

Real-time 3DRS motion estimation for frame-rate conversion

Petr Pohl, Valery Anisimovskiy, Igor Kovliga, Alexey Gruzdev and Roman Arzumanyan

Samsung R&D Institute Russia Moscow, Russia

Abstract
In this article we present an updated version of a block-wise

video motion estimation (ME) algorithm that is intended to be part

of real-time frame rate conversion (FRC) software system. As a

baseline, we choose a variant of a 3D recursive search (3DRS)

algorithm, due to its relative simplicity and known real-time

performance potential. We introduce updating of this algorithm,

which provides effective multithreaded parallelisation in multicore

systems and decreases the number of computations without a

noticeable decrease in quality.

Introduction
A motion estimation (ME) algorithm is a crucial part of many

algorithms and systems, for example video encoders, frame rate

conversion (FRC), and structure from motion. The performance of

the ME algorithm typically provides an overwhelming contribution

to the performance of the ME-based algorithm in terms of both

computational complexity and visual quality, and it is therefore

critical for many ME applications to have a low-complexity ME

algorithm that provides a good-quality motion field. However, the

ME algorithm is highly task-specific, and there is no “universal” ME

that is easily and efficiently applicable to any task. Since we focus

our efforts on FRC applications, we choose the 3D Recursive Search

(3DRS) algorithm [1] as a baseline ME algorithm, as it is well suited

for real-time FRC software applications.

The 3DRS algorithm has several important advantages that

allow a reasonable quality of the motion field used for FRC to be

obtained at low computational cost. Firstly, it is a block matching

algorithm (BMA); secondly, it checks a very limited set of

candidates for each block; and thirdly, many techniques developed

for other BMAs can be applied to 3DRS to improve the quality,

computational cost, or both. Many 3DRS-based ME algorithms are

well known.

One considerable drawback of 3DRS-based algorithms with a

meandering scanning order is the impossibility of parallel

processing when a spatial candidate lies in the same row as the

current block being propagated. Figure 1 shows the processing

dependency. The green blocks are those which need to be processed

before processing the current block (depicted by a white colour in a

red border). Blocks marked in red cannot be processed until the

processing of the current block is finished. A darker colour shows a

direct dependency.

This drawback limits processing speed, since only one

processing core of a multicore processor (MCP) can be used for

3DRS computation. This can also increase the power consumption

of the MCP since power consumption rises super-linearly with

increasing clock frequency. A time-limited task can be solved more

power-efficiently on two cores with a lower frequency than on one

core with a higher frequency.

In this work, we introduce several updates to our variant of the

3DRS algorithm that allow multithreaded processing to obtain a

motion field and also improve the computational cost without any

noticeable degradation in the quality of the resulting motion field.

Figure 1. Trees of direct dependencies (green and red) and areas of
indirect dependencies (light green and light red) for a meandering order

Baseline 3DRS-based algorithm
The 3DRS algorithm is based on block matching, using a frame

divided into blocks of pixels 𝐵(�⃗�), where �⃗� = (
𝑥
𝑦) are the

coordinates of the centre of the block. Our FRC algorithm requires

two motion fields for each pair of consecutive frames 𝐹(𝑡 −
1) , 𝐹(𝑡). The forward motion field 𝐷𝐹𝑊 is the set of displacement

vectors 𝐷𝐹𝑊(�⃗�, 𝑡 − 1) assigned to the blocks of 𝐹(𝑡 − 1). These

displacement vectors point to frame 𝐹(𝑡). The backward motion

field 𝐷𝐵𝑊 is the set of displacement vectors 𝐷𝐵𝑊(�⃗�, 𝑡) assigned to

the blocks of 𝐹(𝑡). These displacement vectors point to frame 𝐹(𝑡 −
1).

We used following candidate set 𝐶𝑆(�⃗�) to search the current

motion field 𝐷𝑐𝑢𝑟:

𝐶𝑆(�⃗�) = { 𝐶𝑆𝑠𝑝𝑎𝑡𝑖𝑎𝑙(�⃗�), 𝐶𝑆𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(�⃗�), 𝐶𝑆𝑟𝑎𝑛𝑑𝑜𝑚(�⃗�), },

𝐶𝑆𝑠𝑝𝑎𝑡𝑖𝑎𝑙(�⃗�) = { 𝑐𝑠�⃗⃗⃗�| �⃗⃗⃗�𝑐𝑢𝑟(�⃗� + 𝑈𝑆𝑐𝑢𝑟)},

𝑈𝑆𝑐𝑢𝑟 = {
−1𝑊

0
,

0
−1𝐻

,
−4𝑊
−1𝐻

,
−1𝑊
−4𝐻

,
2𝑊

−3𝐻
} ,

𝐶𝑆𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(�⃗�) = { 𝑐𝑠𝐷⃗⃗⃗⃗⃗⃗ ⃗⃗ | �⃗⃗⃗�𝑝𝑟𝑒𝑑(�⃗� + 𝑈𝑆𝑝𝑟𝑒𝑑)},

𝑈𝑆𝑝𝑟𝑒𝑑 = {
0
0

,
0

1𝐻
,
1𝑊

0
,
4𝑊
2𝐻

} ,

𝐶𝑆𝑟𝑎𝑛𝑑𝑜𝑚(�⃗�) = {𝑐𝑠𝐷⃗⃗⃗⃗⃗⃗ ⃗⃗ |𝑐𝑠𝐷⃗⃗⃗⃗⃗⃗ ⃗⃗
𝑏𝑒𝑠𝑡(�⃗�) +

𝑟𝑛𝑑(2)

𝑟𝑛𝑑(2)
,
𝑟𝑛𝑑(2)

𝑟𝑛𝑑(2)
,
𝑟𝑛𝑑(9)

𝑟𝑛𝑑(9)
} ,

𝑐𝑠𝐷⃗⃗⃗⃗⃗⃗ ⃗⃗
𝑏𝑒𝑠𝑡(�⃗�) = argmin

𝑐𝑠𝐷⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∈{𝐶𝑆𝑠𝑝𝑎𝑡𝑖𝑎𝑙(�⃗⃗�),𝐶𝑆𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(�⃗⃗�) }

𝑀𝐴𝐷(�⃗�, 𝑐𝑠𝐷⃗⃗⃗⃗⃗⃗ ⃗⃗),

where 𝑊 and 𝐻 are the width and height of a block (we used 8x8

blocks); 𝑟𝑛𝑑(𝑘) is a function whose result is a random value from

the range [−𝑘, −𝑘 + 1, … , 𝑘 − 1, 𝑘]; MAD is the mean absolute

difference between the window over the current block 𝐵(�⃗�) of one

frame and the window over the block pointed to by displacement

IS&T International Symposium on Electronic Imaging 2018
Image Processing: Algorithms and Systems XVI 328-1

https://doi.org/10.2352/ISSN.2470-1173.2018.13.IPAS-328
© 2018, Society for Imaging Science and Technology

vector �⃗⃗⃗� in another frame; and the size of the windows is 16x12.

�⃗⃗⃗�𝑐𝑢𝑟 is the motion vector from the current motion field, and �⃗⃗⃗�𝑝𝑟𝑒𝑑

is a predictor obtained from the previously found motion field. If the

forward motion field 𝐷𝐹𝑊(𝑡 − 1) is searched, then the predictor will

be inverted (−𝐷𝐵𝑊(𝑡 − 1)); if the backward motion field

𝐷𝐵𝑊(�⃗�, 𝑡) is searched, then the predictor will be formed from

𝐷𝐹𝑊(𝑡 − 1) by projecting one to block-grid of frame 𝐹(𝑡) with the

subsequent inversion (−𝑃(𝐷𝐹𝑊(𝑡 − 1))).

In fact, two ME passes are used for each pair of frames: the first

pass is an estimation of the forward motion field, and the second

pass is an estimation of the backward motion field. We used

different scanning orders for the first and second passes. The top-to-

bottom meandering scanning order (from top to bottom, and from

left to right for odd rows, and from right to left for even rows) is

used for the first pass (left-hand image of Figure 2). A bottom-to-

top meandering scanning order (from bottom to top, and from right

to left for odd rows and from left to right for even rows; rows are

numbered from bottom to top in this case) is used for the second

pass (right-hand image of Figure 2).

Figure 2. Left: Top-to-bottom meandering order used for forward ME,
Right: Bottom-to-top meandering order used for backward ME

The relative positions 𝑈𝑆𝑐𝑢𝑟 of the spatial candidate set

𝐶𝑆𝑠𝑝𝑎𝑡𝑖𝑎𝑙(�⃗�) and the relative positions 𝑈𝑆𝑝𝑟𝑒𝑑 of the temporal

candidate set 𝐶𝑆𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 in the above description are valid only for

top-to-bottom and left-to-right directions. If the direction is inverted

for some coordinates, then the corresponding coordinates in 𝑈𝑆𝑐𝑢𝑟

and 𝑈𝑆𝑝𝑟𝑒𝑑 should be inverted accordingly. Thus, the direction of

recursion changes in a meandering scanning order from row to row.

In Figure 3, we show the sources of spatial candidates (𝐶𝑆𝑠𝑝𝑎𝑡𝑖𝑎𝑙,

green blocks) and temporal candidates (𝐶𝑆𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙, orange blocks)

for two scan orders. On the left-hand side this is the top-to-bottom,

left-to-right direction, and on the right-hand side, it is the top-to-

bottom, right-to-left direction.

Figure 3. Left: sources of spatial and temporal candidates for a block
(marked by red box) in an even row during forward ME; Right: sources
of a block in an odd row during forward ME

The block erosion process [1] was skipped in our modification

of 3DRS. For additional smoothing of the backward motion field,

we applied additional regularisation after ME. For each block, we

compared 𝑀𝐴𝐷𝑛𝑎𝑟𝑟𝑜𝑤(�⃗�, �⃗⃗⃗�) for the current motion vector �⃗⃗⃗� of the

block and 𝑀𝐴𝐷𝑛𝑎𝑟𝑟𝑜𝑤(�⃗�, �⃗⃗⃗�𝑚𝑒𝑑𝑖𝑎𝑛), where �⃗⃗⃗�𝑚𝑒𝑑𝑖𝑎𝑛 is a vector

obtained by per-coordinate combining of the median values of a set

consisting of the nine motion vectors from an 8-connected

neighbourhood and from the current block itself. Here, 𝑀𝐴𝐷𝑛𝑎𝑟𝑟𝑜𝑤

is different from 𝑀𝐴𝐷, which is used for 3DRS matching, and the

size of the window for 𝑀𝐴𝐷𝑛𝑎𝑟𝑟𝑜𝑤 is decreased to 8x8 (to give

equal block sizes). The original motion vector is overwritten by

�⃗⃗⃗�𝑚𝑒𝑑𝑖𝑎𝑛 if 𝑀𝐴𝐷𝑛𝑎𝑟𝑟𝑜𝑤 is better or worse by a small margin.

Wave-front scanning order
The use of a meandering scanning order in combination with

the candidate set described above prevents the possibility of parallel

processing several blocks of a given motion field. This is illustrated

in Figure 1. The blocks marked in green should be processed before

starting the processing of the current block (marked in white in a red

box) due to their direct dependency via the spatial candidate set

𝐶𝑆𝑠𝑝𝑎𝑡𝑖𝑎𝑙 and the blocks marked in red, which will be directly

affected by the estimated motion vector in the current block. The

light green and light red blocks mark indirect dependencies. Thus

there are no blocks that can be processed simultaneously with the

current block, since all blocks need to be processed either before or

after the current block.

In [2], the authors propose a parallel processing which

preserves the direction switching of a meandering order. The main

drawback is that the spatial candidate set is not optimal, since the

upper blocks for some threads are not processed at the beginning of

row processing. If we change the meandering order to a simple

“raster scan” order (always from left to right in each row), then the

dependencies become smaller (see Figure 4).

Figure 4. Trees of dependencies for a raster scan order

We propose changing the scanning order to achieve wave-front

parallel processing, as proposed in the HEVC standard [4], or a

staggered approach as shown in [3]. A wave-front scanning order is

depicted in Figure 5, together with the dependencies and sets of

blocks which can be processed in parallel (highlighted in blue). The

set of blue blocks is called a wave-front.

In the traditional method of using wave-front processing, each

thread works on one row of blocks. When a block is processed, the

thread should be synchronised with a thread that works on an upper

row, in order to preserve the dependency (the upper thread needs to

stay ahead of the lower thread). This often produces stalls due to the

different times needed to process different blocks. Our approach is

different; working threads process all blocks belonging to a wave-

front independently. Thus, synchronisation that produces a stall is

performed only when the processing of the next wave-front starts,

and even this stall can be eliminated since the starting point of the

next wave-front is usually ready for processing, provided that the

number of tasks is at least several times greater than the number of

328-2
IS&T International Symposium on Electronic Imaging 2018

Image Processing: Algorithms and Systems XVI

cores. The proposed approach therefore eliminates the majority of

stalls.

The wave-front scanning order changes the resulting motion

field, since unlike the meandering scanning order, it uses “left to

right” only relative positions 𝑈𝑆𝑐𝑢𝑟 and 𝑈𝑆𝑝𝑟𝑒𝑑 during the

estimation of forward motion and “right to left” for backward

motion.

Figure 5. Wave-front scanning order

Slanted wave-front scanning order
The proposed wave-front scanning order has an inconvenient

memory access pattern and hence uses the cache of the processor

ineffectively. For a meandering scanning order with smooth motion,

the memory accesses are serial, and frame data stored in the cache

is reused effectively. The main direction of the wave-front scanning

order is diagonal, which nullifies the advantage of a long cache line

and degrades the reuse of the data in the cache. As a result, the

number of memory accesses (cache misses) increases.

To solve this problem, we propose to use several blocks placed

in raster order as one task for parallel processing (see Figure 6,

where the task consists of two blocks). We call this modified order

a slanted wave-front scanning order. This solution changes only the

scanning order, and not the directions of recursion, so only 𝑟𝑛𝑑(𝑘)

influences the resulting motion field. If 𝑟𝑛𝑑(𝑘) is a function of �⃗�

(the spatial position in the frame) and the number of calls in �⃗�, then

the results will be exactly the same as for the initial wave-front

scanning order.

Figure 6. Slanted wave-front scanning order (two blocks in one task)

The quantity of blocks in one task can vary; a greater number

is better for the cache, but can limit the number of parallel tasks.

Reducing the quantity of tasks limits the maximum number of MCP

cores used effectively, but also reduces the overhead for thread

management.

Double-block processing
The computational cost for motion estimation can be

represented as a sum of the costs for a calculation of the MAD and

the cost of the control program code (managing a scanning order,

construction of a candidate set, optimisations related to skipping the

calculation of the MAD for the same candidates, and so on). During

our experiments, we recognised that a significant number of

calculations were spent on the control code.

To decrease this overhead, we introduce double-block

processing. This means that one processing unit consists of a

horizontal pair of neighbouring blocks (called a double block)

instead of a single block. The use of double-block processing allows

us to reduce almost all control cycles by half. One candidate set is

considered for both blocks of this double block. For example, in

forward ME, a candidate set 𝐶𝑆(�⃗�) from the left block of a pair is

also used for the right block of the pair. However, calculation of the

MAD is performed individually for each block of the pair, and the

best candidate is considered separately for each block of the pair.

This point distinguishes double-block processing from a horizontal

enlargement of the block.

A slanted wave-front scanning order where one task consists of

two double-block units is shown in Figure 7. The centre of each

double-block unit is marked by a red point, and the left and right

blocks of the double-block unit are separated by a red line. The

current double-block unit is highlighted by a cyan rectangle. For this

unit, the sources are shown for the spatial candidate set (green

blocks) and for the temporal candidate set (orange blocks) related to

block A. The same sources are used for block B that belong to the

same double block as A.

Figure 7. Candidate set for a double-block unit. The current double block
consists of a block A and a block B. The candidate set constructed for
block A is also used for block B

Thus, a candidate set is not used for block B. However, it may

be that a true candidate set for block B is useful when the candidate

set of block A gets results for blocks A and B that are too variable

(the best MAD values); this is possible on some edges of a moving

object or when a non-linear object is used. We therefore propose an

additional step for the analysis of MAD values, which are related to

the best motion vectors of blocks A and B of the double-block unit.

Depending on results of this step, we either accept the previously

 A B

IS&T International Symposium on Electronic Imaging 2018
Image Processing: Algorithms and Systems XVI 328-3

estimated motion vectors or carry out a motion estimation procedure

for block B.

�⃗�𝐴 = (
𝑥
𝑦) and �⃗�𝐵 = (

𝑥 + 𝑊
𝑦

)

are the coordinates of the centres of blocks A and B.

�⃗⃗⃗�𝑏𝑒𝑠𝑡 (�⃗�, 𝐶𝑆(�⃗�𝐴)) = argmin
𝑐𝑠𝐷⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∈{𝐶𝑆(�⃗⃗�𝐴) }

𝑀𝐴𝐷(�⃗�, 𝑐𝑠𝐷⃗⃗⃗⃗⃗⃗ ⃗⃗)

𝑀𝑎 = 𝑀𝐴𝐷 (�⃗�𝐴, �⃗⃗⃗�𝑏𝑒𝑠𝑡 (�⃗�𝐴, 𝐶𝑆(�⃗�𝐴)))

𝑀𝑏 = 𝑀𝐴𝐷 (�⃗�𝐵, �⃗⃗⃗�𝑏𝑒𝑠𝑡 (�⃗�𝐵, 𝐶𝑆(�⃗�𝐴)))

𝑖𝑓 𝑀𝑏 > 𝑇1 𝑜𝑟 (𝑀𝑏 − 𝑀𝑎) > 𝑇2 𝑡ℎ𝑒𝑛

{

𝑑𝑜 𝑀𝐸 𝑓𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑏𝑙𝑜𝑐𝑘 𝐵
}

𝑇1 and 𝑇2 above are threshold values. Reasonable values of

the threshold for the usual 8-bit frames are 𝑇1 = 16 and 𝑇2 = 5.

Evaluation and Results
The quality of the proposed updates was checked for various

FullHD video streams (1920x1080) with the help of the FRC

algorithm. To get ground truth, we down-sampled the video streams

from 30fps to 15fps and then up-converted them back to 30fps with

the help of motion fields obtained by the tested ME algorithms.

The initial version of our 3DRS-based algorithm was described

above in the section entitled “Baseline 3DRS-based algorithm”.

This algorithm was modified with the proposed updates. Input

frames for ME were down-sampled twice per coordinate using an 8-

tap filter, and the resulting motion vectors had a precision of two

pixels. The up-conversion algorithm worked with the initial frames

in FullHD resolution, and was based on motion compensated

interpolation (MCI). To calculate the MAD luminance component

of frame was used for forward ME and backward ME both.

Additionally, one chrominance component was used for forward

ME and another for backward ME. In backward ME, the wave-front

scanning order was also switched to bottom-to-top and right-to-left.

Table 1 presents the results of the quality of the FRC algorithm

based on: (a) an initial version of the 3DRS-based algorithm; (b) a

version updated using the wave-front scanning order; and (c) a

version updated using both the wave-front scanning order and

double-block units.

The proposed updates retain the quality of the FRC output,

except for a small drop when double block processing is enabled.

Here we note again that changing the number of units in the task and

the number of threads does not change the results of ME (when

𝑟𝑛𝑑(𝑘) is controlled appropriately), and hence the quality of FRC

is fully preserved. To check the quality, it is sufficient to measure

only these three modifications of ME.

A speed performance of the proposed updates for the 3DRS-

based algorithm was evaluated using a Samsung Galaxy S8 mobile

phone based on the MSM8998 chipset. The clock frequency was

fixed within a narrow range for the stability of the results. Threads

performing ME algorithms were assigned to one cluster of cores.

The MSM8998 chipset uses a big.LITTLE configuration with 4+4

cores in clusters with different performance.

Table 1: Comparison of initial quality and proposed updates:

baseline (A), wave-front scan (B), wave-front + double block (C)

Video
stream

A
PSNR
[dB]

B
PSNR
[dB]

C
PSNR
[dB]

Climb 42.81 42.81 42.77

Dvintsev12 27.56 27.55 27.44

Turn2 31.98 31.98 31.97

Bosphor 43.21 43.21 43.20

Jockey 34.44 34.44 34.34

Average: 36.00 36.00 35.94

Table 2 presents the overall results for performance in terms of

speed. Column 8 of the table contains the mean execution time for

the sum of forward and backward ME for a pair of frames using five

test video streams which were also used for quality testing.

Experiment E1 shows the parameters and speed of the initial 3DRS-

based algorithm as described in the section entitled “Baseline

3DRS-based algorithm”. Experiment E2 shows a 19.7% drop (E2

vs. E1) when the diagonal wave-front scanning order is applied

instead of the meandering order used in E1. The proposed slanted

wave-front used in E3 and E4 (eight and 16 blocks in each task)

minimises the drop to 4% (E4 vs. E1). The proposed double-block

processing increases the speed by 12.6% (E5 vs. E4) relatively

version without using this processing.

Table 2: Comparison of execution times for proposed updates

1) Name of
experiment

2) Scanning
order

3) Multithread
control code

used

4) Number
of threads

5) Double
block used

6) Number
of units in

a task

7) Number
of blocks in

a task

8) Mean
execution
time (ms)

E1 meandering no 1 no 1 1 24.91

E2 wave-front no 1 no 1 1 29.81

E3 wave-front no 1 no 8 8 26.44

E4 wave-front no 1 no 16 16 25.90

E5 wave-front no 1 yes 8 16 22.63

E6 wave-front yes 1 no 1 1 33.29

E7 wave-front yes 1 no 8 8 28.67

E8 wave-front yes 1 no 16 16 27.94

E9 wave-front yes 1 yes 8 16 24.38

E10 wave-front yes 2 yes 8 16 14.77

E11 wave-front yes 4 yes 8 16 14.14

328-4
IS&T International Symposium on Electronic Imaging 2018

Image Processing: Algorithms and Systems XVI

If we preserve conditions of experiments E9–E11 and only pin

ME threads to a small cluster, we obtain different results (see E12–

E15 in Table 3). The parallelisation of three threads is closer to the

ideal (E14 vs. E12). The attempt to use four threads did not give a

good improvement (E15 vs. E14). Our explanation of this fact is that

one core is at least partially occupied by OS work.

Table 3: Execution times of ME on small cluster

Name of
experiment

Number
of

threads

Mean
execution
time (ms)

Comparison
with E12

E12 1 55.03 100%

E13 2 27.38 49.7%

E14 3 20.12 36.6%

E15 4 18.23 33.1%

Conclusion
The main contribution of this paper is a set of updates for a

3DRS-based ME algorithm which allow for efficient multithreaded

multicore implementations on recent mobile devices. The wave-

front scanning order allows multithreaded implementation, and

gives a speedup of ~2.7x when three threads are used. Using a

slanted wave-front scanning order improves the memory access

pattern and almost eliminates the reduction caused by applying the

wave-front scanning order instead of raster-scan-based scanning.

Double-block processing also gives a contribution to computation

speedup of ~12%.

Our updated 3DRS-based algorithm was used in a real-time

FRC system performing FullHD content conversion by doubling the

frame rate (15 to 30 fps) at an overall power consumption of less

than 500 mA on a Samsung Galaxy S8. No updates of SoC hardware

(MSM8998) such as the addition of special instructions or a

dedicated ASIC accelerator were used.

To improve our FRC system, we plan to improve the ME

algorithm in several ways. The first of these is to increase the spatial

resolution of the motion field with a low computational overhead.

The second is a decrease of algorithm sensitivity to periodic

patterns, flat areas and changes in scene brightness. The third is to

improve the precision of occlusion detection and handling, which is

partly related to ME and partly to the MCI stage of the FRC system.

References
[1] G. deHaan, P. Biezen, H. Huijgen, O.A. Ojo “True-Motion

Estimation with 3-D Recursive Search Block Matching,” in IEEE

Trans. on Circuits and Syst. for Video Technol., vol. 3, no. 5, 1993

[2] G. Al-Kadi, J. Hoogerbrugge, S. Guntur, A. Terechko, M. Duranton,

O. Eerenberg “Meandering Based Parallel 3DRS Algorithm for the

Multicore Era,” in Proc. of the IEEE International Conf. on Consumer

Electronics, Las Vegas, NV, USA, 2010

[3] S. Fluegel, H. Klussmann, P. Pirsch, M. Schulz, M. Cisse, W. Gehrke

“A Highly Parallel Sub-Pel Accurate Motion Estimator for H.264,” in

IEEE 8th Workshop on Multimedia Signal Processing, Victoria, BC,

Canada, pp. 387-390, 2006.

[4] C. Chi, M. Alvarez-Mesa, B. Juurlink “Parallel Scalability and

Efficiency of HEVC Parallelization Approaches,” in IEEE Trans. on

Circuits and Syst. for Video Technol., vol.22, no. 12, pp. 1827-1838,

Dec. 2012.

Author Biographies
Petr Pohl received an MS (2002) in Technical Cybernetics from the

Faculty of Electrical Engineering (FEE) of Czech Technical University

(CTU). Since then he has worked at Neovision Ltd. (2002–2011) and

Samsung R&D Institute Russia (2011–present). His research interests

include computer vision and image and video processing. His latest works

are related to motion estimation, temporal interpolation and dense

tracking.

Valery Anisimovskiy received his BS (1998) and MS (2000) in Applied

Mathematics and Physics from the Moscow Institute of Physics and

Technology (MIPT). He then worked at the Institute for Nuclear Research

of RAS (2000–2004), SPIRIT Corp (2004–2009), Luxoft (2009–2011), and

Huawei Russian Research Centre (2011–2014). Since 2014, he has worked

at Samsung R&D Institute Russia, Moscow. His research interests include

machine learning, pattern recognition, computer vision, video coding and

audio coding.

Igor Kovliga received an MS degree in Computer Science from Moscow

Institute of Electronic Engineering, Russia (2001) and a PhD in Technical

Science from the Institute of Physical Problems named Lukin, Russia

(2005). He currently works in the Samsung R&D Institute Russia in

Moscow. His research interests include video/image compression

algorithms and the optimisation of image/video processing algorithms for

target platforms.

Alexey Gruzdev received his MS (2014) in Applied Mathematics and

Computer Science from the Lomonosov Moscow State University (MSU).

He then worked at Samsung R&D Institute Russia (2013–2017). Since 2017

he has worked at ARM Ltd., UK. His research interests include computer

graphics, image and video processing, computer vision and high-

performance parallel computing.

Roman Arzumanyan received his BS (2010) and MS (2012) in Applied

Mathematics from Southern Federal University, Rostov-on-Don. Since then

he has worked at Samsung R&D Institute Russia, Moscow (2012–2015),

Intel corp., Moscow (2015–2017). He is currently with Nvidia Corp.,

Moscow as Developer Technology Engineer. His research interests include

video coding, high performance and GPGPU.

IS&T International Symposium on Electronic Imaging 2018
Image Processing: Algorithms and Systems XVI 328-5

