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Abstract
Noise suppression in complex-valued data is an important

task for a wide class of applications, in particular concerning the
phase retrieval in coherent imaging. The approaches based on
BM3D techniques are ones of the most successful in the field.
In this paper, we propose and develop a new class of BM3D-
style algorithms, which use high order (3D and 4D) singular
value decomposition (HOSVD) for transform design in complex
domain. This set of the novel algorithms is implemented as a
toolbox In Matlab. This development is produced for various
types of the complex-domain sparsity: directly in complex do-
main, real/imaginary and phase/ amplitude parts of complex-
valued variables. The group-wise transform design is combined
with the different kinds of thresholding including multivariable
Wiener filtering. The toolbox includes iterative and non-iterative
novel complex-domain algorithms (filters). The efficiency of the
developed algorithms is demonstrated on denoising problems with
an additive Gaussian complex-valued noise. A special set of the
complex-valued test-images was developed with spatially varying
correlated phase and amplitudes imitating data typical for optical
interferometry and holography. It is shown that for this class of
the test-images the developed algorithms demonstrate the state-
of-the-art performance.

Keywords: Block matching, Complex domain, Image denois-
ing, Phase imaging, Sparsity, Higher-order singular value decom-
position

Introduction
Complex-valued denoising is a reconstruction of complex-

valued image uo(x), its amplitude a(x), phase ϕ(x) and maybe
absolute phase ϕabs(x) from the observed noisy complex-valued
data z : X → C, where X ⊂ Z2 is 2D grid of size

√
n×
√

n, are
modeled as

z(x) = uo(x)+ ε(x), (1)

uo(x) = a(x)e jϕ(x),

where x ∈ X , uo(x) ⊂ C
√

n×
√

n is a clear complex-valued image,
and ε(x) = εI(x) + jεQ(x) ⊂ C

√
n×
√

n is complex-valued zero-
mean Gaussian circular white noise of variance σ2 (i.e., εI and
εQ are zero-mean independent Gaussian random variables with
variance σ2/2).

The following methods are typically used for denoising in
the complex domain: point-wise (pixel-wise) nonparametric es-
timation [1], parametric series (approximations), e.g. windowed
Fourier transforms [2], as well as the methods based on sparsity
and group-wise sparsity are used. The last sparsity methods based
on the BM3D technique [3] mainly provides a better accuracy as

compared with counterparts. However, the real-valued transforms
used in the conventional BM3D such as wavelets and DST do not
suit for processing of complex-valued images.

There are two straightforward ideas to approach the
complex-domain problem. First, separate denoising of real and
imaginary or phase and amplitude components of complex-valued
data by the conventional BM3D applied to the real-valued vari-
ables. The drawback of the approach is that usual correlations be-
tween real and imaginary components or phase and amplitude are
not taken into accounting. The second more productive approach
is based on joint consideration of the all parts of the complex-
valued variables, in particular, including the correlation of their
real and imaginary parts and amplitude and phase.

This paper is devoted to this second group of methods and
presents a generalization of the techniques considered in [4],
[5],[6]. Our approach essentially uses Singular Value Decom-
position (SVD) and High Order Singular Value Decomposition
(HOSVD) which allow to decorrelate effectively complex-valued
3D or 4D blocks before noise suppression by thresholding or
Wiener filtering. In the paper, new iterative complex-valued im-
age denoising algorithms based on HOSVD are proposed. The
toolbox allows a flexible switch between different algorithms and
tuning their structure and parameters.

Image denoising:block-matching and HOSVD
The generalized flow chart of the proposed algorithms, in

particular, illustrating the used block-matchings is shown on Fig-
ure 1.

The following basic steps are used for the algorithm design
(details can be seen [6]):

1) Image partitioning into small overlapping rectangular
patches (8x8 pixel for the paper);

2) Matching similar patches in 3D/4D groups;
3) 3D/4D HOSVD transform design for decorrelation data in

groups;
4) Thresholding and Wiener filtering of transformed group-

wise data;
5) Aggregation of the group-wise filtered data in the final

estimate.
In the paper we use the transforms generated by HOSVD

(TUCKER3) [7] for compact representation of 3D/4D groups.
HOSVD allows to represent the group-wise data (tensor) in

the form

ur = Sr×1 T1,r×2 T2,r×3 T3,r, (2)

where T1,r ⊂ CN1×N1 , T2,r ⊂ CN2×N2 and T3,r ⊂ CNJr×NJr are
orthonormal transform matrices, Sr ∈ CN1×N2×Jr is the so-called
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Figure 1. Flow chart of complex domain BM3D filter.

core tensor, and symbols×1,×2,×3 stand for the products of the
corresponding modes (variables). The matrix transform T1,r acts
with respect to the variable l1 in the tensor provided that l2 and l3
are fixed, similar meaning have the mode transforms ×2T2,r and
×T3,r with respect to the variables l2 and l3.

The formula (2) defines the signal through its spectrum (core
tensor). The analysis transform can be represented as follows

Sr = ur
z×1 TH

1,r×2 TH
2,r×3 TH

3,r, (3)

where ′H ′ stands for the Hermitian transpose.

Matlab toolbox
The developed algorithms are implemented in MATLAB and

constitute Complex Domain Image Denoising (CDID) Toolbox.
The structure of the proposed toolbox for complex-valued

images denoising based on HOSVD is shown in Figure 2. A noisy
complex-valued image as well as the standard deviation of the
white additive complex-valued Gaussian noise are required inputs
for any processing in the toolbox.

The CDID toolbox allows to switch between analysis in
complex and real domains, use 3D/4D HOSVD, soft/hard thresh-
olding and Wiener filtering, to use PUMA script [8] for phase un-
wrapping. The toolbox may be applied for a flexible development
of more sophisticated denoising algorithms. One example of such
algorithm is Wiener filtering followed by the hard thresholding or
the iterative scheme described in the next section.

The CDID toolbox also includes the script for generation
of reference and noisy test-images with given characteristics (see
Figure 3).

These test-images well correspond to real experimental data
in following peculiarities:

- higher amplitudes usually correspond to lower phase values
and vice versa;

- probability of abrupt changes in phase increases for areas
where amplitudes are close to zero;

- object features presented in phase may be absent in ampli-
tude and vice versa.

Iterative algorithms
We propose a set of the novel iterative algorithms built us-

ing the discussed above non-iterative algorithms as core elements.
These iterative algorithms have the structure derived in [5] from
the variational formulation of the problem and shown in Table 1,

where CDF (complex domain filter) is any from the non-iterative
algorithms and αt , δt > are the parameters of iterations.

Table 1. Iterative CDF algorithms

Input: z ∈ C
√

n×
√

n (noisy data)
Parameters: K (iteration number), δ > 0 (thresholding),
α > 0 (regularization).
Initialization: u0 = z;
Output: û ∈ C

√
n×
√

n;
1: for t = 1, ..,K
2: vt = ut−1 +αt−1(z−ut−1);
3: ut =CDF(vt ,δt−1);
4: end

û = uK .

The thorough optimization of these iterative algorithms re-
sults in the three-step iterations with the parameters αt−1 and δt−1
varying from step-to-step.

The CDFs with thresholding are used in this optimization
without Wiener filtering.

As a result of our analysis the following values are obtained
for the parameters of the algorithms: δ0=0.9, δ1=0.5, δ2=0.4,
α0=1, α1=0.35, α2=0.25.

Comparative analysis
In this section we present simulation results illustrating and

comparing the performance of the developed algorithms.

Noise modeling
Following to [6], the standard deviation of the additive

complex-valued noise is calculated according to the formula

σ=σϕz ·meanx(ao(x))
√

2, (4)

where meanx(ao(x)) is the mean value of the amplitude and σϕz is
the standard deviation of the noise in the phase 1. This noise stan-
dard deviation scaling by the mean amplitude value is introduced
in order to control the level of the noise in observations through
the noise level in the phase as the phase in the variable of the main
interest in this paper. This scaling makes comparable the results
for the experiments with different images.

1Note, that the factor
√

2 is lost in [6].
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Figure 2. Structure of the introduced family of the complex domain filters

The experiments are produced for the following set of the
phase standard deviations σϕz= {0.05,0.1,0.2,0.3,0.5,0.9}. The
largest σϕz corresponds to the very noisy observations.

It can be proved by linearization of z(x) = az(x)exp(iϕz(x))
produced for small σ , i.e. for small random components in az(x)
and ϕz(x), that the expectations and variances of amplitude and
phase of the observed z(x) are such that

E{az(x)} ' ao(x), σ
2
az
(x) = var(az(x))' σ

2/2, (5)

E{ϕz(x)} ' ϕo(x), σ
2
ϕz
(x) = var(ϕz(x))' σ

2/(2a2
o(x)).

It proves that experiments with varying σ2 calculated ac-
cording to (4) approximately allow to control the noise level in
the phase σ2

ϕz
.

Accuracy criteria
The following performance criteria are used in the paper for

evaluation of the reconstruction accuracy for the complex-valued
signals. For the interferometric phase, it is the peak signal-to-
noise ratio (PSNR):

PSNRϕ = 10log10
n(2π)2

||W (ϕ̂o−ϕo)||22
[dB], (6)

where ϕ̂o and ϕo are the phase reconstruction and the true phase,
respectively; n is the image size in pixels; the phase wrapping
operator W is used in order to eliminate the phase shifts in errors
multiple to 2π [9]. The factor (2π)2 in the numerator of (6) stays
for the squared maximum value of the interferometric phase.

We unwrap the estimated interferometric phase with the
PUMA algorithm [8] in order to get estimates of the true abso-
lute phase ϕo,abs. The accuracy of the absolute phase reconstruc-
tion is measured by signal-to-noise ratio (SNR) for absolute phase

calculated as

SNRϕabs = 10log10
||ϕo,abs− ϕ̄o,abs||22

||ϕo,abs− ϕ̂o,abs +∆ϕ ||22
[dB] (7)

where a scalar ∆ϕ compensates an invariant shift in the abso-
lute phase estimation multiple to 2π which can appear due to the
unwrapping procedure. It is calculated as

∆ϕ = 2π

[
ϕ̂0,abs−ϕ0,abs

2π

]
Here [·] stands for the integer part of the argument and the

hat ′−′means the mean value of the variables.
For the comparative analysis we use the state-of-the-art al-

gorithms for complex-valued images: WFT [10],[2], SpInPhase
[9], and SPAR [11], [12], [13].

Compared algorithms
We wish to compare seven algorithms shown in Table 2 for

the set of the test-images from Fig. 3 with various levels of the
additive noise in observations.

Here ImRe-BM3D HT, ImRe-BM3D WT, ImRe-BM3D IT
and CD-BM3D IT are the algorithms implemented using the
CDID Toolbox. Both ImRe-BM3D and CD-BM3D are designed
using the iterative scheme proposed in the paper. These algo-
rithms are applied with the hard-thresholding and no Wiener fil-
tering.

Numerical analysis
In our tests we use the six phase images shown in Fig. 3 :

Lena, Cameraman, Peppers, Pattern, Truncated Gauss and Hills.
We consider two cases: interferometric and absolute phase.
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Phase and amplitude, lena Phase and amplitude, cameraman

Phase and amplitude, peppers Phase and amplitude, truncated Gauss

Phase and amplitude, hills Phase and amplitude, patterns
Figure 3. Complex domain test-images

Table 2. Compared algorithms

# Algorithm Abbreviation

1
ImRe-BM3D with
hard-thresholding

ImRe-BM3D HT

2
ImRe-BM3D with

hard-thresholding and Wiener
filtering

ImRe-BM3D WI

3 Iterative ImRe-BM3D ImRe-BM3D IT
4 Iterative CD-BM3D CD-BM3D IT
5 Windowed Fourier Transform WFT
6 Sparse learning dictionary SpInPhase

7
Iterative Sparse Phase and

Amplitude Retrieval
SPAR

Let PSNRϕ (k, l,m) be a set of PSNRϕ calculated for k ∈ K,
l ∈ L, m∈M, where K, L and M denote the sets of the algorithms,
the noise standard deviations (six different values), and six test-
images, respectively.

The best algorithm for each test image and for each noise
standard deviation is defined as

mPSNRϕ (l,m) = max
K

PSNRϕ (k, l,m). (8)

We compare the algorithms with this best result using the
differences between the corresponding PSNRs:

∆PSNRϕ (k, l,m) = PSNRϕ (k, l,m)−mPSNRϕ (l,m). (9)

The box-plots on the Figure 4 being depicted for each al-
gorithm (each k) give comparative statistics with respect to two
other indices l and m, i.e. for test-images and for noise standard
deviations. The upper and lower edges of the rectangle boxes
correspond to 25% and 75% quantiles of ∆PSNRϕ (k, l,m) distri-
butions, respectively. Dotted lines marks maximal and minimal
values of ∆PSNRϕ for each algorithm. The horizontal line in-
side of the box (red in color images) is the median value of these
∆PSNRϕ .

Let us analyze the results shown in Fig. 4. It is well seen
that ImRe-BM3D IT provides the maximal values for PSNRϕ in
majority of the experiments. The box in this box-plot is very nar-
row, just a horizontal line, and the minimum values of ∆PSNRϕ is
not much below the box. Thus, the results are very compact and
close to the best possible value. ImRe-BM3D IT is outperforming
ImRe-BM3D WI in average on 2 dB (in some cases up to 3 dB)
and outperforming ImRe-BM3D HT also in average on 2 dB (in
some cases up to 7 dB). The advantage of ImRe-BM3D IT with
respect to other algorithms even more valuable. Methods WFT,
SpInPhase and SPAR are below than ImRe-BM3D IT of about on
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Figure 4. Box-plots of ∆PSNRϕ for compared algorithms

2-5 dB and in some cases more than on 10 dB.
In Fig. 5, we can see the results for the Lena test-image,

σϕ = .3. In this case ImRe-BM3D IT outperforms giving the sec-
ond place SpInPhase more then on 1 dB and provides cleaner and
sharper filtered image.

Fig. 9 shows PSNRϕ as a function of σϕ . These curves
are calculated as average over the six test-images. It is clearly
seen that ImRe-BM3D IT provides always better accuracy with
the advance about 2-3 dB.

An example of 3D visualization of comparative performance
of SpInPhase and ImRe-BM3D for filtering for absolute phase es-
timation can be seen in Fig. 7. ImRe-BM3D demonstrates a quite
good noise suppression for homogeneous regions outperforming
SpInPhase, the closest competitor for the case, more than on 7 dB.

Conclusion
In the paper, the novel iterative complex-valued image de-

noising algorithms based on HOSVD are proposed as well as the
Matlab research toolbox that allows flexible switches between dif-
ferent methods and algorithms. The novel advanced iterative al-
gorithms are proposed. It is shown that they provide the accuracy
of about 1 dB better than the current state-of-the-art as well as the
other algorithms of in the toolbox.

The proposed MATLAB CDID toolbox for complex-
domain (phase/amplitude) denoising is publicly available on
http://www.cs.tut.fi/sgn/imaging/sparse/cdid.zip.
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Noisy image, PSNRϕ =25.1 dB ImRe-BM3D IT, PSNRϕ =38.1 dB SpInPhase, PSNRϕ =37.0 dB
Figure 5. Denoising of test-image lena, σϕ =0.3

Figure 6. Averaged PSNRϕ for interferometric phases

Reference image Noisy image, SNRϕabs =3.3 dB

SpInPhase, SNRϕabs =19.4 dB ImRe-BM3D IT, SNRϕabs =27.0 dB
Figure 7. Results of absolute phase reconstruction for Truncated Gauss, σϕ =0.9
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