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Abstract 

3D scene reconstruction using RGB-D camera-based 

Simultaneous Localization and Mapping (SLAM) is constantly 

studied today. KinectFusion, GPU-based real-time 3D scene 

reconstruction framework, is mainly used for many other 

algorithms of RGB-D SLAM. One of the main limitation of 

KinectFusion depends only on geometric information in the 

camera pose estimation process. In this paper, we utilize both 

geometric and photometric information for point cloud alignment. 

To extract photometric information in color image, we combine 

local and global optical flow method, such as Lucas-Kanade and 

Horn-Schunck, respectively, and make not only dense but also 

robust to noise flow field. In experimental results, we show that 

our method can use dense and accurate photometric information. 

Keywords: Simultaneous localization and mapping, Iterative 

closest point, Data association, Optical flow, Lucas-Kanade, Horn-

Schunck 

1. Introduction  
As we can utilize in Augmented Reality, Virtual Reality, and 

Robotics, 3D object and scene reconstruction techniques are 

studied continuously. 3D reconstruction is mainly divided two 

kinds – sparse reconstruction based on feature points, such as 

Structure from Motion, and dense reconstruction based on depth 

information, such as Multi-View Stereo. And we can also divide 

this area in detail based on the objective of reconstruction. 

Simultaneous Localization and Mapping (SLAM), one of the 3D 

scene reconstruction technique, can make a 3D scene and localize 

the position of robot/camera using over hundreds of image frames. 

KinectFusion [1] is one of the most commonly used real-time 

3D dense reconstruction technique. The main advantage of 

KinectFusion is that we can utilize depth map captured by 

Microsoft Kinect, instead of computing specific feature point 

extraction algorithms in color image. Thus, KinectFusion can make 

more accurate 3D models than any other SLAM algorithms. In 

KinectFusion, they use Iterative Closest Point (ICP) method to 

compute 6 DoF camera pose, find the correspondences between 

two sequential image frames and remove outliers. 

In data association process, however, KinectFusion depends 

only on geometric information to compute transformation matrix. 

Recently, many types of research start to utilize not only geometric 

but also photometric information. Shin and Ho [7] uses the feature 

of an image based on the SIFT feature extractor to utilize the 

photometric information. In this method, they gained the weight 

based on the feature point to get a more accurate registration result, 

and they show the proposed method decreases the absolute 

trajectory error and reduces the object drift problem in the 

reconstructed 3D object model. Like this method, if we make use 

of the photometric information, we can make more accurate 

registration result. 

Peasley and Birchfield [5] proposed Lucas-Kanade-based data 

association method. In this method, they made use of the local 

optical flow method to compute the photometric information. 

Using the Lucas-Kanade, they compute the local flow field robust 

to noise and utilize a data association process. Unlike this, Horn-

Schunck, global optical flow method, can make denser flow field 

than the Lucas-Kanade optical flow [2]. 

In this paper, we propose a novel data association method 

using the combination of local and global optical flow to improve 

conventional Lucas-Kanade data association. Our proposed 

method mainly follows the method proposed by Peasley and 

Birchfield [5]. In Section 2, we introduce conventional projective 

data association and Lucas-Kanade data association methods and 

then propose our improved method in Section 3. Based on our 

method, we show our experimental results in Section 4. 

2. Data association 
Basically, ICP algorithm proceeds as the flowchart of Figure. 

1. Data association includes point selection, matching, and 

weighting processes, while alignment includes rejection, error 

metric, and minimize processes. This Section introduces each 

process of projective data association and Lucas-Kanade data 

association, and compare them. 

 

 

Figure 1. Flowchart of the general iterative closest point algorithm 
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2.1 Projective data association (PDA) 
To perform the data association, we first determine which 

points from the two clouds to use. In KinectFusion, we use all of 

the points to perform the dense reconstruction. Two point clouds 

are used in point matching process to compute the correspondence 

between the points in the two clouds. First, we project the points in 

point cloud P onto the camera. Then we can compute projection 

line and find the closest point in point cloud Q using projection 

line. The normal of each closest points are used in point-to-plane 

error metric process. In point matching process, we can get a 

transformation matrix. 
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This transformation is 4 x 4 matrix consists of the rotation 

matrix (R) and the translation vector (t), where 03 is 3 x 1 vector of 

all zeros. After point matching, generally, the weighting process is 

required. In KinectFusion, however, there is no weighting process 

for the data association. 

The next process removes an outlier. In KinectFusion, we 

check following two conditions to find the outlier in every 

corresponding pair, 
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where 𝑝̂𝑖 = [𝐼3|03]𝑇𝑝𝑖 is a 3 x 1 vector, 𝐼3 is the 3 x 3 identity 

matrix,  𝑝𝑖 = [𝑝𝑖
𝑇 1]𝑇  and 𝑞̃𝑖 = [𝑞𝑖

𝑇 1]𝑇  are the homogeneous 

coordinates of the points, and 𝜏𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  and 𝜏𝑎𝑛𝑔𝑙𝑒 are a predefined 

distance and angle threshold, respectively. 

After the rejection process, we compute error metric using the 

sum of the Euclidean distance between corresponding points. 

There are two types of error metric methods: point-to-point and 

point-to-plane method. We use point-to-plane error metric method 

in KinectFusion. After that, we perform least square optimization 

process, then repeat every ICP process iteratively until we align 

two point clouds. 

 

 

Figure 2. Computing correspondences between two point clouds P and Q. 

2.2 Lucas-Kanade data association (LKDA) 
Peasley and Birchfield [5] use local optical flow method to 

use both geometric and photometric information to compute 

relative transformation. Unlike PDA, which performs entire 

process iteratively, LKDA method finishes data association 

process first using Lucas-Kanade optical flow, then perform the 

alignment process iteratively. 

In the point matching, LKDA uses two positions of RGB 

cameras. Figure. 2 shows the point matching process in LKDA. To 

match two point clouds P and Q, we first project pi in point cloud 

P to first camera CP. Second, projected points are warped to 

second camera CQ using specific warping function based on Lucas-

Kanade optical flow. Third, we compute projection line from CQ, 

then find nearest projection point qi in point cloud Q. We can 

represent this process to function below, 
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where 𝜉 = [𝑟𝑥𝑥 𝑟𝑥𝑦 𝑟𝑦𝑥 𝑟𝑦𝑦 𝑎𝑥 𝑎𝑦]  is a warping 

parameter consists of projective warp parameters (r) and affine 

warp parameters (a). And W is a warping function. 
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In the rejection process, we have to consider not only distance 

and angle, but we also consider color similarities between two 

correspondence points. Color similarity check is performed using 

the predefined color threshold 𝜏𝑐𝑜𝑙𝑜𝑟. 
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Figure 3. Comparison between Lucas-Kanade (Bottom-left) and Horn-

Schunck (Bottom-right) optical flow result using two sequential frames. 
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3. Proposed method 
Bruhn, et. al. [3] proposed an improved method that combines 

the advantage of local optical flow, robust to noise, and global 

optical flow, generating dense flow field. In this paper, they 

combined two optical methods, Lucas-Kanade and Horn-Schunck. 

Unlike the Lucas-Kanade, Horn-Schunck method makes an 

optical flow field throughout the entire pixel of the image. This 

method can generate denser flow field than Lucas-Kanade method, 

but it spends more time to compute flow field. Figure. 3 shows the 

comparison between the results of Lucas-Kanade and Horn-

Schunck. The Horn-Schunck method can represent the following 

function. 
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where |∇𝑤|2 = |∇𝑢|2 + |∇𝑣|2. The purpose of Horn-Schunck 

is to minimize functional, while Lucas-Kanade minimizes 

quadratic form. 

In this paper, we combined Lucas-Kanade and Horn-Schunck 

to match two point clouds. We modified Horn-Schunck function to 

replace the first term to Lucas-Kanade function as represented in (4) 

based on the method proposed by Bruhn, et. al. [3]. Our proposed 

function as follows. 
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Like a Horn-Schunck, the main objective of (8) is to minimize 

the functional. So minimizing (8) satisfies following two Euler-

Lagrange equations. 
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where ∆=
∂2

∂𝑥2
+

∂2

𝜕𝑦2
  is the Laplacian operator. (9) and (10) is 

based on a warping function (5) and warping parameter that used 

in LKDA. Weighting parameter 𝛼 is user-defined. Figure. 4 shows 

a result of 2-dimensional combining local and global optical flow 

method. In this figure, an input image is degraded by Gaussian 

noise, as shown in the top-right of Fig. 4. 

Figure. 5 shows an entire process of our proposed method. 

Typical ICP algorithm based on the PDA performs all processes 

iteratively by selecting and matching point to removing outliers 

and minimizing the point-to-plane error metrics. But the LKDA-

based algorithm finds a rotation and affine warping parameters 

first based on the optical flow result and the photometric warping 

function, as shown in Eq. (5), then compute a correspondence map 

for the point matching process using a warping parameter. Based 

on a matching result, outlier rejection and error metric 

minimization processes are performed iteratively. 

To perform the proposed method, warping parameter should 

have computed first. Unlike [5], which computes the warping 

parameter based on the Lucas-Kanade optical flow only, our 

method combines the Lucas-Kanade optical flow to the Horn-

Schunck, one of the global optical flow method, to compute the 

warping parameter. Equation (9) and (10) show final equations. 

That is, we should make the difference between the Laplacian of 

an optical flow of x-axis and y-axis directions and the warping 

function approximately 0. So we first calculate the Laplacian of an 

optical flow, then adjust parameter values to minimize the 

difference. In this paper, we applied [9] to perform our method. 

 

 

Figure 4. 10 frames of an input image (Top-left), degraded by Gaussian noise 

with 𝜎𝑛 = 20 (Top-right), ground truth (Bottom-left), and the result of a 

combining local and global optical flow method (Bottom-right). 

 

Figure 5. Flowchart of our proposed data association method 

IS&T International Symposium on Electronic Imaging 2018
Image Processing: Algorithms and Systems XVI 462-3



 

 

The main objective of an optimal warping parameter is to 

minimize the difference between warped input image based on the 

warping function and the target image. If not, we compute the 

variation of the warping parameter ∆𝑝 using Eq. (11) to update the 

warping parameter. In Eq. (11), H represents the Hessian matrix, 

based on the gradient of an input image and the Jacobian of the 

warping function, as shown in Eq. (12). After calculating the value 

of ∆𝑝, we update the warping parameter, warp the input image 

again, and compare it to the target image. This process is 

performed iteratively. 
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Once the optimal warping parameter was found, we compute 

the correspondence map based on the warping parameter. In this 

process, unlike the PDA-based ICP algorithm, we have already 

found the optimal warping parameter, so we don’t need to update 

the correspondence map iteratively. That is, we can proceed the 

point matching process only once. 

After the data association, an iterative alignment process is 

required. In this process, similar to previous methods, we remove 

outliers and minimize the error metric. Previous PDA-based ICP 

algorithm compares geometric thresholds, such as distance and 

angle threshold value, to remove outliers. But the proposed method 

should compare not only geometric thresholds but we also 

compare the color threshold, because it uses both geometric and 

photometric information. Therefore, like an LKDA-based method, 

we should check three inequalities, as shown in Eq. (2), (3), and 

(6). If one of three inequalities is satisfied, the pair of two points is 

regarded as an outlier and remove it. 

 

 

Figure 6. Point-to-plane error between two surfaces. 

The remaining process is error metric minimization. Like the 

KinectFusion, our method applies the linear least-square 

optimization method to minimize the point-to-plane error metric 

[4]. Figure 6 briefly shows a point-to-plane error between two 

surfaces. Our method performs the alignment process iteratively 

based on the result of a point matching. Algorithm 1 shows the 

pseudo code of an entire proposed iterative closest point process, 

where Proj-1 is described in Eq. (13). 

 
Algorithm 1. Pseudo code of the proposed method 

Select all the point clouds 
// Perform the combining local and global optical flow 
initialize warping parameter 
while iteration number > 𝜏𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do 

     compute u and v 
     compute the Laplacian of u and v 
     Wx=x(rxx+1)+yrxy+ax 
     Wy=xryx+y(ryy+1)+ay 

     if ∆𝑢 =
1

𝛼
𝑊𝑥 and ∆𝑣 =

1

𝛼
𝑊𝑦 then 

break 
     else 

calculate ∆𝑝 
update warping parameter 

     end if 
end while 

// Make correspondence map 
for each pixel (x,y) in image domain do 

     Cmap(x,y) = 𝑊(𝑥, 𝑦; 𝜉) 
end for 

// Compute vertex and normal maps 
for each pixel (x,y) in the depth map do 

VP(x,y) = Proj-1(x,y,dP(x,y)) 
VQ(x,y) = Proj-1(x,y,dQ(x,y)) 
N(x,y) = normal vector of VQ(x,y) 

end for 

// Compute alignment 
while not aligned do 
     for each pixel (x,y) in depth map dP do 

p = TVP(x,y) 
q = VQ(Cmap(x,y)) 
n = N(Cmap(x,y)) 

if ‖𝑝 − 𝑞‖ > 𝜏𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 or 
‖𝑛×𝑝‖

‖𝑝‖
> 𝜏𝑎𝑛𝑔𝑙𝑒 or  

‖𝐼(𝑥, 𝑦) − 𝐽(𝑊(𝑥, 𝑦; 𝜉))‖ > 𝜏𝑐𝑜𝑙𝑜𝑟 then 

     reject the point correspondence 
end if 

end for 
T(k)
solve linear system 

Update T = T(k) T(k-1) ...T(2) T(1) 

end while 

 

4. Experimental results 
To implement the proposed method, we utilized an open 

source implementation version of the KinectFusion, called 

SLAMBench [6]. SLAMBench is implemented not only the single 

processor-based C++ language, but it also implemented by the 

parallel programming library, such as OpenMP, OpenCL, and 

CUDA. Our method modified a C++-based implementation source 

code. It is implemented the previous KinectFusion framework, so 

this code is implemented a projective data association for the 

iterative closest point. This paper sets the original SLAMBench 

implementation code as a comparison target, implements a 

combining local and global optical flow-based data association to 

the SLAMBench source code, and compares the experimental 

results. And we also implement a Lucas-Kanade data association to 
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confirm how the proposed method shows similar performance. To 

evaluate experimental results, we make use of the RGB-D SLAM 

dataset provided by the Imperial College London [10], as shown in 

Fig. 7. 

 

 

Figure 7. ICL-NUIM RGB-D SLAM datasets [10]. 

Figure 8 shows experimental results of the proposed method. 

To verify the qualitative evaluation, we use a variety of dataset 

sequences. In Fig. 8, our method shows a robust result in terms of 

the color, because our method uses both geometric and 

photometric information. Based on this, we make a 3D scene 

reconstruction result, as shown in Fig. 9, and compare the result to 

the reconstruction result of KinectFusion. As a result, our method 

makes more robust reconstruction result than the KinectFusion, 

because our method can remove the more outliers and inaccurate 

registrations based on the photometric information-based 

additional constraints. 

Table 1 shows a mean and maximum absolute trajectory error 

(ATE) of the KinectFusion, Lucas-Kanade data association, and 

proposed method. In this table, we compare quantitative results 

using four datasets. In KinectFusion, median ATE values ranged 

from 0.066 to 0.301 and maximum ATE values ranged from 0.236 

to 1.038. These error values are relatively higher than the 

photometric information-based data association method. In the 

Lucas-Kanade data association, on the other hand, median ATE 

values ranged from 0.026 to 0.214 and maximum ATE values 

ranged from 0.045 to 0.567. And a combining local and global 

optical flow-based data association shows similar quantitative 

results as the Lucas-Kanade data association. As a result, the 

proposed method can reduce the ATE compared by the 

KinectFusion. 

5. Conclusion  
In this paper, we proposed more efficient iterative closest 

point algorithm using both geometric and photometric information-

based data association method. Previous KinectFusion method 

makes use of the geometric information only in the projective data 

association method in point matching process, so it takes a lot of 

computational costs because this method should perform an entire 

iterative closest point process in each iteration. To improve this, 

Peasley and Birchfield [5] makes a correspondence map based on 

the Lucas-Kanade local optical flow, then just perform the point 

cloud alignment process iteratively. In this process, warping 

parameter is required. The warping parameter is updated iteratively 

by minimizing the difference between the optical flow value and 

the result of warping function value. In the proposed method, we 

combine the previously proposed local optical flow equation into a 

global optical flow equation called Horn-Schunck. In this way, we 

updated the warping parameters while considering the 

regularization term. 

 

 

 

Figure 8. Point cloud registration results using the proposed method and ICL-
NUIM datasets. 

Table 1. Comparison of the quantitative results 

 living 
room 0 

living 
room 1 

living 
room 2 

living 
room 3 

Frames 1510 967 882 1242 

Volume size(m3) 4.93 5.23 4.83 5.03 

Initial pose 0.3391 
0.4931 
0.3700 

0.5301 
0.3439 
0.6012 

0.3400 
0.5000 
0.2400 

0.2685 
0.5012 
0.4000 

Integration rate 1 1 1 2 

PDA 
[1] 

ATE 
(avg) 0.036 0.008 0.021 0.070 

ATE 
(max) 0.865 0.015 0.049 0.191 

LKDA 
[5] 

ATE 
(avg) 0.018 0.005 0.014 0.059 

ATE 
(max) 0.424 0.012 0.030 0.089 

Proposed 
method 

ATE 
(avg) 0.016 0.006 0.013 0.063 

ATE 
(max) 0.419 0.012 0.027 0.087 

 

IS&T International Symposium on Electronic Imaging 2018
Image Processing: Algorithms and Systems XVI 462-5



 

 

Experimental results show that our method makes a similar 

result as the previous Lucas-Kanade data association method. In 

table 1, we compare the ATE values. Our method reduces the 

mean of ATE value approximately 0.02 in average and maximum 

of ATE value approximately in half respectively compared by the 

KinectFusion. 

Our remaining issues as follow. First, the proposed method 

makes a slower result than the previous Lucas-Kanade data 

association method, because our method combines the global 

optical flow, which is slower than the local method. Therefore, 

improving the computational speed is one of the remaining issues. 

Second, our method is highly depended on a local optical flow. To 

utilize the global optical flow properly, we should adjust the 

weight of a regularization term. Third, our method just adapted the 

previous point-to-plane error metric minimization method, but 

there are several works to improve the previous method. For 

example, automatic selection of the error metric between the point-

to-point and point-to-plane way. So our method will improve the 

error metric minimization using this kind of method. 

 

 

Figure 9. 3D reconstruction result using the proposed method 
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