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Abstract 

In this paper, we devise a method that reduces distance errors 

in time-of-flight (ToF) images. Errors are exhibited at boundaries 

and surfaces that are not capable of reflecting the infrared ray. For 

the proposed method, at least two ToF cameras are required in the 

camera setup. ToF distance error region is estimated by comparing 

the captured ToF image with warped ToF image from the 

neighboring ToF camera. The distance values in the error region 

are replaced. A number of methods are examined to select the 

optimum replacement value. After distance error reduction, this 

method is inserted into the aforementioned depth map generation 

framework. The performance is analyzed by evaluating a synthetic 

image which is generated by the depth map result. 

 

Introduction  
In general, 3D video adds depth perception to 2D video, 

providing a realistic feel. The market for 3D video has grown 

extensively since the successes of numerous 3D commercial films 

in the late 2000s. Now with more advanced technologies, content 

providers attract customers with marketable 3D contents and 3D 

displays such as stereoscopic or auto-stereoscopic displays 

reconstruct satisfactory 3D video. Fig. 1 shows 3D services using a 

variety of displays. 

Generally, the process of left and right eyes seeing slightly 

different scenes achieves 3D experience [1]. In other words, 3D 

perception is derived from two separate views. 3D displays such as 

3DTV on the market provide stereoscopic images to users. In the 

near future, users will most likely be able to experience 3D 

perceptional depth freely. 

The 3D video system transmits compressed N views of color 

and depth video data. At the receiver end, M views are generated 

based on the N decoded views and synthesized views. Hence, the 

number of output views is always greater than that of input views 

[8]. For view synthesis, decoded color and depth video data are 

used as input in depth image based rendering. Thus, the quality of 

decoded color and depth data directly affects the quality of 

rendered images. 

Depth images present the distance between the camera and 

the object. Generally, depth images are produced by depth cameras 

or estimated by stereo matching. Depth cameras allow fast data 

acquisition but cost can be an issue. In addition, interference must 

be checked which is caused by frequency overlaps. Stereo 

matching does not have limitations of depth cameras [9], [10]; 

however, it can be time-consuming, thus, not suitable for practical 

applications. 

 

 

 
Figure 1. Framework of a 3D video system including 3D content production 
and depth image based rendering 

Depth Map Generation Using ToF Images 
ToF cameras are useful for obtaining object distances in a 

scene [11, 12]. Yet, they can produce low resolution images only. 

In order to match the resolution of depth images and color images, 

ToF-to-color view 3D warping is applied using ToF and color 

camera parameters. Intrinsic and extrinsic camera parameters are 

necessary for this process [13]. Intrinsic camera parameters include 

focal length, principal point, and skew coefficients. In addition, 

extrinsic camera parameters represent rotation and translation 

characteristics of the camera. 

In the ToF image, each pixel is projected to a 3D point, i.e., 

world coordinate, then this 3D point is projected to the destination 

image. For ToF-to-color 3D warping, the ToF camera and the color 

camera are source and destination, respectively. The 2D image 

coordinate at the destination image is acquired by the 2D image 

point at the source image and its intrinsic and extrinsic camera 

parameters.  

From depth image warping, the depth image corresponding to 

the color camera view is acquired. These images contain empty 

pixels due to the resolution difference between ToF and color 

cameras. Joint bilateral filter (JBF) is used to fill such areas [15]. 

The filter is applied to the object region only, assuming the 

approximate depth value range of the object is known. JBF is an 

extension of the bilateral filter [14], which is widely used for edge 

preservation.  
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In (1), Di(x, y) and D(x, y) denote the value at (x, y) 

coordinate in the warped depth image and the final depth image 

which is to be filled, respectively. Di(x, y) is available as a result 

of ToF-to-color warping. (u, v) is the neighbor coordinate of (x, y). 

r represents the kernel size. In the experiments, the kernel size r is 

11. W represents the weight, which is zero if the pixel value in the 

warped depth image is zero. Otherwise, the weight is a multiple of 

spatial weight f(u, v) and range weight g(u, v). This is represented 

in (2).  

 

 
   

 

otherwise ,

0, if,

,,

0
,










yx
i

D

vugvuf
vuW  (2) 

  

The spatial weight is based on the intensity difference. When 

computing the intensity difference, JBF uses the color image while 

the bilateral filter uses the depth image itself. JBF produces more 

reliable spatial weights since color data difference can be more 

specific. The range weight is the same in both JBF and the bilateral 

filter. These weights are explained by (3) and (4). σf and σg are 

sigma values for the spatial and range weights which are Gaussian 

values; their values are 2 and 8, respectively, in the experiments. 
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Camera System Overview 
The devised camera system consists of two ToF cameras 

positioned above three color cameras. Fig. 1 exhibits the devised 

camera system. The image resolution is 176×144 and 1280×720 

for ToF and color, respectively. The distance between centers of 

color cameras is 6.5 cm and there is no space between the pair of 

ToF cameras. The objective is to minimize errors in T0 and T1. 

We carry out ToF distance correction using a ToF image pair prior 

to depth map generation process explained in the previous section. 

 

 

 

Figure 2. Camera system: two ToF cameras (T0 and T1) positioned above 
three color cameras (C0, C1, and C2) 

Error Region Classification 
Distance correction is applied to samples that show 

inconsistency between the ToF images. We estimate erroneous 

regions by comparing the ToF image with an image warped from 

the other ToF. If the absolute difference between these images is 

greater than a threshold, this sample is treated as an erroneous 

distance value. This is described by (2) where ToF_diff is the 

binary difference image. In the equation, ToF0-to-ToF1 warped 

image is compared with ToF1. This can be executed vice versa. 

Fig. 3 shows captured ToF images and a warped ToF image. Since 

ToF0 has inconsistent distance data in the head region, the warped 

image exhibits holes. Subsequently, a large portion of the head 

becomes the error region in the binary difference image. 

 

 

 
                (a)                                    (b)                                      (c) 
Figure 3. Captured ToF images and warped ToF image : (a) ToF 0; (b) ToF1; 
(c) ToF0-to-ToF1 warped image 

In the experiments, we compare the results while varying the 

threshold: 30, 50, 70, and 90. Threshold 30 would mean the margin 

for distance difference that can be accepted is 30 mm. The larger 

the difference threshold, less samples would be classified as 

erroneous samples. In addition, if the coordinate in the ToF-to-ToF 

warped image is a hole, this coordinate is regarded as erroneous 

distance region, as described in (5). Fig. 4 displays binary 

difference images with different threshold values. 

 

255,  ToF0_to_ToF1( , ) ToF1( , ) >threshold

ToF_diff ( , )                    or  ToF0_to_ToF1( , ) 0            

0,                                                        otherwise

x y x y

x y x y



 

 (5) 

 

 
                                (a)                                                     (b) 
Figure 4. Binary difference image with varying threshold: (a) Threshold: 30; (b) 
Threshold: 70 

Distance Correction Using Valid Neighbors 
After determining which regions to apply distance correction, 

3×3 filtering is applied to them. Since the image resolution is 

small, i.e., 176×144, only a small window works. We test four 

filtering methods: median, averaging, averaging without minimum 

and maximum, selection of sample with maximum amplitude. 

When capturing using the ToF camera, amplitude image is 

available as well. Hence, we explored the relativity in respect to 

T0

C0

T1

C1 C2
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the distance image. Higher amplitude can mean higher reflectivity 

within the surface, i.e., more reliable distance sensing. Fig. 5 

shows an example of 3×3 patch in the distance image and its 

collocated patch in the amplitude image.  

Neighbor samples that are classified as erroneous samples are 

disregarded in the filtering process. In other words, erroneous 

samples are affected by reliable samples only. If reliable samples 

does not exist among the neighbor samples, the center sample 

cannot be modified. Thus, iterative execution is followed. Once the 

erroneous sample is modified, it is classified as a reliable sample 

and this is reflected in the following iteration. 

 

 

 
                           (a)                                                           (b)            
Figure 5. 3×3 patch in the distance image and its collocated patch in the 
amplitude image: (a) Distance; (b) Amplitude 

In Fig. 5, the center sample with distance value 1598 needs to 

be modified. Although it is not shown, neighbor sample 1805 is 

classified as erroneous; thus, this value does not influence the 

outcome.  

1) Median: median{1409, 1771, 1427, 1589, 1464, 1640, 

1597} = 1589 

2) Averaging: avg{1409, 1771, 1427, 1589, 1464, 1640, 

1597} = 1557 

3) Averaging without minimum and maximum: avg{1427, 

1589, 1464, 1640, 1597} = 1543 

4) Maximum amplitude: Neighbor sample of distance 1771 

possesses the largest amplitude (99).  

 

Experiment Results 
We conducted experiments on four test images with flat 

background. The arranged camera setup is covered in Section 4.1. 

Since the proposed method relies on ToF camera setup, public 

dataset images were not used. Background subtraction and color 

correction were applied to color images prior to depth map 

generation process. Fig. 6 represents the test images captured by 

color and ToF test images.  

 

 
(a)     

 
(b) 

 
(c) 

 
(d)            

Figure 6. Four test images captured by color and ToF cameras: (a) Image 1; 
(b) Image 2; (c) Image 3; (d) Image 4 

The acquired depth maps are used to warp the source color 

view to the adjacent target color view. The color image captured at 

the target view is used as an anchor for PSNR calculation. In real 

applications, color views would be warped to arbitrary viewpoints. 

Holes exist in the warped color image since the result depth maps 

are not ground truth data. Thus, image in-painting was employed to 

fill such holes. Table 1, Table 2, Table 3, and Table 4 list the 

comparison of captured C2 and virtual C2. This is for the 

evaluation of generated D1 while varying the difference threshold. 

PSNR values are calculated on foreground values only, discarding 

background. Fig. 8 represent the depth map and virtual color image 

results for Image 4.  
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Table 1: Comparison of captured C2 and virtual C2, difference threshold: 90 

 
Original ToF Median Average 

Average w/o 

min, max 
Max amplitude 

PSNR Holes PSNR Holes PSNR Holes PSNR Holes PSNR Holes 

Image 1 25.11 3064 
26.50 1605 26.45 1602 26.52 1578 26.66 1621 

Image 2 22.27 2686 
25.04 1110 25.11 1313 25.15 1315 25.07 1213 

Image 3 17.94 2476 
18.67 946 18.73 956 18.71 979 18.89 1258 

Image 4 19.00 1385 
20.83 689 21.01 691 20.99 701 21.09 839 

Average 21.08 2403 
22.76 1088 22.83 1141 22.84 1143 22.93 1233 

Table 2: Comparison of captured C2 and virtual C2, difference threshold: 70 

 

 
Median Average 

Average w/o min, 

max 
Max amplitude 

PSNR Holes PSNR Holes PSNR Holes PSNR Holes 

Image 1 26.50 1605 26.45 1602 26.52 1578 26.66 1621 

Image 2 25.04 1110 25.11 1313 25.15 1315 25.07 1213 

Image 3 18.67 946 18.73 956 18.71 979 18.89 1258 

Image 4 20.83 689 21.01 691 20.99 701 21.09 839 

Average 22.76 1088 22.83 1141 22.84 1143 22.93 1233 

 

Table 3: Comparison of captured C2 and virtual C2, difference threshold: 50 

 

 
Median Average 

Average w/o min, 

max 
Max amplitude 

PSNR Holes PSNR Holes PSNR Holes PSNR Holes 

Image 1 26.51 1607 26.46 1612 26.61 1615 26.63 1807 

Image 2 25.01 1089 25.04 1307 25.08 1301 25.1 1198 

Image 3 18.60 924 18.74 912 18.71 900 18.97 1253 

Image 4 20.84 689 21.05 695 21.00 682 21.24 841 

Average 22.74 1077 22.82 1132 22.85 1124.5 22.99 1275 

 

Table 4: Comparison of captured C2 and virtual C2, difference threshold: 30 

 

 
Median Average 

Average w/o min, 

max 
Max amplitude 

PSNR Holes PSNR Holes PSNR Holes PSNR Holes 

Image 1 26.55 1512 26.55 1622 26.6 1659 26.81 1859 

Image 2 25.02 1042 25.04 1299 25.10 1268 25.22 1199 

Image 3 18.58 990 18.75 945 18.73 1003 19.08 1270 

Image 4 20.89 725 21.05 689 21.02 678 21.3 856 

Average 22.76 1067 22.85 1139 22.86 1152 23.10 1296 
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(a) 

 
(b) 

 
(c) 

 
(d)            

Figure 7. Depth map results and virtual warped color images for Image 4: (a) 
Using original ToF; (b) Using median filter; (c) Using averaging; (d) Using 
averaging without minimum and maximum 

In terms of PSNR and number of holes, averaging without 

minimum and maximum method showed the best result as the 

distance modification method. In addition, we concluded 

difference threshold 50 is the optimum choice. While median and 

averaging methods still produced reliable results, maximum 

amplitude selection method was not sufficient. Compared to the 

case when using the original ToF, the proposed method led to 

enhanced synthetic images. Fig. 8, Fig. 9, and Fig. 10 demonstrate 

the depth map and warped color image results for Image 1, Image 

2, and Image 3, respectively. 

 

Conclusion 
In this paper, we devised a method that reduces distance 

errors in ToF images. The target errors are exhibited at boundaries 

and surfaces that are not capable of reflecting the infrared ray. For 

the proposed method, at least two ToF cameras are required in the 

camera setup. ToF distance error region is estimated by comparing 

the captured ToF image with a warped image from the neighboring 

ToF camera. The distance values in the error region are replaced. 

A number of methods were examined to select the optimum 

replacement value. Averaging without minimum and maximum 

method showed the best performance. After distance error 

reduction, this method is inserted into the aforementioned depth 

map generation framework. The performance was analyzed by 

evaluating synthetic images, which are generated by the depth map 

results. In regards to the distance modification method, averaging 

without minimum and maximum method showed the best result. 

 

 

(a) 

 
(b)            

Figure 8. Depth map results and virtual warped color images for Image 1: (a) 
Using original ToF; (b) Using proposed method 

 
(a) 

 
(b)            

Figure 9. Depth map results and virtual warped color images for Image 2: (a) 
Using original ToF; (b) Using proposed method 

 
(a) 

 
(b)            

Figure 10. Depth map results and virtual warped color images for Image 3: (a) 
Using original ToF; (b) Using proposed method 
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