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Abstract 

In this paper we describe two general parametric, non 

symmetric 3×3 gradient models. Equations for calculating the 

coefficients of matrices of gradients are presented. These models 

for generating gradients in x-direction include the known gradient 

operators and new operators that can be used in graphics, 

computer vision, robotics, imaging systems and visual surveillance 

applications, object enhancement, edge detection and 

classification. The presented approach can be easier extended for 

large windows.  

Introduction  
      The human visual system is very sensitive to gradients [1]. An 

image gradient is a directional change in the intensity in the image. 

It is one of the essential building blocks in many computer vision 

surveillance systems, security systems, robotic, image retrieval, 

and image processing applications (including web image 

applications) [2]-[10]. Gradient magnitude particularly can be used 

to compute both edge detection and local multi-directional edge 

orientation. Image gradients are used to create new images with 

“visualized edges.” We consider an edge as the border between 

two regions, each of which has approximately a uniform intensity. 

Moreover, image gradients are very important in many graphics, 

imaging systems, object enhancement, edge detection and 

classification [11]-[26]. In addition, image gradients used to 

compute multi-directional orthogonal gradient object phase. One of 

key tasks of above applications is to find edges, texture, and 

contours in images/videos. This is because an edge usually can 

(a) show the change in light, shade, color, and texture, which 

is very important to determine the depth, size, orientation 

and surface properties of a digital image/video;  

(b) help to analyze and measure some basic properties related 

to the object, such as the area, perimeter, visual words, 

histogram, and shape, which are used for objects 

identification;  

(c) be invariant to monotonic gray-level transformations; 

(d) be used to describe enhancement measures and visibility 

images, or visibility characteristics of grayscale and color 

images [27]-[44];  

(e) be used for extracting the useful information (structure, 

feature, and properties of objects) from images.  

      Additionally, one of the key problems in object and person 

recognition (including pose position and expression recognition) is 

in extracting essential and accurate features from images of the 

object, under various lighting conditions or real-world 

illumination, which may have a huge impact on object recognition 

performance. To solve this problem, the researchers use different 

edge detecting gradient operators, which include several variations 

of such gradients as the Sobel, Robinson, Prewitt, Laplacian and 

Laplacian of Gaussian gradients [6]-[10].  

      It should also be noted that, in many images, the over fall will 

not be sharp because of blurring. The extraction of features in 

object/facial image representation is an important task in face 

recognition systems [45]. In face images, the important features of 

the size, shape, and face orientation are in points of the lines of 

eyes, nose, lips, and cheekbones. However, in practice, the 

commonly used edge detection seldom contains perfect contours 

and edges. It is natural to develop parametric gradient models that 

are based on the application and able to a) minimize number of 

false edges and contours; b) generate only a single mark on each 

edge; c) suppress the noise in computed gradient images; and d) 

get good localization of edges, textures, and contours.   

      In this paper, we describe two general parametric 3×3 

Gradients models. These models of generating gradients in the  -

direction include the known gradient operators (such as Sobel, 

Robinson, and Prewitt gradients) and new operators that can be 

used in imaging. Equations for calculating coefficients of gradient 

matrices are presented. The case of 3×3 window is considered; the 

models for windows of larger size can be described in a similar 

way [43,45]. Examples of application of the gradients are given. 

 

General Model of 3×3 Gradients of the 2nd 
order 
     Different gradient operators are used in image processing and 

edge detection and with different size of windows, such as 3×3, 

5×5, 7×7, and even 9×9 for large images. In this section, we 

introduce two models of generating gradients in  -direction, which 

include the known gradient operators and new operators. The case 

of 3×3 window is considered.  

      Type I: Let   be the following matrix: 

 

  
 

 
 
     
     

     

                                           

 

where the triplet of nonnegative numbers         and number 

    are given. The coefficients   and   will be found or selected 

from the condition that the sum of all coefficients equals zero. The 

scale factor     is calculated after the coefficients   and  . This 

parameterized matrix    is called the            -matrix. 

      Zeroing the sum of all coefficients, we have the following: 

 
                      

or,   
                                               

 

      In the simple     case, that we call the symmetric case,   

 

   
 

 
                                            

 

For simplicity, it is assumed that        . Then, the values of   

and   will be negative if     and positive when      
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Example 1:        ,     

      The     case corresponds to the Prewitt gradient operator,  

 

   
 

 
              

 

 
 
    
    

    

                   

 

      In the non-symmetric case,      , the matrix has the form   

 

  
 

     
 
    
    

     

   

 

For instance, when        and    , such matrices are  

 

 

 
 
    
    

     

  
 

 
 
    
    

     

             
 

 
 
    
    

     

   

 

Example 2:      ,    ,       

      The     case corresponds to the Sobel gradient operator,  

   
 

 
              

 

 
 
      
     

     

                          

 

In the non symmetric case,      , i.e., the matrix has the form   

 

  
 

     
 
    
    

     

   

 

For instance, when        and    , such matrices are  

 

 

 
 
    
    

     

  
 

 
 
    
    

     

      
 

 
 
    
    

     

          

Example 3:      ,          

       In the symmetric case, 

 

   
 

 
               

 

 
 
     
    

     

   

 

      In the non-symmetric case,        and the matrix has the 

form   

  
 

   
 
    
    

       

                 

 

If    , the scale factor is     or        , depending on 

     or     , respectively.  

       When     and  , we obtain the matrices 

 

 

 
 
    
    

     

              
 

  
 
    
    

     

   

 

Example 4:      ,           

       In the symmetric case, 

   
 

 
                 

 

    
 

    

      

    

          

 

This matrix is for the Frei-Chen gradient operator. 

      In the non-symmetric case,       and  

 

  
 

      
 

    

      

     

                

 

For     and   , we obtain the following matrices: 
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Example 5:      ,                 

       In the symmetric case, we obtain the Gold-Ratio matrix 

 

         
 

    
 

    

    

 
  

    

 
    

 

 
 

    
 

    

          

    

    

 

       In the non-symmetric case,       and  

 

  
 

       
 

     

          

      

           

 

If    , we obtain the matrix 

  
 

    
 

    

          

     

                              

 

In the            case,  

 

  
 

       
 

       

          

        

   

 

Example 6:        ,        

In the symmetric case, we obtain the following: 

 

   
 

 
    

 

 
          

 

 
 

       
      

       
 

 
 

  
 
     
    

     

    

This matrix corresponds to the Kirsch gradient operator.  
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       In the non-symmetric case,       , the matrix    has the 

form  

 

  
 

   
 

      
      

         
                  

 

For the     case, we obtain the matrix  

 

  
 

 
 

      
      

       
  

 

  
 
    
    

     

                

 

For the       case, we obtain the matrix  

 

  
 

     
 

        
      

         
  

 

  
 
     
     

       

   

 

      Now, we consider more cases with    .  

Example 7:      ,            

       In this case, we can consider the calculations 

 

     
 

 
     

 

 
        

  
 

 
 

      
    

      
  

 

 
 
    
    

    

     

Example 8:        ,       

       In this case, we can consider the following calculations for 
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If     and        then 
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In the above model, or model of type I, it is assumed that the 

central coefficient is zero. We can remove this constrain and 

consider a new model that is called the model of type II. 

 

Model of Matrices of Type II 
      Type II: Let A be the following matrix: 

 

  
 

 
 

     
     

     

                                         

 

where the triplet           and number      are given. The 

coefficients     and   will be found from the condition that the 

sum of all coefficients equals zero. The matrix is called the 

(           )-matrix. The scale factor     will be found after the 

coefficients      and  . Zeroing the the sum of all coefficients, we 

have the following: 

 
                                                     

 

If we assume that    , then 

 
                      

     Next, we consider a few examples for the     case. 

Example 9:         ,      
 

      
 

 
              

 

 
 
    
    
    

   

 

If    , then      and we obtain the matrix of the Prewitt 

gradient  
 

  
 

 
 
    
     
    

                                      

Example 10:           ,     

 

            
 

 
 
   
    
   

   

 

If    , then      and we obtain the matrix   
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If        then        and the matrix is  

   

  
 

 
 

     
       
     

  
 

 
 
   
     
   

   

If    , then     and the matrix (the separate 1st order 

gradient) 

   
   
    
   

                                               

 

Example 11:          ,     
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If    , then      and we obtain the matrix 

   

  
 

 
 
    
    
    

   

 

Example 12:            ,     

            
 

 
 

    
      
    

   

 

Here,           If    , then            and we obtain 

the matrix 

  
 

 
 

    
     
    

   

 

If    , then          , and we obtain the matrix 

   

  
 

 
 

    
     
    

   

      Now, we describe a few gradients given above in detail with 

examples on images. Given            -matrix   of type I, the 

gradient operator is defined with this matrix in  -direction, i.e., 

   
      The matrix of this gradient in y-direction is considered 

to be calculated as    
       

         Here,    is the transpose 

matrix    The gradient operator with these matrices can be named 

the            -gradient operator. 

 

The            -gradient 
      The            -gradient operator is defined by the matrices 

 

   
   

 

 
 
    
    

    

              
   

 

 
 
      
   

   

   

 

These matrices are known as the matrices of the Prewitt 3-level 

gradient operators. Therefore, we denote    
      

   and    
   

   
    Given image  , the gradient images in  - and  -directions 

are calculated by   
     and   

    , respectively.  

 

The              -gradient  
      The              -gradient is defined with matrices 

 

   
   

 

  
 

      
    

       
  

 

  
 
    
    

     

  

           
   

 

  
 
      
    

   

   

 

      As an example, we consider the         image shown in 

Fig. 1. Figure 2 shows the gradient images   
     and   

     in 

parts (a) and (b), respectively.  
 

 
 

Figure 1. (a) The grayscale (binary) image 

 
The maximum gradient image             

       
      is 

shown in part (c). 

 

 
(a)   -gradient                   (b)  y-gradient                (c) maximum 

Figure 2. (a) The horizontal, (b) the vertical, and (c) the maximum gradient 
images.  

 
      One can notice the slightly bright horizontal and vertical lines 

in the gradient images   
     and   

      respectively, which are 

due to the nonzero coefficient         . Indeed, the matrix 

   
   can be written as  

 

   
   

  

  
 
 

 
 
    
    

    

 
         

 
 

  
  

   
   

    

 
         

  

 

i.e., this matrix is the arithmetic mean of two matrices, one matrix 

is the matrix of the Prewitt gradient in the  -direction and another 

one is matrix of the separated gradient in the y-direction that is 

given in Eq. 13, 

   

   
   

  

  
   

   
 

  
                                        

 

      The weight of the separated gradient    is 1/13 which is a 

small number, when comparing with the weight 12/13 of the 

gradient   
 . Therefore, in the gradient image shown in Fig. 2(a), 

the extracted horizontal lines do not have high intensities. For the 

gradient   
   similar calculations hold 

 

   
       

     
  

  
   

    
 

  
      

  

  
   

   
 

  
      

 

and the intensity of the vertical lines in the gradient image in Fig. 

2(b) have low intensity because of the weighted coefficient 1/13. 

To see better the horizontal and vertical lines in the gradient 

images   
     and   

    , the value of the coefficient in the 

           -matrix should be increased.   

The              -gradient is defined with matrices  
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     The matrix    
   can be written as  

 

   
   

 

 
 

      
    

       
 

 
 

 
 
 

 
 
    
    

    

 
         

 
 

 
  

   
   

    

 
         

  

 

      Thus, in this arithmetic mean of two matrices  

 

   
   

 

 
   

   
 

 
                                        

 

     The weight 6/7 of the Prewitt gradient in  -direction is smaller 

than 12/13, and the weight 1/7 of the separated gradient    is 

larger than the weight 1/13 of these gradients in the              -
gradient. Therefore, the additional horizontal and vertical lines in 

the gradient images   
     and   

     can be better observed.  

      Figure 3 shows the gradient images   
    ,   

    , and the 

maximum gradient image       in parts (a), (b), and (c), 

respectively. 

 

 
(a)  -gradient                   (b)  y-gradient                  (c) maximum 

 

Figure 3. (a) The horizontal, (b) the vertical, and (c) the maximum gradient 
images.  

 
     The            -gradient is defined with matrices  

 

   
   

 

 
 
    
    

     

              
   

 

 
 
      
    

   

   

 

Figure 4 shows the gradient images   
     and   

      in parts (a) 

and (b), respectively. The maximum gradient image       is 

shown in part (c). 

 

 
(a)    -gradient                 (b)  y-gradient                       (c) maximum 
 

Figure 4. (a) The horizontal, (b) the vertical, and (c) the maximum gradient 
images. 

 
     The matrix    

   can be written as  

 

   
   

 

 
 
    
    

     

  
 

 
 
 

 
 
    
    

    

 
         

 
 

 
  

   
   

    

 
         

  

 

     It is the arithmetic mean of two matrices, i.e.,    
   

        
              Thus, when increasing the value of   in 

the            -gradient matrix, the weight of the Prewitt gradient 

is decreasing and the weight of the gradient    is increasing. 

Therefore, the additional horizontal in the gradient image   
     

becomes more visible.   

 

The              -gradient 
     The gradient is defined by the matrices 

 

   
   

 

      
 

    
        

     

  
 

      
 
     
    

      

  

 

and  

   
   

 

      
 

      
      

   

   

 

     We consider the cases when     and    , and the matrices 

   
   equal 

 

 

 
 
    
    

    

              
 

 
 
    
    

     

   

 

      The second matrix is the arithmetic mean of the first matrix 

and the matrix of the separated gradient in the y-direction, that is 

given in Eq. 13,   

 

   
   

 

 
 
    
    

     

  
 

 
 
 

 
 
    
    

    

 
         

 
 

 
  

   
   

    

 
         

  

 

      Therefore, in the gradient image   
     with      , the 

additional horizontal lines are extracted, when comparing with the  

    case. In the gradient image   
     with      , the 

vertical lines are extracted.   

      Figure 5 shows the gradient images   
    ,   

    , and the 

maximum gradient images       in parts (a), (b) and (c), 

respectively, for the cases when     and       in the first and 

second row, respectively.  
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(a)  -gradient                    (b)  y-gradient                       (c) maximum 

 

Figure 5. (a) The horizontal, (b) the vertical, and (c) the maximum gradient 
images. 

 
      Now, we consider the example with a complex image as the 

one shown in Fig. 6. The image has been modeled by 20 random 

rectangles in the square             of different intensities which 

are shown in colors in part (a). Many of these rectangles are 

overlapped with others. The 256×256 grayscale image calculated 

as the sum of all these rectangles is shown in part (b).  

 

 
(a) rectangles                               (b) image     

Figure 6. The grayscale image modeled by 20 random rectangles. 

 
For this grayscale image, Fig. 7 shows the gradient images   

     
and   

    , and the maximum gradient image       in parts (a), 

(b) and (c), respectively. 

 

 
(a)  -gradient              (b)  y-gradient              (c) maximum 

Figure 7. (a) The horizontal, (b) the vertical, and (c) the maximum gradient 
images. 

 

Together with the maximum gradient, the square-root gradient 

operation is also used for edge detection and it is calculated by the 

diagram in Fig. 8. 

 

 
 

Figure 8. The diagram of calculation for the square-root gradient image. 

 
The 3×3 Frei-Chen Gradients  
      From computation point of view, the Frei-Chen gradient 

operators can be simplified, by using the coefficients 1.5 instead of 

coefficients           in matrices in Eq. 7. The modified 

matrices are  

 

   
   

 

   
 

    
        

    

  
 

 
 
    
    

    

      

        
   

 

 
 
      
   

   

                                   

 

     These matrices are the (1,1,1.5,1|0)-gradient matrices, when 

          ,    , and      One can also call these matrices 

the (1,2,3,2|0)-matrices. 

     The matrix of the gradient   
  is defined from   

 , by the 

transposition as     
       

     

 

The 3×3 Gold-Ratio Gradients  
     We consider the golden ratio (GR) number     instead of    

in Eq. 7, which is the number 

  

  
    

 
                                         

 

For the GR,        and          The golden ratio is 

defined as one of the solutions of the equation 

 

  
   

 
 

 

 
                     

 

Figure 9 illustrates the gold ratio. The above equation can also be 

written as            The illustration of this property as the 

sum of areas of the rectangle and square is also given in the figure. 

 

 
 

Figure 9. The illustration of the gold ratio. 

 
      We call the differencing operators in  - and  -directions with 

matrices 
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the Gold-Ratio gradients. The magnitude and square-root Gold-

Ratio gradient images is defined as  

 

         
         

      and          
          

         

 

      The Gold-Ratio operators can be generalized by 

             gradient matrices 

 

   
   

 

     
 
    
    
    

        
   

 

     
 
      
   
   

    

 

      When    , these operators are the Prewitt operators and for 

     these operators are the Sobel operators. In many cases, the 

gradient images of these operators look similar; it is visually 

difficult to distinguish which operator results in the best gradient 

image after thresholding.  

      For example, we consider the square-root gradient image 

 

          
          

       

 

for the grayscale image shown in Fig. 10.  

 

 
 

Figure 10. The grayscale “building” image. 

 
       Figure 11 shows the square-root images calculated by the 

gradient operators for the cases when        and 2 in parts (a), 

(b), and (c), respectively. The images are shown after the 

thresholding by     , i.e., the binary threshold images are 

calculated at each pixel       by 

 

          
                

               
                       

 

 
(a)                           (b)     1.6180                (c)       

 

Figure 11. The square-root gradient images after thresholding, when using (a) 
the Prewitt operator, (b) the Gold-Ratio operator, and (c) the Sobel operator.  

 

Summary 
Two models of     gradient operators have been introduced, 

which include many known gradients and new gradients that can 

be used in imaging. Simple equations for calculating the 

coefficients of the gradient matrices are presented. Such models 

can also similarly be described for the gradient operators with 

masks     and 7  .  
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