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Abstract 
In this article we present an updated version of a block-wise 

video motion estimation (ME) algorithm that is intended to be part 

of real-time frame rate conversion (FRC) software system. As a 

baseline, we choose a variant of a 3D recursive search (3DRS) 

algorithm, due to its relative simplicity and known real-time 

performance potential. We introduce updating of this algorithm, 

which provides effective multithreaded parallelisation in multicore 

systems and decreases the number of computations without a 

noticeable decrease in quality. 

Introduction 
A motion estimation (ME) algorithm is a crucial part of many 

algorithms and systems, for example video encoders, frame rate 

conversion (FRC), and structure from motion. The performance of 

the ME algorithm typically provides an overwhelming contribution 

to the performance of the ME-based algorithm in terms of both 

computational complexity and visual quality, and it is therefore 

critical for many ME applications to have a low-complexity ME 

algorithm that provides a good-quality motion field. However, the 

ME algorithm is highly task-specific, and there is no “universal” ME 

that is easily and efficiently applicable to any task. Since we focus 

our efforts on FRC applications, we choose the 3D Recursive Search 

(3DRS) algorithm [1] as a baseline ME algorithm, as it is well suited 

for real-time FRC software applications. 

The 3DRS algorithm has several important advantages that 

allow a reasonable quality of the motion field used for FRC to be 

obtained at low computational cost. Firstly, it is a block matching 

algorithm (BMA); secondly, it checks a very limited set of 

candidates for each block; and thirdly, many techniques developed 

for other BMAs can be applied to 3DRS to improve the quality, 

computational cost, or both. Many 3DRS-based ME algorithms are 

well known. 

One considerable drawback of 3DRS-based algorithms with a 

meandering scanning order is the impossibility of parallel 

processing when a spatial candidate lies in the same row as the 

current block being propagated. Figure 1 shows the processing 

dependency. The green blocks are those which need to be processed 

before processing the current block (depicted by a white colour in a 

red border). Blocks marked in red cannot be processed until the 

processing of the current block is finished. A darker colour shows a 

direct dependency.  

This drawback limits processing speed, since only one 

processing core of a multicore processor (MCP) can be used for 

3DRS computation. This can also increase the power consumption 

of the MCP since power consumption rises super-linearly with 

increasing clock frequency. A time-limited task can be solved more 

power-efficiently on two cores with a lower frequency than on one 

core with a higher frequency. 

In this work, we introduce several updates to our variant of the 

3DRS algorithm that allow multithreaded processing to obtain a 

motion field and also improve the computational cost without any 

noticeable degradation in the quality of the resulting motion field. 

 

 

Figure 1. Trees of direct dependencies (green and red) and areas of 
indirect dependencies (light green and light red) for a meandering order 

Baseline 3DRS-based algorithm 
The 3DRS algorithm is based on block matching, using a frame 

divided into blocks of pixels 𝐵(�⃗�), where �⃗� = (
𝑥
𝑦) are the 

coordinates of the centre of the block. Our FRC algorithm requires 

two motion fields for each pair of consecutive frames 𝐹(𝑡 −
1) , 𝐹(𝑡). The forward motion field 𝐷𝐹𝑊 is the set of displacement 

vectors 𝐷𝐹𝑊(�⃗�, 𝑡 − 1) assigned to the blocks of 𝐹(𝑡 − 1). These 

displacement vectors point to frame 𝐹(𝑡). The backward motion 

field 𝐷𝐵𝑊 is the set of displacement vectors 𝐷𝐵𝑊(�⃗�, 𝑡) assigned to 

the blocks of 𝐹(𝑡). These displacement vectors point to frame 𝐹(𝑡 −
1). 

We used following candidate set 𝐶𝑆(�⃗�) to search the current 

motion field 𝐷𝑐𝑢𝑟: 

 

𝐶𝑆(�⃗�) = { 𝐶𝑆𝑠𝑝𝑎𝑡𝑖𝑎𝑙(�⃗�), 𝐶𝑆𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(�⃗�), 𝐶𝑆𝑟𝑎𝑛𝑑𝑜𝑚(�⃗�), }, 

 

𝐶𝑆𝑠𝑝𝑎𝑡𝑖𝑎𝑙(�⃗�) = { 𝑐𝑠�⃗⃗⃗�| �⃗⃗⃗�𝑐𝑢𝑟(�⃗� + 𝑈𝑆𝑐𝑢𝑟)}, 

 

𝑈𝑆𝑐𝑢𝑟 = {
−1𝑊

0
,

0
−1𝐻

,
−4𝑊
−1𝐻

,
−1𝑊
−4𝐻
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2𝑊

−3𝐻
} , 

 

𝐶𝑆𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(�⃗�) = { 𝑐𝑠𝐷⃗⃗⃗⃗⃗⃗ ⃗⃗ | �⃗⃗⃗�𝑝𝑟𝑒𝑑(�⃗� + 𝑈𝑆𝑝𝑟𝑒𝑑)}, 

 

𝑈𝑆𝑝𝑟𝑒𝑑 = {
0
0

,
0

1𝐻
,
1𝑊

0
,
4𝑊
2𝐻

} , 

 

𝐶𝑆𝑟𝑎𝑛𝑑𝑜𝑚(�⃗�) = {𝑐𝑠𝐷⃗⃗⃗⃗⃗⃗ ⃗⃗ |𝑐𝑠𝐷⃗⃗⃗⃗⃗⃗ ⃗⃗
𝑏𝑒𝑠𝑡(�⃗�) +

𝑟𝑛𝑑(2)

𝑟𝑛𝑑(2)
,
𝑟𝑛𝑑(2)

𝑟𝑛𝑑(2)
,
𝑟𝑛𝑑(9)

𝑟𝑛𝑑(9)
} , 

 

𝑐𝑠𝐷⃗⃗⃗⃗⃗⃗ ⃗⃗
𝑏𝑒𝑠𝑡(�⃗�) = argmin

𝑐𝑠𝐷⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∈{𝐶𝑆𝑠𝑝𝑎𝑡𝑖𝑎𝑙(�⃗⃗�),𝐶𝑆𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(�⃗⃗�) }

𝑀𝐴𝐷(�⃗�, 𝑐𝑠𝐷⃗⃗⃗⃗⃗⃗ ⃗⃗ ), 

  
where 𝑊 and 𝐻 are the width and height of a block (we used 8x8 

blocks); 𝑟𝑛𝑑(𝑘) is a function whose result is a random value from 

the range [−𝑘, −𝑘 + 1, … , 𝑘 − 1, 𝑘]; MAD is the mean absolute 

difference between the window over the current block 𝐵(�⃗�) of one 

frame and the window over the block pointed to by displacement 
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vector �⃗⃗⃗� in another frame; and the size of the windows is 16x12. 

�⃗⃗⃗�𝑐𝑢𝑟 is the motion vector from the current motion field, and �⃗⃗⃗�𝑝𝑟𝑒𝑑 

is a predictor obtained from the previously found motion field. If the 

forward motion field 𝐷𝐹𝑊(𝑡 − 1) is searched, then the predictor will 

be inverted (−𝐷𝐵𝑊(𝑡 − 1)); if the backward motion field 

𝐷𝐵𝑊(�⃗�, 𝑡) is searched, then the predictor will be formed from 

𝐷𝐹𝑊(𝑡 − 1) by projecting one to block-grid of frame 𝐹(𝑡) with the 

subsequent inversion (−𝑃(𝐷𝐹𝑊(𝑡 − 1))). 

In fact, two ME passes are used for each pair of frames: the first 

pass is an estimation of the forward motion field, and the second 

pass is an estimation of the backward motion field. We used 

different scanning orders for the first and second passes. The top-to-

bottom meandering scanning order (from top to bottom, and from 

left to right for odd rows, and from right to left for even rows) is 

used for the first pass (left-hand image of Figure 2). A bottom-to-

top meandering scanning order (from bottom to top, and from right 

to left for odd rows and from left to right for even rows; rows are 

numbered from bottom to top in this case) is used for the second 

pass (right-hand image of Figure 2). 

 

 

Figure 2. Left: Top-to-bottom meandering order used for forward ME,  
Right: Bottom-to-top meandering order used for backward ME 

The relative positions 𝑈𝑆𝑐𝑢𝑟 of the spatial candidate set 

𝐶𝑆𝑠𝑝𝑎𝑡𝑖𝑎𝑙(�⃗�) and the relative positions 𝑈𝑆𝑝𝑟𝑒𝑑 of the temporal 

candidate set 𝐶𝑆𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 in the above description are valid only for 

top-to-bottom and left-to-right directions. If the direction is inverted 

for some coordinates, then the corresponding coordinates in  𝑈𝑆𝑐𝑢𝑟 

and 𝑈𝑆𝑝𝑟𝑒𝑑  should be inverted accordingly. Thus, the direction of 

recursion changes in a meandering scanning order from row to row. 

In Figure 3, we show the sources of spatial candidates (𝐶𝑆𝑠𝑝𝑎𝑡𝑖𝑎𝑙, 

green blocks) and temporal candidates (𝐶𝑆𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙, orange blocks) 

for two scan orders. On the left-hand side this is the top-to-bottom, 

left-to-right direction, and on the right-hand side, it is the top-to-

bottom, right-to-left direction. 

 

 

Figure 3. Left: sources of spatial and temporal candidates for a block 
(marked by red box) in an even row during forward ME; Right: sources 
of a block in an odd row during forward ME 

The block erosion process [1] was skipped in our modification 

of 3DRS. For additional smoothing of the backward motion field, 

we applied additional regularisation after ME. For each block, we 

compared 𝑀𝐴𝐷𝑛𝑎𝑟𝑟𝑜𝑤(�⃗�, �⃗⃗⃗�) for the current motion vector �⃗⃗⃗� of the 

block and 𝑀𝐴𝐷𝑛𝑎𝑟𝑟𝑜𝑤(�⃗�, �⃗⃗⃗�𝑚𝑒𝑑𝑖𝑎𝑛), where �⃗⃗⃗�𝑚𝑒𝑑𝑖𝑎𝑛 is a vector 

obtained by per-coordinate combining of the median values of a set 

consisting of the nine motion vectors from an 8-connected 

neighbourhood and from the current block itself. Here, 𝑀𝐴𝐷𝑛𝑎𝑟𝑟𝑜𝑤 

is different from 𝑀𝐴𝐷, which is used for 3DRS matching, and the 

size of the window for 𝑀𝐴𝐷𝑛𝑎𝑟𝑟𝑜𝑤 is decreased to 8x8 (to give 

equal block sizes). The original motion vector is overwritten by 

�⃗⃗⃗�𝑚𝑒𝑑𝑖𝑎𝑛 if   𝑀𝐴𝐷𝑛𝑎𝑟𝑟𝑜𝑤 is better or worse by a small margin. 

Wave-front scanning order 
The use of a meandering scanning order in combination with 

the candidate set described above prevents the possibility of parallel 

processing several blocks of a given motion field. This is illustrated 

in Figure 1. The blocks marked in green should be processed before 

starting the processing of the current block (marked in white in a red 

box) due to their direct dependency via the spatial candidate set 

𝐶𝑆𝑠𝑝𝑎𝑡𝑖𝑎𝑙 and the blocks marked in red, which will be directly 

affected by the estimated motion vector in the current block. The 

light green and light red blocks mark indirect dependencies. Thus 

there are no blocks that can be processed simultaneously with the 

current block, since all blocks need to be processed either before or 

after the current block. 

In [2], the authors propose a parallel processing which 

preserves the direction switching of a meandering order. The main 

drawback is that the spatial candidate set is not optimal, since the 

upper blocks for some threads are not processed at the beginning of 

row processing. If we change the meandering order to a simple 

“raster scan” order (always from left to right in each row), then the 

dependencies become smaller (see Figure 4).  

 

 

Figure 4. Trees of dependencies for a raster scan order 

We propose changing the scanning order to achieve wave-front 

parallel processing, as proposed in the HEVC standard [4], or a 

staggered approach as shown in [3]. A wave-front scanning order is 

depicted in Figure 5, together with the dependencies and sets of 

blocks which can be processed in parallel (highlighted in blue). The 

set of blue blocks is called a wave-front. 

In the traditional method of using wave-front processing, each 

thread works on one row of blocks. When a block is processed, the 

thread should be synchronised with a thread that works on an upper 

row, in order to preserve the dependency (the upper thread needs to 

stay ahead of the lower thread). This often produces stalls due to the 

different times needed to process different blocks. Our approach is 

different; working threads process all blocks belonging to a wave-

front independently. Thus, synchronisation that produces a stall is 

performed only when the processing of the next wave-front starts, 

and even this stall can be eliminated since the starting point of the 

next wave-front is usually ready for processing, provided that the 

number of tasks is at least several times greater than the number of 
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cores. The proposed approach therefore eliminates the majority of 

stalls. 

The wave-front scanning order changes the resulting motion 

field, since unlike the meandering scanning order, it uses “left to 

right” only relative positions 𝑈𝑆𝑐𝑢𝑟 and  𝑈𝑆𝑝𝑟𝑒𝑑  during the 

estimation of forward motion and “right to left” for backward 

motion. 

 

 

 

Figure 5. Wave-front scanning order 

Slanted wave-front scanning order 
The proposed wave-front scanning order has an inconvenient 

memory access pattern and hence uses the cache of the processor 

ineffectively. For a meandering scanning order with smooth motion, 

the memory accesses are serial, and frame data stored in the cache 

is reused effectively. The main direction of the wave-front scanning 

order is diagonal, which nullifies the advantage of a long cache line 

and degrades the reuse of the  data in the cache. As a result, the 

number of memory accesses (cache misses) increases.  

To solve this problem, we propose to use several blocks placed 

in raster order as one task for parallel processing (see Figure 6, 

where the task consists of two blocks). We call this modified order 

a slanted wave-front scanning order. This solution changes only the 

scanning order, and not the directions of recursion, so only 𝑟𝑛𝑑(𝑘) 

influences the resulting motion field. If 𝑟𝑛𝑑(𝑘) is a function of �⃗� 

(the spatial position in the frame) and the number of calls in �⃗�, then 

the results will be exactly the same as for the initial wave-front 

scanning order. 

 

 

Figure 6. Slanted wave-front scanning order (two blocks in one task) 

The quantity of blocks in one task can vary; a greater number 

is better for the cache, but can limit the number of parallel tasks. 

Reducing the quantity of tasks limits the maximum number of MCP 

cores used effectively, but also reduces the overhead for thread 

management. 

Double-block processing 
The computational cost for motion estimation can be 

represented as a sum of the costs for a calculation of the MAD and 

the cost of the control program code (managing a scanning order, 

construction of a candidate set, optimisations related to skipping the 

calculation of the MAD for the same candidates, and so on). During 

our experiments, we recognised that a significant number of 

calculations were spent on the control code. 

To decrease this overhead, we introduce double-block 

processing. This means that one processing unit consists of a 

horizontal pair of neighbouring blocks (called a double block) 

instead of a single block. The use of double-block processing allows 

us to reduce almost all control cycles by half. One candidate set is 

considered for both blocks of this double block. For example, in 

forward ME, a candidate set 𝐶𝑆(�⃗�) from the left block of a pair is 

also used for the right block of the pair. However, calculation of the 

MAD is performed individually for each block of the pair, and the 

best candidate is considered separately for each block of the pair. 

This point distinguishes double-block processing from a horizontal 

enlargement of the block. 

A slanted wave-front scanning order where one task consists of 

two double-block units is shown in Figure 7. The centre of each 

double-block unit is marked by a red point, and the left and right 

blocks of the double-block unit are separated by a red line. The 

current double-block unit is highlighted by a cyan rectangle. For this 

unit, the sources are shown for the spatial candidate set (green 

blocks) and for the temporal candidate set (orange blocks) related to 

block A. The same sources are used for block B that belong to the 

same double block as A.  

  

 

Figure 7. Candidate set for a double-block unit. The current double block 
consists of a block A and a block B. The candidate set constructed for 
block A is also used for block B 

Thus, a candidate set is not used for block B. However, it may 

be that a true candidate set for block B is useful when the candidate 

set of block A gets results for blocks A and B that are too variable 

(the best MAD values); this is possible on some edges of a moving 

object or when a non-linear object is used. We therefore propose an 

additional step for the analysis of MAD values, which are related to 

the best motion vectors of blocks A and B of the double-block unit. 

Depending on results of this step, we either accept the previously 

 A   B 
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estimated motion vectors or carry out a motion estimation procedure 

for block B. 

�⃗�𝐴 = (
𝑥
𝑦)  and �⃗�𝐵 = (

𝑥 + 𝑊
𝑦

) 

are the coordinates of the centres of blocks A and B. 

�⃗⃗⃗�𝑏𝑒𝑠𝑡 ( �⃗�, 𝐶𝑆(�⃗�𝐴)) = argmin
𝑐𝑠𝐷⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∈{𝐶𝑆(�⃗⃗�𝐴) }

𝑀𝐴𝐷(�⃗�, 𝑐𝑠𝐷⃗⃗⃗⃗⃗⃗ ⃗⃗ ) 

𝑀𝑎 = 𝑀𝐴𝐷 (�⃗�𝐴, �⃗⃗⃗�𝑏𝑒𝑠𝑡 ( �⃗�𝐴, 𝐶𝑆(�⃗�𝐴))) 

𝑀𝑏 = 𝑀𝐴𝐷 (�⃗�𝐵, �⃗⃗⃗�𝑏𝑒𝑠𝑡 ( �⃗�𝐵, 𝐶𝑆(�⃗�𝐴))) 

𝑖𝑓 𝑀𝑏 > 𝑇1 𝑜𝑟 (𝑀𝑏 − 𝑀𝑎) > 𝑇2 𝑡ℎ𝑒𝑛 

{ 

𝑑𝑜 𝑀𝐸 𝑓𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑏𝑙𝑜𝑐𝑘 𝐵   
} 

𝑇1 and 𝑇2 above are threshold values. Reasonable values of 

the threshold for the usual 8-bit frames are  𝑇1 = 16 and 𝑇2 = 5. 

Evaluation and Results 
The quality of the proposed updates was checked for various 

FullHD video streams (1920x1080) with the help of the FRC 

algorithm. To get ground truth, we down-sampled the video streams 

from 30fps to 15fps and then up-converted them back to 30fps with 

the help of motion fields obtained by the tested ME algorithms. 

The initial version of our 3DRS-based algorithm was described 

above in the section entitled “Baseline 3DRS-based algorithm”. 

This algorithm was modified with the proposed updates. Input 

frames for ME were down-sampled twice per coordinate using an 8-

tap filter, and the resulting motion vectors had a precision of two 

pixels. The up-conversion algorithm worked with the initial frames 

in FullHD resolution, and was based on motion compensated 

interpolation (MCI). To calculate the MAD luminance component 

of frame was used for forward ME and backward ME both. 

Additionally, one chrominance component was used for forward 

ME and another for backward ME. In backward ME, the wave-front 

scanning order was also switched to bottom-to-top and right-to-left. 

Table 1 presents the results of the quality of the FRC algorithm 

based on: (a) an initial version of the 3DRS-based algorithm; (b) a 

version updated using the wave-front scanning order; and (c) a 

version updated using both the wave-front scanning order and 

double-block units.  

The proposed updates retain the quality of the FRC output, 

except for a small drop when double block processing is enabled. 

Here we note again that changing the number of units in the task and 

the number of threads does not change the results of ME (when 

𝑟𝑛𝑑(𝑘) is controlled appropriately), and hence the quality of FRC 

is fully preserved. To check the quality, it is sufficient to measure 

only these three modifications of ME.  

A speed performance of the proposed updates for the 3DRS-

based algorithm was evaluated using a Samsung Galaxy S8 mobile 

phone based on the MSM8998 chipset. The clock frequency was 

fixed within a narrow range for the stability of the results. Threads 

performing ME algorithms were assigned to one cluster of cores. 

The MSM8998 chipset uses a big.LITTLE configuration with 4+4 

cores in clusters with different performance. 

Table 1: Comparison of initial quality and proposed updates: 

baseline (A), wave-front scan (B), wave-front + double block (C) 

Video 
stream 

A 
PSNR 
[dB] 

B 
PSNR 
[dB] 

C 
PSNR 
[dB] 

Climb 42.81 42.81 42.77 

Dvintsev12 27.56 27.55 27.44 

Turn2 31.98 31.98 31.97 

Bosphor 43.21 43.21 43.20 

Jockey 34.44 34.44 34.34 

Average: 36.00 36.00 35.94 

 

Table 2 presents the overall results for performance in terms of 

speed. Column 8 of the table contains the mean execution time for 

the sum of forward and backward ME for a pair of frames using five 

test video streams which were also used for quality testing. 

Experiment E1 shows the parameters and speed of the initial 3DRS-

based algorithm as described in the section entitled “Baseline 

3DRS-based algorithm”. Experiment E2 shows a 19.7% drop (E2 

vs. E1) when the diagonal wave-front scanning order is applied 

instead of the meandering order used in E1. The proposed slanted 

wave-front used in E3 and E4 (eight and 16 blocks in each task) 

minimises the drop to 4% (E4 vs. E1). The proposed double-block 

processing increases the speed by 12.6% (E5 vs. E4) relatively 

version without using this processing. 

 

Table 2: Comparison of execution times for proposed updates 

1) Name of 
experiment 

 

2) Scanning 
order 

3) Multithread 
control code 

used 

4) Number 
of threads 

5) Double 
block used 

6) Number 
of units in  

a task 

7) Number 
of blocks in  

a task 

8) Mean 
execution 
time (ms) 

E1 meandering no 1 no 1 1 24.91 

E2 wave-front no 1 no 1 1 29.81 

E3 wave-front no 1 no 8 8 26.44 

E4 wave-front no 1 no 16 16 25.90 

E5 wave-front no 1 yes 8 16 22.63 

E6 wave-front yes 1 no 1 1 33.29 

E7 wave-front yes 1 no 8 8 28.67 

E8 wave-front yes 1 no 16 16 27.94 

E9 wave-front yes 1 yes 8 16 24.38 

E10 wave-front yes 2 yes 8 16 14.77 

E11 wave-front yes 4 yes 8 16 14.14 
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If we preserve conditions of experiments E9–E11 and only pin 

ME threads to a small cluster, we obtain different results (see E12–

E15 in Table 3). The parallelisation of three threads is closer to the 

ideal (E14 vs. E12). The attempt to use four threads did not give a 

good improvement (E15 vs. E14). Our explanation of this fact is that 

one core is at least partially occupied by OS work. 

Table 3: Execution times of ME on small cluster 

Name of 
experiment 

Number 
of 

threads 

Mean 
execution 
time (ms) 

Comparison 
with E12 

E12 1 55.03 100% 

E13 2 27.38 49.7% 

E14 3 20.12 36.6% 

E15 4 18.23 33.1% 

Conclusion 
The main contribution of this paper is a set of updates for a 

3DRS-based ME algorithm which allow for efficient multithreaded 

multicore implementations on recent mobile devices. The wave-

front scanning order allows multithreaded implementation, and 

gives a speedup of ~2.7x when three threads are used. Using a 

slanted wave-front scanning order improves the memory access 

pattern and almost eliminates the reduction caused by applying the 

wave-front scanning order instead of raster-scan-based scanning. 

Double-block processing also gives a contribution to computation 

speedup of ~12%. 

Our updated 3DRS-based algorithm was used in a real-time 

FRC system performing FullHD content conversion by doubling the 

frame rate (15 to 30 fps) at an overall power consumption of less 

than 500 mA on a Samsung Galaxy S8. No updates of SoC hardware 

(MSM8998) such as the addition of special instructions or a 

dedicated ASIC accelerator were used. 

To improve our FRC system, we plan to improve the ME 

algorithm in several ways. The first of these is to increase the spatial 

resolution of the motion field with a low computational overhead. 

The second is a decrease of algorithm sensitivity to periodic 

patterns, flat areas and changes in scene brightness. The third is to 

improve the precision of occlusion detection and handling, which is 

partly related to ME and partly to the MCI stage of the FRC system. 
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