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Abstract 

Over the years, the problem of simultaneous localization and 

mapping have been substantially studied. Effective and robust 

techniques have been developed for mapping and localizing in an 

unknown environment in real-time. However, the bulk of the work 

presumes that the environment under observation is composed of 

static objects. In this study, we propose an approach aimed at 

localizing and mapping an environment irrespective of the motion 

of the objects in the scene. A hard threshold based Iterative Closest 

Point algorithm is used to compute transformations between point 

clouds that are obtained from dense stereo matching. The dynamic 

entities along with system noise are identified and isolated in the 

form of outliers of the data correspondence step. A confidence 

metric is defined that helps in identifying and transitioning a 3D 

point from static to dynamic and vice versa. The results are then 

verified in a 2D domain with the aid of a modified Gaussian 

Mixture Model based motion estimation. The dynamic objects are 

segmented in 3D and 2D domains for any possible analysis and 

decision making. The results demonstrate that the proposed 

approach effectively eliminates noise and isolates the dynamic 

objects during the mapping of the environment. 

Introduction  
In recent years, the approaches pertaining to Visual 

Simultaneous Localization and Mapping (SLAM) have been 

developed significantly; although it is a relatively new field. The 

research in this field was significantly aided by the release of 

Microsoft Kinect RGB-D (Red, Green, Blue, and Depth) camera. 

This field has proved to be of great interest to research and 

business minds alike, due to its impact applications. The state of 

the art methods are now capable of running the application in real 

time with robust performance. However, much improvement needs 

to be done towards handling problems such as expanded spatial 

volume with loop closure [1], dense mapping [2], and managing 

dynamic objects in a scene [3]. 

A variety of SLAM implementations exist. Each 

implementation may adopt a different type of sensor or 

methodology. A typical SLAM approach relies on the Iterative 

Closest Point (ICP) for registration of point clouds, and loop 

closing techniques for drift compensation [4]. Apart from RGB-D 

sensors, simple time-of-flight (TOF), monocular and stereo 

cameras can also be used for obtaining point clouds. Each of these 

sensors has its own advantages, coupled with inherent data 

processing challenges. 

Until recently the core assumption for SLAM has been that 

the environment under observation is static, i.e. none of the 

observable objects in scene propose any change in their dynamics 

or shape.  

As a result, this assumption leads to inconsistent map, 

erroneous localization, residual noise and possible failure in 

registration, when the environment is dynamic. Nevertheless, a few 

studies have successfully dealt with dynamic objects in the scene. 

Many of these studies use Kinect to obtain the depth maps [5].  

Typically, dynamic objects in a scene can be detected and 

isolated for SLAM using CAD models or other form of prior 

knowledge with the use of commercial RGB-D sensors. However, 

such an approach limits the applications of the system. In this 

study, we demonstrate the application with a stereo camera for 

localizing and mapping an active dynamic environment without 

any prior knowledge about the dynamics in the scene. 

Related Work  
Davison et al. [6] introduced a real-time camera tracking 

system known as monoSLAM (monocular Simultaneously 

Localization and Mapping) to localize and map a freshly explored 

environment. It uses an extended Kalman filter (EKF) to estimate 

the camera pose. Later, in [7], Newcombe and Davison adopted 

structure from motion (SFM) to find the ego-motion and 

reconstructed a detailed model of the environment. Along with the 

prior mentioned studies, the approaches presented in [8], [9] and 

[10] maintain the assumption that the underlying environment is 

stationary and suggests to discard the dynamic element points by 

considering them outliers to the systems.  

Nonetheless, the research for developing SLAM algorithms in 

a static environment has matured considerably. Hence, many 

researchers are now focused on implementing SLAM in a dynamic 

environment. In [11] Andrade-cetto et al. used a stereo camera to 

build a map for mobile robot localization. It uses strength 

augmentation of features and robot localization to learn in a 

moderately dynamic indoor environment. The landmarks used for 

mapping are low (approx. 50) and provide little information about 

the nature of the environment. In an attempt to capture more 

information about the dynamic object, Aguiar et al. [12] suggested 

a multi-view camera approach. This technique utilizes eight 

cameras to track a person and reconstruct a spatio-temporally 

consistent shape, texture, and motion of the performer at a high 

quality. Through a different approach, Zollhofer et al. [13] 

proposed to reconstruct a non-rigid body in real time with a single 

RGB-D camera. The non-rigid registration of RGB-D data to the 

template is performed using an extended non-linear As Rigid As 

Possible (ARAP) framework by implementing on an efficient GPU 

pipeline. Unfortunately, like many other implementations, [12] and 

[13] require an initial static model/template of the body that is later 

tracked and reconstructed. The template is then deformed over 

time based on the rigid registration and non-rigid fitting of points. 

However, the limiting factor is that the spatial extent of the scene 

is limited to a single object of interest.  Additionally, the system 

may fail at registration and tracking in case of occlusion, sparse or 

noisy data.  

The aforementioned limitations were successfully removed by 

Keller et al. [14]. The authors proposed a Point-Based Fusion 

approach to reconstruct a dynamic scene in real-time using 

Kinect/PMD Camboard. The approach considers outliers from ICP 
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as possible dynamic points and assigns a confidence value which 

later determines if the point is static or dynamic. The dynamic 

points are used as seeds for region growing method in order to 

segment the entire dynamic object in its corresponding depth map. 

The implementation proves to work effectively as it can 

reconstruct both static and dynamic scenes at a considerably good 

quality. Unlike the previous methods, it can map a comparatively 

larger spatial area and has been tested in an indoor environment. 

However, the use of these commercial RGB-D cameras is only 

suitable for the indoor environment, and it is very difficult to 

obtain meaningful data even with Kinect V2 in an outdoor 

environment. The maximum range of depth camera in Kinect V2 

diminishes to 1.9m under the most favourable conditions with only 

two-thirds of the data being reasonably accurate [15]. In the 

presence of direct sunlight, the operation range falls below 0.8m 

[15]. The stated figures were obtained empirically with the data 

being processed and effectively denoised for better operation [15]. 

System Overview  
An overview of the proposed approach is shown in Figure 1 

in the form of a flowchart. The process pipeline takes in stereo 

images to compute the disparity maps and reconstruct 3D points 

after preprocessing. A six degree of-freedom (6DoF) pose of 

camera is computed for consecutive steps using the ICP in order to 

transform the 3D points from camera coordinates to a global map 

based in the global coordinate system. The outliers of the data 

association are not discarded. Instead, the outliers are used to 

understand the dynamics of the objects in the environment under 

observation. A Gaussian Mixture Model (GMM) based motion 

estimation method is used to corroborate the results obtained for 

the dynamic environment. The input data to GMM is preprocessed 

to extend its validity to moving sensor applications. 

 

 
Figure 1.  System pipeline 

Approach 
Preprocessing 

The stereo pair obtained for a scene is used to compute 

disparity estimates after rectification of the images. We employe 

the approach of dense disparity computation compared to sparse 

feature matching. Though feature matching based approaches can 

provide more consistent and accurate depth estimates, for pose 

estimation based on ICP and applications like 3D reconstruction, 

dense disparity estimate prove more useful. The disparity maps 

were computed using the Semi-Global algorithm as it offers a good 

compromise between computational speed and global optimality. 

Each pixel position (𝑥, 𝑦)𝑇 ∈ 𝑅2 has its computed disparity 𝐷𝑖 ∈
𝑅. The disparity maps are obtained for both the images and a 

consistency check is performed from one camera to the other in 

order to remove false disparities. The 3D positions of the valid 

disparity points are recovered in the form of dense points clouds. 

However, to ease the computation and memory complexities for 

SLAM, the point clouds are uniformly downsampled using a grid 

filter. Each individual point cloud  𝑃𝑡𝐶𝑡 has the associated 

description of each point i.e. Location (𝑋𝑘, 𝑌𝑘, 𝑍𝑘), Color 

(𝑅𝑘, 𝐺𝑘, 𝐵𝑘) and Normal vectors to the plane (𝑁𝑥𝑘,𝑁𝑦𝑘, 𝑁𝑧𝑘) 

stored along with it. 

 

Data Association and Pose Estimation 
The data association and pose estimation are the constituent 

steps of point cloud registration. During the registration step, the 

points from  𝑃𝑡𝐶𝑡 are searched for correspondence with points 

from  𝑃𝑡𝐶𝑡−1.The algorithm Iterative Closest Point (ICP) is used to 

select the optimum points by iteratively minimizing the error 

metric  𝑒𝑖 given in equation (1). 

 

𝑒𝑖 = ∑ 𝑑𝑠
2(𝑇𝑖𝑝𝑘 ,  𝑆𝑗

𝑘)𝑁
𝑖=1      (1) 

where 𝑑𝑠 is the signed distance from a point to the plane, 𝑇𝑖 is 

the transformation computed in the iteration i of the error 

minimization process, 𝑝𝑘 are points from  𝑃𝑡𝐶𝑡 and 𝑆𝑗 depicts the 

tangent plane of at point 𝑞𝑗 for the points in  𝑃𝑡𝐶𝑡−1.The 

transformation matrix 𝑇𝑡 depicts the 6DOF camera pose change 

between the time t and t-1, where 𝑇𝑡 is composed of a rotational 

matrix 𝑅𝑡  ∈ 𝑅3 and translational vector 𝑡𝑟𝑡 ∈ 𝑅3.The 3D points 

and the associated normal are converted to global coordinate using 

the transformation matrix. 

Generally, a percentage of closest points are selected as inliers 

for minimizing the error metric and computation of camera pose. 

However, we adopted a hard threshold based approach that filters 

the nearest points selected in each iteration, thereby removing most 

of the wrong correspondences (outliers) from the process that are 

present either due to noise (erroneous depth estimation, different 

sampling of an entity or motion of the objects. The points that help 

to obtain the correct transformation during the iterative process are 

known as the inliers. 

Once spatially transformed, the new point cloud is merged 

with the global cloud or the 3D map. The global cloud in our work 

stores additional two descriptions for each 3D point in addition to 

the original three properties of a point in a point cloud. A 

confidence metric  𝐶𝑘 and frame presence  𝐹𝑘 is defined for each 

3D point. The confidence 𝐶𝑘 of a point informs us about the 

integrity of the point for being static and valid while the frame 

presence  𝐹𝑘 stores the information about first time the point was 

introduced to the system. 
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Merging and Confidence Gain 
The addition of new points in each iteration adds a significant 

amount of computational complexity and memory load on the 

processing pipeline. Therefore, it is advisable to remove any 

redundant or erroneous 3D points from the global map. Merging of 

points serve as one of the two steps that help in reducing the 

number of points in the global map. A point qn in 𝑃𝑡𝐶𝑡 may find 

multiple valid inlier correspondences in  𝑃𝑡𝐶𝑡−1 during the 

transformation computation, however, only the closest single point 

pn is merged physically after registering of the point clouds. The 

physical properties (location, color and normal vectors) are 

averaged to create a new point, which helps to remove the 

redundant duplicate. The confidences of both pn and qn are 

summed and increased by a constant (0.1 for our experimentation). 

The frame presence 𝐹𝑘 is incremented once for all the inliers, to 

signify that it has been observed in the scene. In contrast the 

remaining valid associations (among the inliers) of qn are not 

merged physically but added with the original properties to the 

global map since they might represent a different view of the same 

object. However, the confidence of these points is merged with qn 

and raised through a gaussian distribution as shown in Figure 2. 

The maximum confidence is set equal to the constant 0.1 for the 

closest points. The further the points are from each other, the lower 

confidence it gains. The standard deviation of the gaussian 

distribution is set to be half of the correspondence threshold used 

during ICP.  

 
Figure 2. Gaussian distribution based confidence assignment at thresh=0.05 

Confidence Reduction and Removal 
Confidence gain during merging of the points helped to 

determine the stability of points in the map. The higher the 

confidence, the more stable and static the point has been in the 

scene. However, the reverse is equally important in order to 

accurately update the global map. If a stationary object in the scene 

starts to move, the associated 3D points should logically change its 

position in the global map. The dynamic nature of the points is 

obtained by continuously reducing the confidence of all the points 

by a constant (1/10 of the confidence gain in this study) that are in 

view of the camera and therefore expected to be seen. 

The 3D points from the global map are projected to the image 

plane using the camera intrinsics K and the inverse of global 

camera pose 𝑇𝑔 𝑡
−1 at time t. The points that are projected within the 

bounds of the plane are assumed to be in the camera perspective 

and, therefore, reduced in confidence. Among these points, those 

that have been associated with other points would still have a 

positive confidence change, however, the points that did not find 

any association would only be reduced in confidence. If the 

confidence of a point falls below 1, it is assumed to be unstable or 

dynamic. 

In order to maintain and update the map, unstable points 

representing noise and dynamic 3D points are removed in each 

timestamp. For this study, the maximum confidence that a point 

can acquire is 1.25 which was selected empirically while keeping 

into consideration the confidence gain and reduction values. The 

global map is searched for these unstable points that have remained 

unstable for more than a threshold time tmax and are removed from 

the map.  

 
(a) 

 
(b) 

Figure 3.  Projection of points to image plane for confidence reduction (a) 
illustration of the camera viewing the global cloud (b) projected points onto the 
image plane from the perspective view 

Dynamic Estimation 
The Global Cloud is composed of both static and 

unstable/dynamic points. The static points have high confidence 

measure that is obtained through the continuous merging of points 

from close timestamps. The unstable noise or points from a 

dynamic object are observe at different position and with less 

consistency, hence, they do not accumulate enough confidence. It 

is essential to discriminate the unstable points due to point cloud 

reconstruction inaccuracy or slightly off localization and the points 

pertaining to true dynamic entities. 

For an image frame at time t, the low confidence points from 

the global point cloud are projected on to the image using the 

accumulated transformations 𝑇𝑔 𝑡
−1 computed during the 

registration. The points that lie within the bounds of the image 

plane are indexed and clustered in 3D space based on their 

distances. For each frame at time t multiple k clusters 𝐶𝑡 𝑘 might 
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be created. Clusters with fewer points than a threshold are 

removed. This threshold may vary depending on the 

downsampling of the original point clouds. A 2D mask is 

generated from the boundaries of the projected clusters on the 

image plane. This mask may contain the bounds of both dynamic 

points and the unstable noise. In order to discriminate between the 

two, another verification step is included in the process. 

A GMM based motion detection approach [16] is adopted to 

highlight moving objects in the scene. GMM is a background 

modelling technique that is trained on images to learn the 

background model at pixel level and describe each pixel with K 

gaussian distributions. The approach detects any moving object 

that does not fit the model’s description in the form of foreground. 

However, a limitation exists to the direct application of GMM. The 

approach is only applicable for static camera systems. In this study, 

we extended the use of GMM with specific preprocessing steps. 

With a moving camera, the background changes frequently, 

therefore, the model is continuously trained with few images as 

function of displacement. For this study we used 3 to 10 images 

based on the displacement from current scene. Moreover, the 

training images are geometrically transformed to the current frame 

by tracking salient features in the images in order to maintain the 

assumption of static camera for GMM application. The approach 

provides a clean highlight of the moving objects for small 

translation between consecutive images. The mask obtained using 

motion detection with GMM is used as seed to select the blobs 

from the first mask obtained by the projection of the clustered 3D 

points. The verified clusters are used for segmentation of the 

moving object from the images as shown in Figure 4. 

 

  
(a)       (b) 

 
(c) 

Figure 4.  Segmentation of the dynamic object using binary masks (a) Mask 

obtained by projecting the clustered 3D dynamic points onto image plane (b) 
Masked obtained using GMM based motion detection(c) Segmented dynamic 
object from 2D images 

Experimental Results 
This section provides an overview of the experimentation 

setup adopted for this study and analysis the results obtained using 

the proposed approach. 

In this study, the data was recorded using a commercial stereo 

camera Zed [17]. The stereo camera follows the Pinhole camera 

model with a baseline of 12cm between the camera pair. The 

standard specifications of the camera quote to work both indoor 

and outdoor with an effective range of 0.5 to 20 meters [17]. 

However, the accuracy of depth estimation decreases with 

distance, therefore, we limited our interest to 6.5–7.5 meters during 

outdoor usage for more consistent and accurate data. The Zed 

camera was calibrated using the calibration approach provided by 

Computer Vision System Toolbox™, which is based on the work 

of Jean-Yves Bouguet [18]. 

The system is tested on various test scenes of varying 

dynamic nature to better comprehend the performance of the 

approach. The scene shown in Figure 5 demonstrates the ability of 

the system to incorporate dynamic objects in the environment. The 

scene was recorded at 30fps with the camera being fixed in the 

environment. The 1st Column of images show the excerpt from the 

videos sequence; the seconds column shows the updated map/ 

global cloud and the last column shows the objects segmented 

objects when in dynamic state. The dynamic points from the 

moving object are successfully incorporated as part of the map and 

then effectively updated during the motion. 

 
Figure 5.  Test sequence with stationary camera 

The second indoor scene shown in Figure 6 records a dynamic 

environment where camera motion is introduced as an additional 

challenge. The test sequence updates the map while the person 

passes by in the corridor. The segmentation step not only 

accurately segments the dynamic object in the middle of the scene 

but also at the far end of the corridor where most of points are 

unreliable. 

The test sequence shown in Figure 7 was recorded in an 

outdoor environment over a longer time. The scene was recorded 

on a cloudy winter day. In order to test the robustness of the 

approach, the video was acquired using a hand-held Zed camera at 

10 fps, and as a result, the scene includes sudden erratic motion. It 

can be observed that the moving objects in the scene are 

highlighted in the global map and effectively removed once they 

pass from the scene, however, the static objects such as the tree is 

retained in the map even though they are exposed for 

approximately the same period. 
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Figure 6. Indoor test sequence with moving camera

 
 

  

  

Figure 7.  Excerpts from outdoor test sequence with dynamic objects and 
moving camera 

Conclusion 
We proposed a scheme to discriminate active dynamic objects 

present in an environment while localizing and mapping the scene 

using a stereo camera. The approach is tested on datasets 

composed of both indoor and outdoor test scenes recorded at 

various acquisition rates and external challenges such as erratic 

camera motion, less distinct geometrical structures, and low 

illumination. The system effectively localizes the observer in the 

dynamic environment and builds a map irrespective of the relation 

of motion of camera to the motion of objects in the observed 

environment. The moving objects are successfully segmented in 

both the 2D and 3D domains for further extensive analysis. 
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