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Abstract
Photography is an ever-advancing technology: pixels are

getting more densely packed, colors are going deeper, and light
sensitivity is going higher. But the camera standard dynamic
range largely remains less than the full brightness range of a nat-
ural scene. In the days of film cameras people have used the multi-
exposure high dynamic range imaging to capture the full dynamic
range although only limited for static scenes. However, with dig-
ital photography, the exposure index can be spatially multiplexed
on a sensor, which adapts the essence of the multi-exposure tech-
nique for single-image high dynamic range imaging. A sophisti-
cated postprocessing is required; and existing techniques either
lose final image resolution or take a long time to run. In this pa-
per, we propose a novel method for this postprocessing: we use
a robust global optimization method and a fast edge-preserving
interpolation technique for full resolution exposure-multiplexed
high dynamic range imaging.1
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Introduction
Camera sensors can faithfully capture only a limited range

of brightness variation; this range is known as the dynamic range
(DR) of a camera. Each pixel of the sensor acts as a photon
counter; a bright scene point will send more photons than a pixel
can count effectively saturating the sensor. Measurements from
all pixels of the sensor is fed into an analog-to-digital converter
which applies an analog gain or exposure index (or film speed,
or more commonly referred to as the “ISO” [1]). The absolute
range of values faithfully captured in an exposure depends on the
shutter speed, the aperture size and the exposure index. Note that
the relative brightness ratio between the brightest and the darkest
measured pixel values remains constant, and this constant is the
DR: the ratio between the clipping “ceiling” and the noise “floor”.

High dynamic range imaging (HDRI) techniques use these
standard dynamic range (SDR) cameras and capture high dynamic
range images. The most well-known high dynamic range imaging
technique involves capturing multiple images of the same scene,
each image captured with a different camera sensor exposure set-
tings – shutter speed [2, 3], aperture [4] or exposure index [5].
This way bright areas will be captured by an image captured with
a short exposure setting while the dark areas will be captured by
another image of the sequence captured with a long exposure set-
ting. When all this captured standard dynamic range image data is
combined offline, a high dynamic range image is produced. This
method is guaranteed to produce the best high dynamic range im-

1This work is supported in part by the Institute for Computing, Infor-
mation and Cognitive Systems (ICICS) at UBC.

ages; however, there are strict limitations that have to be met for
the sake of high quality: the camera cannot move, the scene has
to be static, and the lighting conditions cannot vary between ex-
posures. If one or more of these constraints get violated, ghosting
will result when merging the image sequence into a HDR image.
A recent method [5] aims at capturing multiple very short expo-
sures in rapid succession aka “burst mode” in order to reduce the
misalignment problem but it fails to capture details in the dark re-
gions effectively. Deghosting HDR images has been extensively
explored [6], however it still remains largely an open problem. To
avoid ghosting, one can use multiple cameras sharing the same
optical axis and imaging with different exposure settings to cap-
ture the exposure sequence at once. However, this is an expen-
sive solution, this introduces additional optical components on the
light path which adds glare to the system, and this setup requires
perfect calibrations; slightest relative camera motions can result
in a misalignment which cannot be precalibrated.

Some recent image sensors as a middle path have introduced
an optional feature that allows a user to perform a resolution-DR
tradeoff; in exchange for a potential resolution loss a user can
choose to capture a wider DR in a single capture, which can be
particularly useful in situations where taking multiple exposures
is not an option. These sensors can spatially multiplex exposure
index. An exposure-multiplexed image contains more scene in-
formation compared to a uniform-exposure index capture. Pixels
that are exposed at same exposure can observe the same bright-
ness variation, while other pixels with a different exposure setting
can observe a different range of brightness values of the same
scene. Effectively, this process allows capturing “multiple” expo-
sures on a single exposure on a single sensor, each of which is
taken with a different exposure setting. This however, comes at
the cost of resolution loss. The general idea is: in the same sin-
gle exposure of an imaging sensor, different groups of pixels use
different exposure indices. While each group individually still
has the original standard dynamic range (SDR), when the data is
demultiplexed the combined image effectively has a wider DR.
First such method [7] proposed to lay spatially varying neutral-
density (ND) filters for exposure index multiplexing. However,
this is not a desirable solution since (1) once installed it cannot
be changed or adapted for scene types and (2) ND filter will ab-
sorb a large portion of the light incident on the sensor. Some
recent sensors can multiplex electronic shutter speed [8] or expo-
sure index [9] between row-pairs, i.e., rows 1,2,5,6,9, . . . can be
set up with one setting, and rows 3,4,7,8,11, . . . with the other.
Varying shutter speed has the advantage of having uniform noise
properties throughout the sensor for any one exposure, but this
also poses the risk of ghosting [8] as the slower shutter speed will
result in a larger blur in case an object moves in the scene. On
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Figure 1: The image formation model. Light from the scene gets focused onto the image sensor for acquisition. This optical data goes through a number
of transformations before converting into digital sensor data. The scene (a) is optically band-limited (b) for avoiding aliasing using a spatial low-pass
filter. Each sensor pixel can only measure in either red, or green or blue (c), as set out by the color filter array pasted on top of the image sensor. This
band-limited and color-filtered optical information then gets captured by the sensor into an array of noisy analog measurements, which is then enhanced
using per-pixel exposure index and converted to digital image data by an A2D converter. Pairs of rows alternate between a low exposure index and a high
exposure index (d). The low sensitivity pixels can capture the bright scene areas well but the dark and shaded scene areas lose detail due to noise. The
high sensitivity pixels can capture the relatively darker scene areas better, but get clipped due to saturation in bright parts of the image (e). Finally, we
solve an inverse problem and obtain a maximum-a-posteriori (MAP) estimate of the unknown band-limited latent image (b).

the other hand, modifying exposure index can vary sensor noise
properties but no temporal alignment is required since both sets
of pixels come with the same exposure begin and end times.

In this paper, we aim to recover the full resolution image
from such an exposure-multiplexed raw image. In this image re-
construction problem, depending on the choice of exposure in-
dices used in the exposure-multiplexed imaging, up to half of the
raw pixels might have no image data (Fig. 1). The reconstruction
of this missing data is an underdetermined inverse problem. This
problem has similarities to other inverse imaging problems such
as single-image super-resolution, demosaicking and inpainting, in
that the input image has missing pixels, but none of these meth-
ods would directly fit our exposure-multiplexed imaging prob-
lem. For exposure-multiplexed imaging, several methods have
looked into recovering the lost resolution: Magic Lantern an open
source community has developed tools to take advantage of the
exposure-multiplexed imaging capability on certain Canon cam-
eras [10], but they use a simple edge-guided interpolation only.
Other methods apply local statistical properties for spatial inter-
polation [11]. Instead, in this paper, we observe the similarities
between our problem and the single-image super-resolution and
we adapt [12] for our problem.

Exposure-multiplexed HDR imaging
For this work, we use exposure-multiplexed imaging [9] in

which the sensor can acquire more information on a single image
compared to a single image obtained with conventional imaging
with a uniform exposure index. Intuitively, a direct impact of the
dual exposure-index imaging is the loss of resolution: none of the
pixel sets contains the full image data for any given sensitivity set-
ting; instead complementary sets of pixels are observing possibly
complementary ranges of intensity values. We observe that this
problem is similar to a superresolution problem: the forward dual
exposure-index image formation process is similar to performing
a spatial subsampling of the HDR image for each intensity range.
This observation motivated us this research; in particular, we base
our work on recent single-image super-resolution research [12].

We derive our proposed method in the following discussion.
First we describe our optical encoding step in which we capture a
single SDR image g. The image formation model from this step
then leads to the computational decoding step in which we solve
a convex optimization problem to obtain the full resolution HDR

(a) Conventional Bayer pattern (b) exposure-index multiplexed

u

v

Figure 2: Color imaging. The photosensitive component of sensor pix-
els are fabricated with a uniform wavelength sensitivity profile. For color
imaging, a color filter array is placed on top of a sensor. Left: most
common color filter pattern is known as the Bayer pattern. Bayer pattern
repeats a 2× 2 “RGGB” pattern over the entire sensor. Right: dual
exposure-index imaging modifies the sensitivity. We show the high expo-
sure index with brighter colors. Since the Bayer pattern has a basic block
size of 2× 2, exposure index is alternated only every two rows. The pix-
els u and v denotes two neighboring pixels with the same color filter but
opposite exposure indices. Since natural images are mostly flat, it is likely
that both of these pixels receive the same incident light intensity. We use
all such {u,v} pairs to compute a polynomial estimate of the intensity-
response curve R using a robust polynomial fitting.

image f from the captured SDR image g. This inverse problem
is underdetermined, and so we obtain a maximum-a-posteriori
(MAP) estimator of the unknown HDR image of interest f . Since
MAP estimation leverages the Bayesian argument, it is crucial
to have appropriate prior models of f ; we use a combination
of two natural image priors: the first one is the sparse gradients
prior [13, 14] which models the edge sparsity in natural images,
and the second one is a novel prior we propose in this paper based
on our prior work on single-image super-resolution [12].

Forward model: image formation
The forward model describes the optical pipeline. We as-

sume that the underlying unknown HDR image f has three color
channels: RGB, and n pixels. The camera observes a SDR image
we denote by g. Since light is linear, a system of linear equa-
tions can present this transformation. For the ease of derivation,
we vectorize these images, i.e., f ∈ R3n and g ∈ Rn where n is
the number of pixels in the captured image. We model the for-
ward image formation process as a linear map from 3n real num-
bers, through the optical processes, finally transforming into the
n numbers of g.

In exposure multiplexing, the conventional imaging process
remains mostly unchanged. The only modification is how sen-
sor exposure index is set (Fig 1). We briefly describe this image
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Figure 3: Preprocessing: corrections for the nonlinear response curve
using RANSAC polynomial fitting. We initialize it the polynomial fitting
using all points. This means that a wide dispersion is allowed initially,
admitting the outliers which we subsequently reject iteratively. In each
iteration, we reduce the allowed dispersion, find the accepted points that
are within the allowed dispersion, and refit the polynomial with only these
accepted points (b). We iterate until at least 25% points are rejected (c).

formation model to introduce the notations.
Antialiasing filtering. filter is necessary to remove aliasing arti-
facts in the captured image. Most image sensors implement this
filtering by optically diffusing the incident image just before it
hits the sensor. Effectively, it is a small Gaussian blur ρ.
Color filtering. A color sensor has a red-green-blue color filter
array pasted on top. As a result, each pixel can only observe one
of the three colors. The most common pattern of these three colors
is called Bayer pattern [15] (Fig. 2a). RGB image on to the single-
channel Bayer image as M : 3n→ n which is a mostly sparse
3n×n matrix with only one 1 per row—a color channel selector.
Noise. Multiple physical and electronic processes cause the noise
in image acquisition. For SDR cameras, we can assume that the
noise is additive white Gaussian noise (AWGN), i.e., is distributed
as a zero-mean Gaussian with variance σ2: η ∼N (0,σ2).
Intensity-response. We denote the mapping from input intensity
to output readout level by R :R+→ [0,1]. This response is almost
linear. It only differs from the ideal linear response on either end
of the observable intensity range: close to 0 and 1.
Exposure index. Exposure index γ denotes by what factor the
analog electronic signal from a pixel is boosted before converting
it to digital. Exposure multiplexing needs to take into account the
basic block structure of the color filter array (Fig. 2b).
Sensor saturation. Sensor pixel electronics have a physical ca-
pacity that limits the maximum brightness a sensor pixel can ob-
serve. Beyond this level the brightness signal gets clipped at that
maximum. W.l.o.g., we set this highest value to 1. Then sensor
clipping is simply an operator min(1, ·).
The forward image formation process is therefore,

g = min(1,R(γ M (ρ⊗f) +η)) (1)

where ⊗ denotes convolution. Since saturated pixels provide no
information, we ignore these rows, and rearrange (1) to get,

g1 ≡
1
γ

R−1 (g) =M (ρ⊗f) +η. [g < 1] (2)

Most terms are known in this equation: g is the known captured
image, per-pixel sensitivity γ is preset by the user before captur-
ing the photo, the color map M is a fixed color filter array which
is known, ρ is fixed for every sensor type and can be measured.
Also, we accurately estimate the response curve R from the single
image as we describe below. The only unknown quantities are the
unknown HDR image f we solve for and the noise term η.

(a) Before correction (b) After correction
Figure 4: Preprocessing: comparison of an unprocessed image assuming
linear intensity response (a) with the preprocessed image (b). The insets
clearly show that because of exposure index multiplexing high exposure
index and low exposure index areas next to each other do not match. The
mismatch shows up as fringes.

Correction for exposure-index multiplexing
It is possible to estimate R by calibrating the camera re-

sponse curve separately for various exposure indices. However,
noise and other electronic factors make it difficult to use a sin-
gle response curve in an artifact-free manner. Instead, we use a
RANSAC-like iterative polynomial-fitting to calibrate for the in-
tensity mapping R from the unclipped pixels of the single input
image provided to our algorithm. We assume the intensity map-
ping R is a monotonic zero-crossing polynomial,

We perform this calibration once per channel. For each chan-
nel, we gather all pairs of neighboring pixel with different expo-
sure index and no clipping. Let, for one pair of nearby pixels
with the same color, the original anti-aliased intensities are u and
v (Fig. 2b), and let the exposure indices are 1 and γ > 1 respec-
tively. We assume that u does not change much since the response
curve is mostly linear. Then according to the forward model, the
observed values are R(u)≈ u and R(γv) ignoring noise and clip-
ping. However, because the response curve R is not linear,

R(γv)/γ 6= (u) . (3)

We know from the sparse gradients prior [13, 14] that natural im-
ages for the most part is flat, except at sparse sharp edges in the
scene. Therefore, except for a few outliers,

u≈ v. (4)

We then seek the a fifth order polynomial to model R to solve (3)
and (4). We perform a robust RANSAC-style polynomial fitting
for obtaining the estimated curve. A least square fit only mod-
els Gaussian-distributed quantities (and is greatly affected by out-
liers). We initialize the curve by fitting all points. After this ini-
tialization, we reject more and more outliers in each iteration: we
reduce sigma and recompute the curve until at least a large enough
part (25% in experiments) of the pairs are rejected. This ensures a
fit that is robust against outliers, i.e., edges. We denote the scaled
captured image as g1. This simplifies the forward model in (2),

g1 =M (ρ⊗f) +η, [g < 1] (5)
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Figure 5: Flowchart. (a) The input exposure-multiplexed image has no data in many pixels due to clipping or noise (marked with black). We first restore
the missing pixel values in the green channel (b) using our algorithm and obtain all green pixel values (d). We use the edge structures from this restored
green channel to calculate smooth contour prior’s local anisotropic filters and use those to reconstruct the red and blue channels (c). The resulting image
(e) contains all red and blue pixel information on the Bayer image. (d) and (e) combined constitutes the fully restored Bayer image (f). Going from this
image to the full resolution image is essentially a demosaicking problem and we use [12] for this purpose. As in the restoration step, we first obtain the
full resolution green channel (g), then we use the edge structure in this channel to guide the reconstruction of the other two channels (h). This gives us the
reconstructed full resolution high dynamic range image (i).

HDR reconstruction
The crux of our high dynamic range imaging method is re-

constructing the information that is missing due to over-saturation
(i.e., clipping) or under-saturation (i.e., noise) of image sensors
(Fig. 1f). To obtain the full-resolution HDR image, we need to
perform edge-preserving anisotropic filtering of the captured data.

As shown in Fig. 5, we first restore the green channel because
it is more densely sampled by the Bayer filter, it is less hard to
restore using single-channel data. We then use the restored green
channel to guide the edge-preserving interpolation in the other
two channels using [12] (Fig. 5). Below, we first formulate HDR
reconstruction as a global optimization problem and then give our
algorithm. In the next section we derive our smooth contour prior.

The image formation model (5) gives the forward model: the
optical encoding. In order to estimate the unknown latent HDR
image f , we perform a maximum-a-posteriori (MAP) estimation
in the same fashion as the single image superresolution work [12]:
we minimize noise η ∼ N (0,σ2), (i.e., underdetermined data-
fitting) such that the following image priors (for well-posedness)
are satisfied: (1) natural image gradients are sparse (the “sparse
gradients prior” [16]), and (2) natural image edges have smooth
contours (i.e., the “smooth contours image prior” [12]). From (5)
we derive the minimization problem,

min
f

1
2σ2 ‖g1−M (ρ⊗f)‖2︸ ︷︷ ︸

data-fitting, g < 1

+λTV ‖∇f‖TV︸ ︷︷ ︸
sparse gradient

+λE ‖f −E(f)‖2︸ ︷︷ ︸
smooth contour

(6)

where ‖ · ‖TV is the total variation norm, E is the smooth-contour
interpolation operator, and λTV and λE are proportionality con-
stants. The E operator from [12] unmodified is not suitable for
our problem; later in this text we derive a modification.

Although (6) is convex, solving it directly is not easy because
of the mixed `1 and `2 norms. Instead, we solve the equivalent
saddle point forms. First, let G(·) denote our data-fitting term,

G(f)≡ 1
2σ2 ‖g1−M (ρ⊗f)‖2 (7)

KTV and KE are linear transformations from the primal (image)
domain to respective dual domains defined as

KTVf ≡ λTV∇f (8)

? ?

(a) Regular sampling (b) Exposure-multiplexed sampling
Figure 6: Choice of support for the smooth contour prior. Only the green
channel is shown. Extending this idea for other channels is trivial. (a)
Green channel pixels are organized on a diagonal grid, shown in green. In
conventional imaging, the sensor has a uniform exposure setting, and the
green channel gets sampled evenly both horizontally and vertically. The
support–the size of the local anisotropic filter kernel we estimate–uses a
disk shape. The disk shape support on a grid turns into a 4-neighborhood
on a grid. (b) In exposure-multiplexed imaging, the vertical sampling
rate can be as low as half the horizontal sampling rate; the white pixels
denote missing data. The anisotropic interpolation kernel we seek in this
case needs to be twice as long in the vertical direction, to account for the
half sampling rate. This way we are able to gather as much structural
information as the regular sampling case. Taking into account green pixel
locations, this amounts to the 6-neighborhood on the right.

KEf ≡ f −E (f) , (9)

and FTV and FE are functions defined as

FTV ≡ ‖ ·‖TV (10)

FE ≡
λE
2 ‖ · ‖

2. (11)

Now, rewriting the convex optimization problem (6), we get,

arg min
f

G(f) + FTV(KTVf) + FE (KEf), (12)

which is equivalent to solving the primal-dual form,

arg min
f

G(f) +arg max
yTV

〈KTVf,yTV〉−F∗TV(yTV)

+arg max
yE

〈KEf,yE 〉−F∗E (yE ), (13)

where ·∗ denotes the convex conjugate of a function, and yTV and
yE are slack variables defined over respective dual domains. The
algorithm we propose in this paper directly follows from [12].
We use the primal-dual algorithm [17] to solve the saddle-point
formulation (13) of our original inverse problem (6).
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Algorithm 1 Exposure-multiplexed high dynamic range imaging
using the smooth contour prior

Require: σ > 0, τ > 0 and θ. f̄ (0) = f (0) = E(g1),y(0)
TV =

0,y(0)
E = 0.

1: repeat
2: y

(k+1)
TV ← proxσF∗TV

(
y

(k)
TV +σKTVf̄

(k)
)

3: y
(k+1)
E ← proxσF∗E

(
y

(k)
E +σKE f̄

(k)
)

4: f (k+1)← proxτG
(
f (k)− τ

(
KT

TVy
(k+1)
TV +KT

E y
(k+1)
E

))
5: f̄ (k+1)← f (k+1) +θ(f (k+1)−f (k)).
6: until convergence

This primal-dual optimization Algorithm 1 starts with some
initial values for the unknown image f and the dual-domain slack
variables y. The algorithm then proceeds with a series of gen-
eralized projections alternating between the primal and dual do-
mains. These generalized projections are called “proximity” op-
erators and are denoted by prox. Please consult [17] for detailed
derivation of the method and convergence guarantees. Below we
list the proximity operators we use in our algorithm, and derive
the one related to the smooth contour prior:

(a) Proximity operator of the data fitting term follows directly
from the definition of proximity operators,

proxτG (f0) = argminf
‖f −f0‖2

2τ + G(f) (14)

= argminf
‖f −f0‖2

2τ +‖g1−M(ρ⊗f)‖2 .
(15)

This is a linear least-squares minimization problem, which we
solve using the conjugate gradient method.

(b) Proximity operator of the total variation term is pointwise
shrinkage [17],

proxσF∗TV
(y0) = y0

max(1, |y0|)
. (16)

(c) Proximity operator of the convex conjugate function F∗E can
be derived using Moreau’s Identity [17]. Moreau’s Identity relates
the proximity operator of a convex conjugate function (e.g. F∗E )
with the proximity operator of the original function (e.g. FE ), and
we get, proxσF∗E (·) in terms of prox1/σ

FE (·),

proxσF∗E (y0)≡ y0−σprox1/σ
FE

(
y0
σ

)
, (17)

where the proximity operator of the original function proxFE fol-
lows directly from the definition, and we get,

proxσF∗E (y0)≡ y0−σ
(

argmin
y

σ

2

∥∥∥y− y0
σ

∥∥∥2
+ λE

2 ‖y‖
2
)

= λE
σ+λE

y0. (18)

This completes our algorithm. Below we discuss our prior.

Modified smooth edge guided interpolation
In this section, we adapt the single-image super-resolution

method [12] for our problem. [12] can be described as a sliding-
window blur kernel estimation followed by a re-application of
these kernels in the super-resolved grid. Our image data sampling
strategies are different from theirs, and consequently we modify
the kernel estimation process below.

We note that [12] uses a 4-neighborhood kernel. Over some
sliding window W, usually of size 10×10 centered around each
pixel, they estimate a nontrivial convolution kernel k of size≈
2×2 that W is locally invariant to, i.e.,

W≈ k⊗W, k 6= I. (19)

This means that the kernel k describes the local dominant direc-
tion of smoothness inside of the window W. [12] then uses these
estimated kernels for super-resolution. In their case, image pixel
data is sampled evenly along both dimensions on a regular grid,
and as a result a 2D disk-shaped support logically boils down to
the 4-neighbor support (Fig. 6a)

For our problem, we use a 6-neighborhood instead. We ob-
serve that in the worst case when scene dynamic range is too wide,
two very different exposure indices have to be used to capture as
much of the scene information as possible. The two vastly dif-
ferent exposure settings will then capture two orthogonal sets of
regions in the scene. In this case up to half of the pixel data would
be lost due to clipping or noise (e.g., Fig. 1e). Let us denote the
resulting vertical low-pass filter with Γ. Then the contents of a
window with the same size in our case is Γ⊗W. Since convolu-
tion is commutative and Γ⊗Γ = Γ, we get from (19),

Γ⊗W≈ (Γ⊗k)⊗ (Γ⊗W). (20)

The resulting vertically low-passed kernel Γ⊗k has to have twice
the size in the vertical dimension compared to k, i.e., of size≈
4×2, and this yields a 6-neighborhood as demonstrated in Fig. 6b.

Note that this change of kernel size does not change the other
parts of [12]. In particular, the order of magnitude speed-up pro-
posed in [12] still applies to our method.

Results
We show a few results in Figure 7. For each test case, we

show two simulated exposures of our reconstructed HDR image.
The simulated short exposure images show details in the

bright areas. In Fig. 7a-3 and Fig. 7b-3, our method has fully re-
stored details inside of the bright regions a SDR camera would fail
to capture. For comparison, Fig. 7a-2 shows the standard dynamic
range image in full brightness while Fig. 7b-2 has its brightness
matched with the simulated short exposure Fig. 7b-3.

The simulated long exposures demonstrate that the dark im-
age areas have been restored relatively well. Note that we chose
paramters such that we retain most of the noise in the dark areas.
This is because strong denoising can potentially remove detail as
well as noise. This is why the dark areas in simulated long expo-
sures in Fig. 7a-4 and Fig. 7b-4 appear noisy.

In the examples presented, for the expmul capture of the in-
put images we used dual ISO settings {100. 800} with an effec-
tive DR gain of 8x compared to a standard dynamic range image.
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(a-1) Exposure-indexed Bayer image (a-2) SDR image (a-3) HDR output, short exposure (a-4) HDR result, long exposure

(b-1) Exposure-indexed Bayer image (b-2) SDR image, brightness reduced (b-3) HDR output, short exposure (b-4) HDR result, long exposure

Figure 7: Results. The grey image on the left column shows the input exposure-multiplexed Bayer image. For our HDR reconstruction, both a short and a
long simunlated exposure is shown. for the demonstration of the quality of our reconstruction. Details are shown in the blown up insets.

Conclusion
We have presented a robust method to reconstruct the latent

high dynamic range image from a single exposure-multiplexed
image. We use state-of-the-art global optimization techniques and
a fast image priorinspired by recent single-image super-resolution
research [12]. We have presented results produced by our algo-
rithm and demonstrated the performance of our method.
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