly review the human
perception model in our VE score and point out the parts need
improving. In section 3, we introduce the subjective test includ-
ing the video sources and test design. The experimental results
are shown in section 4. We conclude our work and summarize
interesting findings in section 5.

Viewing experience score

Our proposed video stability measurement [1] is called the
viewing experience (VE) score, which measures the fraction of
frames of the FPV that viewers can watch comfortably. In this
section, we first review the motivation and the mathematical
model of our VE score. After that we discuss the current limi-
tation of our VE score, which inspires this work.

Human perception on stability

The motivation of our VE score is that we perform differ-
ent eye movements in real life and when we are watching videos.
Our proposed VE score measures the video stability based on our
mathematical model of eye movements when we are watching

videos.

In real life, we perform vestibulo-ocular reflex/eye move-
ment [23] to physically compensate the unintentional motion of
our body to retain our visual target fix at the center of the retina.
This eye movement uses the information from our internal-ears
and the reaction time is around 0.01 second [23]. However, the
eye movement we are using is called smooth pursuit eye move-
ment (SPEM) and saccade [24]. The saccade helps us to catch
our visual target and the SPEM uses and only uses the visual clues
to assist us to smoothly track the catched target. The time our vi-
sual system needs for perform a saccade is 0.15 to 0.2 second [25],
which is much longer than the vestibulo-ocular reflex. And during
such long period, there is no visual information can be perceived
by our visual system, which leads to the unstable feeling of the
video.

Our VE score estimates the duration of the total saccade pe-
riod when we are watching the video to measure the video stabil-

ity.

Previous work

Our previous VE score models the eye movements of view-
ers as arandom process [1] to estimate the fraction of the FPV that
the viewer can watch comfortably (without saccade). The model
assumes viewers perform SPEM and saccade [26]. The process
is described as follow. Viewers choose a random target in frame
n and perform SPEM to track the target until frame (n+1). If
the target suddenly moves out of the area predicted by the human
visual system in frame (n+2), the viewers may fail to track it and
would need to perform a saccade to catch the target or retarget
another target.

If PE(Bn;n+2) is the position error between eye position
and target position at frame (n 4 2), then according to the model
in [1], the predicted area is where PE satisfies condition (1):

|PE(Bp;n+2)|+b
| @5 (Busn+2)]
where MAR is the minimum angular resolution of human eyes,
b is the bias of position error estimation which is set to MAR, and
By is the target angular position with respect to the camera at the
n'" frame.

0.04 < <0.18 or |PE(B,;n+2)| < MAR, (1)

By solving condition (1) for each frame, we can compute
the target position interval f3,. Any target within this interval can
be tracked using SPEM between the next two frames without a
catch-up saccade or retargeting. Note that the catch-up saccade
or retargeting process spends nearly 150 ms [26]. During this
period, visual information is not processed, which leads to the
experience of instability. If we assume the chance of choosing a
target is uniformly equal across the whole frame, then based on
the interval sequence {f3, }, the VE score can be computed as the
fraction of a video that viewers can perform SPEM.

Existing limitations

Two potential weaknesses in the previous model restrict the
previous VE score to only have a good ordinal scale instead of
interval scale. First, we assumed that all targets have the same
chance to be selected, which is not accurate. For example, people
prefer to choose targets at the center of the frame [27], which is
called the central bias. Based on this fact, we explore here includ-
ing a saliency models into our human perception model. There
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(a) Lobby

(c) University Street (US)

(d) Park Walkway (PW)

Figure 1: Example frames of source videos

are many saliency models [28-30] that have high performances
available online. We discuss our adoption criteria and final choice
in the next section.

Second, the bias parameter in condition (1) may not be accu-
rate enough. The bias b was directly set to MAR without any ex-
periment and discussion. As a result, the interval sequence {f3,}
computed from this condition may not be accurate enough, which
consequently would degrade the precision of the VE score. To ad-
dress this problem, in this paper, we design a subjective test and
use the human subjective score as ground truth to find an appro-
priate value of b.

Subjective test

Our target is to use the subjective test to improve the de-
sign of our VE score. We want to determine which of 4 saliency
models is the most effective, and find an accurate bias parameter
for our system. In this section, we first introduce the process by
which we create the source videos. After that, we show how we
design the subjective test.

Our subjective test is based on paired comparison, which in-
cludes 19 subjects and is operated according to the recommenda-
tions in [31]. For each of the 4 scenes, there are 9 versions of
videos, each having a different combination of motion amplitude
in both yaw and pitch. Each video is 5 seconds long, since for
repeated motion patterns, viewers are able to learn and predict
well within 5 seconds [32]. Tested videos are played back on a
27-inch, 82 PPI screen at full resolution. The ratio of viewing
distance with respect to the equivalent focal length is 4. During
the test, for each comparison, only one question is asked: Which
video is more stable?

Video source

To create the videos for our subjective test, we add synthe-
sized motions into four different scenes that were captured us-
ing a 360° camera-set on a wheeled tripod. Then we slowly and
smoothly move the tripod forward and record the scene. The ob-
tained six videos are stitched using Kolor Autopano Video 3 [33]
with D-warp, color normalization, video stabilization and other
options on. Each frame of the resulting video is a equirectangular
image. Based on the synthesized motion of each frame, we cen-
tralize the camera view at a particular part of the equirectangular
image to create a perspective image. Collecting all resulting per-
spective images, we generate a video with synthesized motions.
The camera-set consists of 6 GoPro Hero Session 4 cameras. The
scenes are shown in Fig. 1. The resolution of all videos is 1080p
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and the frame rate is 30 fps.

The synthesized motion of a video consists of two different
kinds of First-Person Motions: yaw and pitch, which are the mo-
tion of looking side to side and upside down. According to the
motion model used in First-Person video games [34], yaw and
pitch motions are synthesized using sinewaves while the rate of
pitch is twice as that of yaw. All the synthesized videos used in
this paper are designed to mimic First-Person running videos. If
the normal running speed is R meters per second, the step size is
S meters and the frame rate of recorded video is Fy4e, then the
period of pitch motion T is % -S. Suppose the original video
records M meters’ moving in N frames, then the fast-forward mul-
tiple of the original video is Fi{ fM.

There are two main reasons for using this synthesizing pro-
cess. First, it enables easy and accurate access to the camera mo-
tion since we actually generate it. Second, it enables us to create
videos that do not contain several potential distortions. For ex-
ample, since we move the tripod smoothly and slowly, videos are
free from rolling shutter. And since we use the 360° videos, all
the test videos are free from black areas.

Design of synthesized motions

To generate different versions of videos, we can vary the am-
plitude of yaw and pitch. However, a question is raised: what
value of amplitude we should choose? Paired-comparison-based
subjective tests are time consuming, especially for videos. So we
must answer this question wisely.

First, there are some constraints on the amplitude of yaw and
pitch. By examining the estimated motions of recorded videos ob-
tained in our previous work [20], we find that the minimum ratio
between the amplitudes of yaw and pitch is around 4. Also, the
maximum amplitude of yaw is around 10°. To make synthesized
videos more realistic, we follow these constraints when choosing
the amplitude of yaw and pitch.

Second, to guide us toward an effective selection of videos,
we explore the impact of the bias parameter. An optimal bias pa-
rameter makes the VE score have a good interval scale; different
bias parameters results in different VE curves. Fig. 2 (a) shows
the VE curves of different bias parameters when we vary the am-
plitude of yaw and fix the amplitude of pitch. To learn about
the perceptual impact of the bias parameter, the videos chosen
to compare must have different relative VE scores for all values
of the bias parameters. Correspondingly, the curve shapes in Fig.
2 (a) should be distinct. Otherwise, our videos will not provide
information to identify the optimal bias parameter. For example,
we want to avoid a yaw amplitude below 2, since for all bias pa-
rameters, the relative VE scores are the same. The reason to have
different relative scores is that the subjective results are expressed
using Bradley-Terry scores, which measure the relative subjective
quality.

We aim to learn about an optimal bias parameter by calculat-
ing N different VE scores for each of N bias parameters, and cor-
relating the subjective results to each set of VE scores. We know
that the true value of the bias parameter is around 0.02, which
was used in [1] and performed well. So we vary the bias param-
eter from 0.01 to 0.03 with interval 0.001 and vary the amplitude
of yaw from 0.1 to 10 with interval 0.1. And the amplitude of
pitch is varied from 0.025 to 2.5 with interval 0.025. For the bias
parameter b, we obtain a 100 by 100 matrix P, filled up with VE
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Figure 2: VE scores under different conditions: (a) VE curves of
different bias parameters when the amplitude of pitch = 0.025 (b)
VE surface when bias parameter = 0.02

scores. Fig. 2 (b) shows the example of when the bias parameter
is 0.02. Py(x,y,z) is the VE score of the corresponding yaw (x
axis), pitch (y axis) and bias parameter (z axis) settings.

Our target here is to choose motion settings that result in
videos that have distinctly different relative VE scores for differ-
ent bias parameters. Suppose we adopt the corresponding motion
settings of entries (x —3n:n:x,y—3n:n:y), where n is the step
size. Then we use the vector Dy, , , ,), Which consists of the diag-
onal entries of P,(x—3n: x,y —3n:y), as the representative VE
scores of test videos under bias parameter b. Each entry of Dy 5, ,
can be thought as a random variable. We compute the covariance
matrix T{y ;) of Dy y 5, and obtain the set of the eigenvalues of
Tixyn) (denoted as {A(7(, ) }). The VE scores of preferred mo-
tion settings should be at the (x,y) position of the 100 by 100
matrices with step size n, which satisfy the following condition:

Std(A(Tiy
minJ — 1d (A (Tieym))

x.y,n Mean (A(T(X_y,,,))) ’ @

This makes the vectors {D(W“’bﬂ) }, which are the representative
VE scores of test videos under all possible bias parameter, well
and equally separated in the space. Note that when computing the
VE score, we do not apply any saliency model.

Saliency models

The saliency model is important to our perception model. To
choose the optimal model among the ones available online, we
follow the suggestions from [35]. In particular, since we do not
want to miss any target in the frame and do not want to falsely
include targets, we sort the saliency models listed in the MIT
Saliency Benchmark [36] using the metric Normalized Scanpath
Saliency (NSS), which is equally affected by false positive and
false negative.

Before the test, we do not know how important the saliency
model is for our human perception model. Thus, we want to
test with saliency models that have different categories of per-
formance. Four saliency models are tested. The saliency model
that has the best performance among the ones are available on-
line is [28]. We also test the model proposed in [29], an uniform
model and a central bias model [27]. Note that [29] ranks at the
middle of the list of [36] under the metric NSS.

Results and Discussion

Based on the discussion of test settings, we finalize the mo-
tion amplitude settings as shown in Fig. 3, where the settings
marked are used to generate videos. All these videos are used in
the subjective test and their Bradley-Terry (BT) scores [37] are
computed together.

Amplitude of Yaw
43 6.2 81 10

=
S1075 ® O O
a

5 155 ® O O
3

22025 ® O
£

£ 25 °

Figure 3: Motion amplitude settings

Table 1: Bradley-Terry scores of all videos

Yaw Motion Amplitude
43 6.2 8.1 10

- 1.075 | 0(£0.345) | -3.057 (£0.422) | -5.105(0.550)
2 1.55 -4.027 (£0.533) | -5.987 (+0.622) | -7.813 (+0.809)
& 2.025 -6.464 (£0.652) | -9.021 (40.956)
2.5 9.857 (£1.095)

_ | 8 [1.075 [ 0(X0387) | -1.262 (X0.431) | -2.184 (0.495)
e 2155 -1.268 (£0.468) | -2.683 (+0.555) | -4.445 (+0.720)
S g 2.025 -3.199 (£0.580) | -4.906 (+0.799)
= | 25 -5.298 (+0.870)

[ ]2 [ 1.075 | 0(£0.370) | -3.057 (£0.463) | -5.041 (£0.588)
w| S| 155 -3.734 (£0.551) | -5.761 (£0.671) | -7.087 (£0.796)
= |5 | 2005 -6.948 (£0.763) | -7.981 (+0.897)
Zz | 25 -8.641 (+£1.006)

| 1.075 | 0(£0.434) | -1.885 (£0.468) | -3.202 (£0.515)
= 1.55 -2.083 (£0.455) | -3.792 (£0.566) | -5.101 (+0.658)
A 2.025 -4.530 (£0.624) | -5.950 (+0.729)
2.5 -6.516 (£0.827)

Our study includes two parts: training and testing. The
videos with settings on the diagonal (marked by solid circles) are
used as training set. The remaining videos construct the testing
set. The training process is used to find the bias parameter as we
discuss in the previous section, which is based on the linear re-
gression. First, the subjective test provides the subjective score of
each of the source videos. Given a saliency model and a bias pa-
rameter, VE scores of training videos are computed. The training
outputs are the bias parameter that results in the highest correla-
tion coefficient.

The testing process is used to find which of the 4 saliency
models is the most effective and to verify the accuracy of the
bias parameter we obtain. The testing process examines the train-
ing outputs (bias parameter and regression models) by comput-
ing the predictive error of the VE scores. The effectiveness of
saliency model is discussed by comparing the slopes of the regres-
sion models of different video scenes. When an accurate saliency
model is applied, the regression model should be independent of
video scenes.

Subjective test result

The subjective scores with 95% confidence interval (in
parentheses) are shown in Table 1. Our videos include 4 differ-
ent scenes, which can be classified into 2 kinds of scene struc-
ture. The “Lobby” and “University Street” are scenes that have
open views while the “Market” and “Park Walkway” have narrow
corridor-like views. Several subjects report that it is easier to dis-
tinguish the stability of videos with open view scenes than that of
videos with narrow view scenes. This aligns with the BT scores
shown in Table 1 where BT scores decrease more in open view
scenes when the motion amplitudes increase.

There is another interesting phenomenon in our subjective
test, which is the masking issue between different motions. Our
VE model introduced in [1] did consider that when the yaw mo-
tion is much more shakier than the pitch, no matter how we
change the pitch motion, the stability of the video is only decided
by the yaw, or vice versa. The data in Table 1 provide some clue.
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Based on the BT scores, we see that it becomes more difficult for
viewers to distinguish the stability of videos with different pitch
motions when the amplitude of the yaw increases. Also, this be-
comes more obvious in open view scenes. For example, in the
“Lobby” scene, when the amplitude of yaw is 6.2, the BT scores
of different pitch motions are do not overlap, which is different
when the amplitude of yaw is increased to 8.1. To explore it more
explicitly, we may need more subjects and to test with more mo-
tion amplitude values.

Effectiveness of saliency models

The training process helps us to find the optimal bias pa-
rameter. Suppose the bias parameter is b, BT scores of i"’* scene
are stored in vector B7; and the corresponding VE scores under
a saliency model is VE;. Then we use following equation to find
the optimal bias parameter for each saliency model:

méli: /;(corr(BT,-,VE,-))z, 3)
where corr(-) computes the Pearson linear correlation coeffi-

cient (PLCC). As discussed in previous sections, we first apply 4
different saliency models: SAM, iSEEL, a uniform model and a
central bias model [27]. The resulting bias parameters and PLCCs
of 4 scenes under the corresponding parameters are shown in Ta-
ble 2. For each saliency model, the PLCCs are shown in order:
“Lobby”, “Market”, “University street” and ‘“Park walkway”. The
corresponding linear models are shown in Fig. 4 (a)-(d).

For a good no-reference quality estimator, the relationship
between its objective scores and subjective test scores should be
similar across different scenes. If our VE scores and BT scores
have similar relationship across all scenes, then our no-reference
estimator works well. However, as can be seen from Fig. 4 (a)-
(d), no matter which of the 4 saliency models is used, the line
slopes of the narrow view scenes are quite different from that of
the open view scenes. This only indicates our VE model has some
weakness because for the scenes of the same structure, the line
slopes are quite similar.

The four saliency models we adopt have good performance
on predicting human saliency of images. The failure in Fig. 4 (a)-
(c) only indicates that the saliency models applied do not work on
video sequences since these models never consider the influence
of camera motions on the saliency.

As a result, we propose a hypothesis for the saliency model:
for open view scenes, viewers are uniformly likely to look at
the parts in the frames while for narrow view scenes, they
prefer to look at the center of the frames. This hypothesis is
inspired by the statement of some subjects after the test. They
report that for egocentric videos with forward motions, they are
more willing to look across the entire frame for open view scenes
since they are curious about the environment. And for narrow
view scenes, the forward motion suggests there is an important
target ahead, so they prefer to look at the center of the frames.

To verify this, we apply the uniform saliency model to the
“Lobby” and “University street” and apply the central bias model
[27] to the “Market” and “Park walkway”. Its training outputs
are shown in Fig. 4 (e) and Table 2. Under this saliency model
setting, the line slopes of both narrow view scenes and open view
scenes are similar.

To accurately show the difference of line slopes, the coeffi-
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cient of variance (cv%) is computed for all saliency models and
shown in Table 2. The “uniform + central bias” model outper-
forms all other saliency models with the lowest cv%.

Table 2: Results of training and testing
Measurement Bias PLCC MSE
0.9767 | 0.5932
VE 0.9942 | 0.5539
(SAM) 0.0180 09604 | 0.4149 0.4997 31.1
0.9895 | 0.4370
0.9633 | 0.5922
VE 0.9959 | 0.5811

Average MSE | ¢v% of slopes

aseeLy | 00181 goeza o378z | 048! 28.1
0.0043 | 0.3887
0.9744 | 04886
VE 0.9967 | 0.4614
(Uniform) | %0183 55687 103201 0.4091 2

0.9952 | 0.3435
0.9656 | 0.8473

VE 0.9392 | 0.7487
(Central Bias) 0.0196 0.9945 | 0.562 0.6318 316
0.9671 | 0.3693
VE 0.9744 | 0.4886
(Central Bias 0.923 | 0.7962
+ 0.0183 09687 1 03291 0.4927 7.9
Uniform) 0.9513 | 0.3570
0.9657 | 1.2538
0.9644 | 0.864
MV-MSE 09374 | 13048 1.0571 28.6

0.9496 | 0.8056
0.9960 | 0.7539
0.9526 | 1.1421
ITF 0.0985 00 0.9086 123

0.9940 | 0.8383

Predictive performance

After we trained the models using BT scores and VE scores,
we need to test their predictive performance since our target is to
create a video stability estimator that has a good interval scale.
We use the models we obtained to predict the BT scores of test
videos. The predictive errors are shown in Table 2. To show the
power of our model, we also train the models for MV-MSE [12]
and ITF [13]. Their training and testing results are shown in Fig.
4 (f)-(g) and Table 2.

The VE under uniform saliency model has the smallest aver-
age mean square error (MSE). However, this model does not unify
line slopes. The VE under “Central bias + Uniform” (VECU)
model has the lowest cv% and the 3’ smallest average MSE. Al-
though ITF has low c¢v%, it has a much larger average MSE and
does not compete with the VECU model. Also, although ITF is a
no-reference estimator, its scores do not have physical meanings
while the VE based models do. The scores VECU indicate the
fraction of frames that the viewer can track without saccade and
so that can be watched comfortably.

The performance of the VECU model shows that given a
video, it is possible to accurately predict its BT score with respect
to another video that records the same scene. However, we do
not have the subjective data to explore whether the VECU model
can compare the stability of videos that record different scenes.
For that, we would have needed to include fully stable videos of
each scene in our subjective test. Without these “anchors,” the
relationship between line models of different scenes cannot be
established.

We anticipate that the VECU does have a highly potential
to achieve it since line models for both narrow view scenes and
open view scenes have quite similar slopes. Also, for each kind
of scene construction, line models of different scene content align



« Lobby

— Lobby curve
x Market

|—— Market curve

— Lobby curve
x Market
|—— Market curve

* Lobby

— Lobby curve
* Market

|——Market curve

—— Lobby curve
x Market
|——Market curve

8 o us 8 o Us 8 o us 8 o us
g . — US curve g — US curve g —US curve s —US curve
3 6 + PW 3 6 + PW 3 6 + PW 36 + PW
= * — PW curve = —PW curve = —PW curve = x —PW curve
2 "o 2 4 s L4 8 2.
k! x ® T s
> > > >
3 & 3 g
Z 2 z o2 Z 2 z 2
0 0 0 0
0 02 0.4 0.6 08 1 0 02 0.4 06 0.8 1 0 0.2 0.4 06 08 1 0 01 02 03 04 05 06
VE scores (SAM) VE scores (iSEEL) VE scores (Uniform) VE scores (Central Bias)
() (b) (© (d)
1
0 * Lobby 2 [ Tabey 1o * Lobby
— Lobby curve — Lobby curve — Lobby curve
s x Market 100« Market x Market
" — Market curve | —Market curve 8 — Market curve
o o us o 8| o Us o o us
s —US curve S |—uUscurve s —US curve
36 3 o+ PW 36 + PW
= ¥ —PW curve B [=—PWeure = % —PW curve
24 S 4 £ 4 »
T ® T
> I3 >
g g 2 g
Z, z 2
¥ 0 B
0 ° - 0
4 0.2 0.4 06 08 1 0 10 20 30 40 31 32 33 34 35
VE scores (Central Bias + Uniform) MV-MSE ITF
(e) ® (®

Figure 4: Fitting results between negative BT scores and objective scores

well with each other, which indicates the distance between the
line models of open view scenes and narrow view scenes may be
caused by the scene structure and not sensitive to the scene con-
tent. In addition, VECU scores have a physical meaning which is
unchanged by the recorded content.

Conclusion

In this paper, we have 3 main contributions. First, we re-
view existing stability estimators and classify them in 3 different
ways. Second, we improve our previous video stability estimator.
The obtained video stability estimator can measure the absolute
video stability and has a good interval scale. It can be used to
predict subjective scores and has high potential ability to com-
pare the stability of videos that record different scenes. Third,
we shows that image-based saliency models may not be effective
for FPVs. Then we propose and simply verify the hypothesis that
viewers have different viewing preference for narrow view scenes
and open view scenes.

The obtained FPV stability estimator is valuable for many
applications. For example, it can be related to measuring the
motion sickness of VR videos since VR videos are similar with
FPVs. It can be applied for motion design in First-Person games.
Since it can accurately predict the subjective stability quality,
game designers can use it to control the amount of First-Person
Motions in order to create obvious but comfortable First-Person
feelings [1].
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