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Abstract 
Diffuse lung disease (DLD) is difficult to diagnose due to the 

ambiguity of disease patterns, which motivates the development of 

image retrieval method to facilitate the physicians in diagnosis by 

retrieving the similar cases from database. In this paper, we 

propose a similarity measurement method for diffuse lung disease 

computed tomography (CT) slice image retrieval. In our method, 

the DLD patterns and the spatial distribution of the diseased area 

are both integrated to compute the similarity between query and 

database image. For this purpose, the powerful GoogLeNet is 

adopted and fine-tuned to locate the diseased area and classify it 

into different DLD patterns. Moreover, the spatial distribution of 

the diseased area is calculated based on the distance to the body 

center. Our method is verified on 324 CT slice images obtained 

from 53 subjects. The correct ratio among the top-5 retrieved 

images achieved 86.2%. Based on this performance, we can draw 

the conclusion that this method has high potential to improve the 

efficiency for diagnosis of diffuse lung disease in clinical use.  

Keywords — Similarity Measurement, Diffuse Lung Disease, 

CT Slice Image, Image Retrieval, GoogLeNet 

1. Introduction 
The high ambiguity between diffuse lung disease patterns 

causes difficulty for diagnosis. Fortunately, the image retrieval 

procedure can assist the physician for diagnosis and improve the 

efficiency and accuracy. The key step of image retrieval system is 

to calculate the similarity between query and database images. The 

similarity calculation is normally based on the information of 

disease type and disease area location, which can be obtained by a 

pre-trained classifier. Afterwards, the top ranked similar database 

images are retrieved to assist the physician for diagnosis.  

For the pre-trained classifier, previous literature has proposed 

methods using local discrete cosine transform following with 

random forest [1], local binary pattern with KNN [2], and intensity 

textons with support vector machine [3], etc. In the recent years, 

image classification accuracy has been dramatically improved by 

deep convolutional neural network (DCNN). To train a DCNN 

model, a large amount of annotated data is required. However, in 

medical application, the annotated image data is usually very rare, 

which can easily cause over-fitting problem during training process. 

Therefore, in our application, we used a transfer learning strategy 

by fine tuning the pre-trained DCNN model to take advantage of 

the feature representing power of existing convolutional neural 

network and to avoid over-fitting problem.  

For similarity calculation, the common methods are usually 

based on the overlapping area ratio between the diseased areas in 

query and database images. This method doesn’t consider the 

spatial distribution of diseased area, which indicates the important 

pathogenesis information of diffuse lung disease. One example is 

shown as Fig. 1. In Fig. 1, the red block indicates the diseased area. 

In this figure, we can see that the overlapping area ratio between 

query and two database (DB) images are roughly the same. 

However, the spatial distributions of diseased area in DB images 

are quite different. In Fig. 1, the diseased area in query and DB 

image I are all located in peripheral lung region, while the area in 

DB image II spread across the lung region. In fact, based on spatial 

distribution information, DB image I should have higher ranking 

order than DB image II. This will be explained later. 

 

Fig. 1 Example for Spatial Distribution  

In order to generate more reasonable retrieval result, we 

proposed a similarity measurement that integrates the spatial 

distribution information. The spatial distribution can be 

represented by the distance of diseased area to the body center, 

which can be calculated as follows: firstly, in order to represent the 

relative location in lung region, the lung region mask is extracted 

from the slice image; secondly, the extracted lung region is divided 

into three sub-regions (central area, peripheral area and middle 

area) based on the distance to the body center to represent the 

spatial distribution; thirdly, the similarity is calculated using sub-

region weighted bi-directional distance for the subsequent ranking 

and retrieval. 

This paper mainly consists of three parts: firstly, the detailed 

methodology of our proposed similarity measurement method was 

introduced; then, the results were evaluated to prove the 

effectiveness of our method; finally, the performance was 

concluded in the last part.  

2. METHODOLOGY 
The methodology consists of three parts: A. discriminant 

classifier design; B. spatial distribution calculation, and C. 

similarity measurement.  

2.1 Discriminant Classifier Design 
In our proposed method, we used a deep convolutional neural 

network (DCNN) as our discriminant classifier. To apply the 

DCNN in diffuse lung disease images, three major techniques are 

feasible: (1) Training the DCNN from scratch; (2) using “off-the-

shelf” DCNN models; (3) fine-tuning the pre-trained DCNN model 

on natural image using the diffuse lung disease images. Due to the 

small image number of our diffuse lung disease image database, 

method (1) and (2) will easily over-fit. Therefore, we used the 

method (3) in our method, i.e. fine-tuning the pre-trained DCNN 

model.  

Here, we used GoogLeNet[5] model for fine-tuning. 

GoogLeNet is the state-of-art model, which achieved better result 

on the famous ImageNet Large-Scale Visual Recognition 

Challenge. Another reason why we choose GoogLeNet is that it 
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offered the pre-trained model parameters, which makes it lot easier 

to fine-tune the model.  

For fine-tuning procedure, all CNN layers except the last one 

were fine-tuned at a learning rate 10 times smaller than the default 

learning rate, since the parameters are very close to the optimal 

value. The last fully-connected layer was random initialized and 

freshly trained, in order to accommodate the new object categories 

in our diffuse lung disease applications. The CNN network was 

retrained end-to-end starting with the pre-trained model parameters.  

The intensity of original pixel value is signed 16-bit integer 

with range roughly between -2000 ~ 4000. However, the 

GoogLeNet can only take unsigned 8-bit integer with range of 

0~255. To map the original pixel value into the range of 0~255, we 

added a window to the original value. The window center and 

window width are -600 and 1500 respectively. 

During the classifier training process, we divided the slice 

images into small image patches using mesh grids to make it easier 

for practical use. The dimension of each image patch is 16*16. The 

whole retraining procedure was performed on the annotated image 

patches, which contains 5 types: Consolidation (CON), GGO, 

HoneyComb (HON), Emphysema (EMP), and normal(NOR). 

Afterwards, the fine-tuned DCNN classifier model was applied on 

slice images to locate the diseased image patches and output the 

disease type information.  

2.2 Spatial distribution calculation 
The spatial distribution calculation consists of two major steps: 

lung region extraction, and lung sub-region dividing based on the 

distance to body center. The spatial distribution can be represented 

by the location of diseased area in different sub-regions. The two 

steps will be demonstrated in details in the following parts. 

2.2.1 Lung Region Extraction 
For diffuse lung disease CT images, the lung region can be 

separated as normal region and abnormal region. Each type of 

region can be extracted separately, and combined afterwards as the 

final lung region mask.  

For the normal lung region, in computed tomography (CT) 

slice images, the normal lung tissue have intensity within -950 ~ -

310. Therefore, a threshold method was used here to extract the 

normal region. 

For the abnormal lung region, it can be categorized as two 

types: diffuse abnormal area (i.e. the abnormal area without 

obvious boundary, as shown in a.1 in Fig. 2), and solid abnormal 

area (i.e. the abnormal area with obvious boundary, as shown in 

the b.1 in Fig. 2).  

For the diffuse abnormal area, we can see from a.1 in Fig. 2 

that it usually contains rich texture information (frequently spatial 

change of pixel intensity) comparing to other lung region. 

Therefore, the diffuse abnormal area can be extracted using this 

texture information. The gray level co-occurrence matrix (GLCM) 

is a well-established tool to represent the spatial distribution of 

pixel intensity by storing the co-occurrence frequencies of the pairs 

of gray levels. Afterwards, the Haralick feature[4] is usually 

applied to extract different information from the GLCM matrix. 

Here, we found that among 28 Haralick features, sum of entropy 

can emphasize the small changes of pixel intensity in local region, 

which can highlight the diffuse abnormal region. Therefore, a 

threshold procedure can be applied on the sum of entropy image to 

extract the diffuse abnormal region.  

For the solid abnormal area, it mainly appears at the 

peripheral boundary of the lung contour, which will cause ‘caves’ 

in the convex lung contour. Therefore a method using convex hull 

was applied to extract the solid abnormal area. Firstly, the convex 

hull of normal region was calculated. Secondly, the solid abnormal 

area was obtained by subtracting the normal area from the convex 

hull area, and eliminating the largest isolated part which 

corresponds to the area that is surrounded by the two lung region.  

Finally, after the normal area, diffuse and solid abnormal area 

were obtained, these parts can be combined as the final lung region.  

 

Fig. 2 Illustration for Lung Region Extraction  

2.2.2 Lung Sub-region Dividing 
The basic idea of lung sub-region dividing is to segment the 

sub-regions of lung area according to the distance to the body 

center. The detection of body center was as follows: Firstly, the 

spine region was extracted by detecting the largest isolated region 

in bony structure. The central column of spine region will be the 

column index of body center. Secondly, the bony structure located 

in the region that is above spine region and bounded by the 

leftmost and rightmost column of spine was detected. Finally, the 

middle row of spine’s upper bound and detected bony structure’s 

lower bound will be the row index of body center.  

After the body center was located, we can divide the lung 

region into three sub-regions based on the distance to body center. 

The three sub-regions include: central area (red area in Fig. 3), 

peripheral area (green area in Fig. 3), and middle area (yellow area 

in Fig. 3). The central area is the intersection area of lung region 

and the disk area around body center. The peripheral area can be 

defined as follows: (1) create the line connecting lung region 

centroid and body center; (2) find the line which is parallel to the 

created line and is tangent to the lung region contour; (3) extract 

the part of lung contour that lies between the two tangent lines, and 

move the contour along the normal vector for a certain distance to 

determine the peripheral area. The middle area can be obtained by 

subtracting the previous two sub-regions from the whole lung 

region obtained by the first step.  

 

Fig. 3 Illustration of lung sub-regions dividing 

2.3 Similarity Metric Design 
The principle of similarity metric should satisfies: (1) the 

same disease type images have the highest similarity; (2) points 

within each sub-region are close, and points between two sub-

381-2
IS&T International Symposium on Electronic Imaging 2018

Image Processing: Algorithms and Systems XVI



 

 

regions are far apart. Only in this way, the disease type information 

and spatial distribution information can be integrated into the 

similarity metric.  

In this paper, we proposed a similarity metric called sub-

region weighted bi-directional distance. The illustration was shown 

in Fig. 4.  

 

Fig. 4 Illustration for similarity measurement 

The similarity metric can be formulated as Eq. 1. In Eq. 1, the 

smaller 𝑣 is, the higher the similarity is. Here, 𝑄 and 𝐷𝐵 presents 

the query and database respectively, and 𝑗𝐷𝐵 = argmin
𝑗∈𝐷𝐵

‖𝑃𝑖 − 𝑃𝑗‖, 

𝑖𝑄 = argmin
𝑖∈𝑄

‖𝑃𝑗 − 𝑃𝑖‖.  

To calculate similarity metric, first, the minimum distance 

between query and database image patches were computed. If the 

two patches are with same disease type, the distance will be the 

actual calculated value. Otherwise, it will be set as a fixed large 

value 𝑀𝑎𝑥𝐷𝑖𝑠  in Eq. 1. Then, the sub-region information was 

integrated by introducing weight 𝑤. If the pair of image patches 

are located in same sub-region, 𝑤 = 1 ; if they are located in 

adjacent sub-regions, 𝑤 = 2; and so on.  

Using this method, we can make sure that the images with 

same disease type and same spatial distribution will have smaller 

value, which represents higher similarity. Let’s revisit the case in 

Fig. 1. Using our proposed similarity metric, the DB_I will have 

higher similarity than DB_II. The result is more reasonable than 

using the overlapped area ratio. 

v = ∑ 𝑤𝑄
𝑖 min

𝑗∈𝐷𝐵
‖𝑃𝑖 − 𝑃𝑗‖

𝑁𝑄

𝑖=1
+  ∑ 𝑤𝐷𝐵

𝑗
min
𝑖∈𝑄

‖𝑃𝑗 − 𝑃𝑖‖
𝑁𝐷𝐵
𝑗=1    (1) 

𝑤𝑄
𝑖 =  {

‖𝑃𝑖 − 𝑃𝑗𝐷𝐵
‖ ∙ 𝑤     𝑖, 𝑗𝐷𝐵 𝑤𝑖𝑡ℎ 𝑠𝑎𝑚𝑒 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑡𝑦𝑝𝑒

𝑀𝑎𝑥𝐷𝑖𝑠 ∙ 𝑤   𝑖, 𝑗𝐷𝐵  𝑤𝑖𝑡ℎ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑡𝑦𝑝𝑒  
 

𝑤𝐷
𝑗

=  {
‖𝑃𝑗 − 𝑃𝑖𝑄

‖ ∙ 𝑤     𝑖𝑄, 𝑗 𝑤𝑖𝑡ℎ 𝑠𝑎𝑚𝑒 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑡𝑦𝑝𝑒

𝑀𝑎𝑥𝐷𝑖𝑠 ∙ 𝑤  𝑖𝑄, 𝑗 𝑤𝑖𝑡ℎ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑡𝑦𝑝𝑒  
 

3. RESULT 

3.1 Discriminant Classifier Evaluation 
In our paper, we used 39010 annotated image patches to 

evaluate the discriminant classifier. The image patches are 

separated into training and testing sets in patient-wise manner, i.e. 

the training and testing sets are from different patients. The reason 

is that in practical use, the query image is very unlikely obtained 

from same patient with database image. The number for each type 

is shown in Table I.  

The accuracy for fine-tuned GoogLeNet is shown in Table II. 

The accuracy for each disease type was evaluated. Here, we use 

the average accuracy of our classifier, which is 86.9%. The 

comparison with reference [6], [7], and [8] was shown in Table III. 

From this table, we can see this result is better than the previously 

reported accuracy. In our opinion, this accuracy is sufficient for 

practical use.  

Table I: Number of training and testing image patches for 

patient-wise separation 

Disease Type CON GGO HON EMP NOR 

Training Number 3349 3088 2864 3583 14776 

Testing Number 884 3437 786 2131 4112 

Table II: Accuracy for each disease type, ‘AVG’ means average 

Disease Type CON GGO HON EMP NOR AVG 

Accuracy 0.934 0.773 0.910 0.828 0.902 0.869 

Table III: Accuracy comparison with previously reported 

method 

Method Accuracy 

AlexNet + SVM[8] 76.7% 

GoogLeNet Fine Tuning[6] 81.7% 

Home-brewed DNN model[7] 85.6% 

Our Method 86.9% 

3.2 Spatial Distribution Calculation Evaluation  
The spatial distribution calculation consists of two steps: lung 

region extraction and lung sub-region dividing. The evaluation will 

be performed on these two steps respectively.  

3.2.1 Lung Area Extraction Evaluation 
 To evaluate the lung area extraction method, we used 

1963 thoracic slice image to test the performance of method. The 

proposed lung area extraction was applied for each image. The 

extracted region was evaluated by visual observation and 

categorized into four quality types, including ‘Good’, ‘Small part 

missing’, ‘Large part missing’, and ‘bad’. The criteria for defining 

the quality type are: Good: the lung region is perfectly extracted; 

Small Part Missing: most of the lung region is extracted, with 

small insignificant part missing; Large Part Missing: large part of 

lung region is missing when applying extraction procedure; Bad: 

the lung region extraction generates bad result, e.g. the lung region 

wasn’t recognized at all, or the non-lung area was extracted as lung 

region.  

For the purpose of image retrieval, the small part missing 

result will not significantly change the extracted feature [9]. 

Therefore, these types of ‘Good’ and ‘Small part missing’ result 

are both of sufficient quality. With this criteria, the sufficient lung 

area extraction results were 1878 out of 1963, with up to 95.7% of 

the total number.  

3.2.2 Sub-region Dividing Evaluation 
For the lung sub-region dividing, the idea of objective 

evaluation still applies. We employed the lung sub-region dividing 

method for 324 images. The dividing result were categorized into 

three types: ‘Good’, ‘Acceptable’, and ‘bad’. Since the result of 

lung sub-region dividing mainly depends on the recognition of 

body center and the result of lung area extraction, the criteria for 

defining these three types’ results are made based these two 

conditions: Good: the body center and lung region are both 

correctly detected, the three sub-regions are divided correctly as 

well; Acceptable: the body center is slightly mis-located, or the 

lung region extraction result is slightly different with the ground 

truth. But the sub-region dividing is still reasonable; Bad: the body 
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center or/and the lung region is totally mis-detected, which 

generates wrong sub-region dividing result.  

The slightly imperfect result doesn’t cause significant change 

of the result. Therefore, the first two types, i.e. ‘Good’ and 

‘Acceptable’, are both sufficient for our use. The sufficient lung 

sub-region dividing rate were 293 out of 324, with up to 90.4% of 

total number.  

3.3 Similarity Ranking Evaluation 
To test the similarity ranking result, we selected 384 images 

for the evaluation. From these 384 images, 100 images were 

selected as query image. In each experiment, we selected one 

single query image and make the rest 383 images as database 

images. Therefore, 100 experiments were conducted in total. The 

top-5 ranked database images in each experiment were used to 

classified as ‘correct’ or ‘wrong’. The criterion to define ‘correct’ 

and ‘wrong’ is that the top ranked database images should have the 

same dominant disease type and same spatial distribution of 

abnormal block with the query image. If the top ranked database 

image meets this criterion, it will be consider as ‘correct’, 

otherwise, it will be considered as ‘wrong’. The number of the 

correct case in the similarity ranking experiment is 431 out of 500 

results, up to the rate of 86.2%. To the best of our knowledge, this 

is the first time reporting the accuracy for diffuse lung disease 

image retrieval system. In our opinion, this is sufficient for clinical 

use.  

4. CONCLUSION 
In this paper, we proposed a similarity measurement method 

for diffuse lung disease image retrieval. The disease type and the 

spatial distribution of disease area are integrated to calculate the 

similarity between query image and database images. In our 

method, we applied the fine-tuned GoogLeNet classifier to detect 

the disease type and disease area from CT slice image. Then the bi-

directional weighted distance was calculated as similarity metric 

based on the spatial distribution. The correct ratio among the top-5 

retrieved images achieved 86.2%. The result shows our method has 

highly potential for clinical use to improve the efficiency for 

diagnosis of diffuse lung disease. 
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