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Abstract
A dual channel spatial-temporal model for contrast detection

is  shown  to  improve  the  predictions  for  the  spatial-temporal
Modelfest data over those of the simplified Barten model.

Introduction
Carney, Mozaffari, Sun, Johnson, Shrivastava, Shen, and Ly

[1] have recently reported contrast thresholds for spatial-temporal
stimuli  originally  proposed  by  Carney,  Klein,  Beutter,  Norcia,
Chen,  Tyler,  Makous,  Watson,  Cropper,  Popple,  Robertson,
Manahilov,  Simpson,  and  Wenzel  [2]  to  extend  the  spatial
Modelfest  data [3] into the temporal domain. 

Barten[4]  developed  a  model  for  the  detection  of  arbitrary
spatial temporal contrast stimuli based on an ideal observer limited
only by photon noise, neural noise, and linear filters representing
visual  processing.  When the mean luminance is high enough so
that the photon noise can be ignored, Barten's model predicts that
the  threshold  for  detection  depends  only  on  the  energy  of  the
stimulus passed by a linear filter.  This simplified Barten model is
a spatial-temporal extension of the spatial energy detection model
of  Ahumada  and  Watson.[5]  Ahumada,  Watson  and  Yeonan-
Kim[6] showed that a version of this spatial-temporal filter
model  provides  a  good  account  of  the  spatial-temporal
contrast sensitivity data reported by Carney et al.[1]

This  paper  describes  the  simplified  Barten  model  of
Ahumada, Watson, and Yeonan-Kim[6] and a dual channel
version  of  that  model.  The  low  spatial  frequency  P
(“parvo”) channel has parameters consistent with the model
developed  by  Watson  and  Ahumada[4]  for  the  original
spatial Modelfest data [5].  The M ('magno”) channel has
higher  temporal  frequency  information  at  a  lower  spatial
resolution. 

The Temporal Contrast Sensitivity Functions
Carney et al.[1] reported contrast thresholds for contrast

stimuli  that  were  the  product  of  spatial  and  temporal
functions

c = cX, Y, T(x, y, t) = cX, Y(x, y)cT(t).                           (1)
For  their  temporal  contrast  sensitivity  functions  (TCSFs)
shown in Figure  1,  the spatial  functions are cosine phase
horizontal  Gabor  functions  with  an  envelope  standard
deviation sXY = 0.5 deg,

cX, Y(x, y) = exp(-0.5(x2 +y2 )/ sX, Y2 ) 
                    cos(2 p fY y), fY = 0, 4, 11.3.                       (2)
The temporal functions are sine phase Gabors with a 

Gaussian envelope c0(t) with standard deviation sT = 0.25 
sec,

c0(t) =  exp(-0.5 (t / sT)2),                                           (3)

and
cT(t) = c0(t) sin(2 p fT t),  fT = 1, 2, 4, 8, 15, 25 Hz.   (4)

The temporal envelope itself will be referred to as the 0 Hz 
temporal waveform.

Figure 1 shows the TCSF data reported by Carney et al.
[1] The TCSF curve for 0 cpd, the spatial Gaussian, is band-
pass with a peak near 8 Hz, while the spatial Gabor TCSF 
for 4 cpd and 11.3 cpd are low-pass. Carney et al.[1] 
remarked that these two low-pass functions are “expected” 
to be parallel, but the difference between them appears to 
increase with temporal frequency.

Figure 1. Temporal contrast sensitivity data from Carney et al. [1] Data 
are 20 times log to the base 10 of the contrast thresholds plotted on an 
inverted scale. Zero spatial and temporal frequencies indicate the 
Gaussian envelope alone, which had a standard deviation of 0.25 sec.

The contrast thresholds of Figure 1 are computed from the 
peak contrast of the envelopes.  For sine phase Gabors this 
contrast level is not attained by the stimulus. The higher 
sensitivity in Figure 1 for the 0 Hz 4 cpd stimulus relative to
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the 1 Hz 4 cpd stimulus is a result of this measurement 
strategy.  Here the thresholds will be reported as contrast 
energy thresholds in dBB, dB re 10-6 deg2 sec.[7, 8]

The single-channel simplified Barten model 
The input for the model is a spatial-temporal contrast image 
sequence, c = c(x, y, t), represented in  the frequency 
domain as 
 C = C(fx, fy, ft) = FFT(c)                                             (5)
The visible contrast image sequence is computed from the 
input using two low pass spatial filters S0 = S0(fx, fy) and 
S1 = S1(fx, fy) and two low pass temporal filters T0 = T0(ft)  
and T1 = T1(ft) .  The visible contrast image in the frequency
domain is given by

V = S0 T0 (1 – S1 T1 ) C                                              (6)
 S0 and T0 determine the high frequency limits of visibility 
while S1 and T1 are the integrators for the inhibitory 
surround.  The detection threshold is be assumed to be 
inversely proportional to the visible contrast energy

E = ||V||2.                                                                     (7)
The spatial filters are Gaussian 

Sj = exp(-(fx2 +fy2 )/fj2 ), j = 0, 1                                 (8)
and the temporal filters are Gamma  

Tj = 1/(1+i2p tj ft ) nj ,  i = 0, 1                                   (9)
Figure 2 shows the contrast energy thresholds for these 
stimuli and the simplified Barten model predictions.

The least squares estimates of the model parameters are
shown in Table 1. The RMS error corrected for the 6 
parameters estimated is 1.50 dB. The contrast gain factor 
used to bring them into vertical alignment is 420 (52.4 dB). 

Figure 2. Temporal contrast energy sensitivity data from Carney et al. [1]
[symbols and dashed lines] and the simplified Barten model predictions 
[solid lines]. 

 

 

Table 1: Parameter  estimates for the simplified Barten model 
filters.  Underlined parameter  values were not estimated.

Temporal tau, msec n

T0 12.1 3

T1 13.8 2

Spatial f, cpd

S0 11.1

S1 1.12

With the spatial frequency cutoffs so far apart, the 
model predicts that the inhibitory surround is negligible for 
both the 4 and 11.3 cpd stimuli. These two contrast energy 
temporal contrast energy sensitivity curves are predicted to 
be parallel with the shape of T0, separated by 
20 log (S0(4 cpd)/S0(11.3 cpd).  The parameter estimate of 
f0 = 11.4 predicts a difference that is too large at the low 
temporal frequencies and too small at the highs.  The 
parameter value that best fits the difference at the two 
lowest temporal frequencies is f0 = 14.2 cpd, close to the 
value of 15.2 cpd reported by Watson and Ahumada[8]. The
difference between these two data functions at 4, 8, and 15 
Hz corresponds to  f0 = 9.8 cpd. The dual channel model 
was developed to allow a larger difference between these 
functions at higher temporal frequencies by allowing a 
different spatial frequency response at the higher temporal 
frequencies.

Another feature of these two data curves is that they 
appear to be band-pass, while the assumed form of T0 is 
low-pass.  A high-pass filter was added to the dual channel 
model to account for this effect.

The dual channel model
The dual channel model has two channels that are both

Barten  models.  Each  channel  has  its  own  excitatory
temporal response

T0, P = H P T0,                                                       (9)
and

T0, M = H M T0 ,                                         (10)
where M = 1 – P. Figure 3 shows the components of the
excitatory temporal responses: H, P, M, and T0. and Figure
4 shows the resulting combinations,  T0, P and T0, M . Each
channel has its own excitatory spatial response, S0, P and S0,

M. Arbitrarily keeping the inhibitory integrators the same for
both channels, the visible contrast images in the frequency
domain are given by

VP = S0, P T0, P (1 – S1 T1 ) C,                                   (11)
and

VM = S0, M T0, M (1 – S1 T1 ) C.                                (12)
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Figure 3. Amplitude responses of the components of the excitatory 
temporal filters. H is high pass filter with a low frequency cutoff that 
makes the overall response band pass. T0 determines the high 
frequency falloff of the M channel.  P and M = 1 – P segregate the two 
channels.

Figure 4. Amplitude responses combining the components of the 
excitatory temporal filters. The P channel excitatory temporal response 
is H P T0 . The M channel excitatory temporal response is H M T0 . 

The temporal response low pass filters 1 – H, P, T0, and T1 
are all assumed to be Gamma filters and the spatial low-pass
filters S0, P , S0, M, and S1 are assumed to be Gaussians. 
The detection threshold is be assumed to be inversely 
proportional to the total visible contrast energy in both 
channels

E = k ||VP ||2 +||VM ||2 ,                                              (13)
where k is the relative weight of the P channel energy with 
respect to the M channel energy. Figure 5 shows the 
predictions of the dual channel model for the temporal 
contrast energy function data.  The model captures both the 
band-pass nature of the 4 and 11.3 cpd curves and the 
increased spacing between these curves at the higher 
temporal frequencies.

Figure 3. Temporal contrast energy sensitivity data from Carney et al. [1]
[symbols and dashed lines] and dual channel model predictions [solid 
lines].

 Table 2 shows the least squares parameter estimates.  

Table 2: Parameter  estimates for the dual channel filters.  

Underlined parameter  values were not estimated.

Temporal t, msec n

1 – H 310 2

P 53.8 2

T0 9 4

T1 11 2

Spatial f, cpd

S0, P 15.6

S0, M 9.9

S1 0.81

Ten  parameters  were  estimated  by  least  squares,  8
parameters whose values are shown in Table 2, a k value of
0.60 and a contrast  gain factor  of 382 (51.6 dB).   The n
parameters of the L, B, and T1 filters were arbitrarily set to
2. The RMS fit corrected for the 10 estimated parameters
was 1.1144 dB.

We evaluate the significance of this improvement using
the  F  test  for  whether  the  more  particular  (nested)
hypotheses H1 fits as well as the more general  hypothesis
H0,

F(df1-df0, df0) =( (SS1 – SS0)/(df1 – df0)) / (SS0/df0), 
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where SSj is the sum of the squared errors of prediction for
hypothesis j and dfj is the number of data points minus the
number of parameters estimated.
The corrected RMS error for hypothesis j is  given by
 ej = √(SSj / dfj),
so

F(df1-df0, df0) =( (df1 e12 – df0 e02)/(df1 – df0)) / e02, 
Let  hypothesis  B  be  the  simplified  Barten  model  and
hypothesis  A  be  the  simplified  Barten  model  with  the
adaptation  filter  H.   The  corrected  RMS  errors  are
eB = 1.5031 dB  and  eA =   1.3582 dB.  The  degrees  of
freedom  are  dfB = 14  and  dfA =13,  so  F(1,13) = 4.15,
p = 0.06.  Let hypothesis C be the channel model with eC =
 1.1144 dB.   If  we  compare  the  channel  model  with  the
Barten model with adaptation we obtain an F(3,10) = 3.10,
p = 0.11.  Finally,  comparing  the  channel  model  with  the
Barten model, we get F(4,10) = 3.87, p = 0.04. We conclude
that the channel model is a significant improvement over the
Barten model and that it  is likely that both the adaptation
filter and the channels would contribute significantly to the
improvement if more data were available.

Discussion 
 At the meeting the question arose as to how this model

could be extended.  One dimension is stimulus spatial extent
and  eccentricity.   The  simple  approach  of  Watson  and
Ahumada[9]  is  to  consider  that  the  main  effect  of  fewer
samples  in  the  periphery  is  to  increase  the  neural  noise
level , which can be approximated by assuming the noise is
constant  and  reducing  the  signal  level  appropriately.
Extension to color could be done by adding opponent color
channels as suggested by Wuerger, Watson, and Ahumada.
[10]  These additional opponent color channels should not
need an M channel. 
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