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Abstract
Higher-order tensor structured data arise in many imaging

scenarios, including hyperspectral imaging and color video. The
recovery of a tensor from an incomplete set of its entries, known
as tensor completion, is crucial in applications like compression.
Furthermore, in many cases observations are not only incom-
plete, but also highly quantized. Quantization is a critical step
for high dimensional data transmission and storage in order to
reduce storage requirements and power consumption, especially
for energy-limited systems. In this paper, we propose a novel ap-
proach for the recovery of low-rank tensors from a small number
of binary (1-bit) measurements. The proposed method, called 1-
bit Tensor Completion, relies on the application of 1-bit matrix
completion over different matricizations of the underlying ten-
sor. Experimental results on hyperspectral images demonstrate
that directly operating with the binary measurements, rather than
treating them as real values, results in lower recovery error.

Introduction
Massive multiway data emerge in many fields. Multidimen-

sional arrays, known as Tensors, are higher-order generalizations

of matrices and vectors, and provide a natural way to represent

data objects whose entries are indexed by several variables. For

instance, a hyperspectral image can be modeled as a third-order

tensor defined by two indices for spatial variables and one in-

dex for the spectral dimension while a color video corresponds

a fourth-order tensor with an additional index for the temporal

dimension. Employing therefore tensors to process high dimen-

sional observations has become increasingly popular [1, 2].

One issue which arises frequently is that a tensor may have

a significant number of entries missing. Fortunately, in high-

dimensional spaces, the corresponding tensors can be well ap-

proximated by lower dimensional structures. In such case, we

would like to fill in those missing entries based on the available

observations. The problem of recovering a low-rank tensor from

an incomplete set of its entries, is known as low-rank tensor com-

pletion [18]. In many cases, not only are many observations miss-

ing, but the available also quantized to a predefined number of

bits. Quantization is an integral part of data acquisition, especially

for remote sensing scenario like communiting measurements from

airborne and space-borne platform where channel bandwidth is

very limited, as well as application involving energy-limited sys-

tems such as Wireless Sensor Networks and Internet of Things

platforms, where full data transmission is directly related to an

increase in power consumption and a subsequent reduction in the

network lifetime. As a result, quantization of a signal is a criti-

cal step for high dimensional data transmission but also for data

storage.

The question we address in this work is whether it is pos-

sible to recover the real-valued entries of tensors from a small

number of highly quantized (binary) observations. This problem

significantly differs from currently available tensor completion al-

gorithms which are challenged when the observations are highly

quantized, since they treat them as real values instead of discrete.

More specifically, we introduce a novel approach for the recov-

ery of a low-rank tensor from a small number of binary measure-

ments, where given a 3-order tensor where only a small number of

extremely quantized entries are available, we unfold it into 3 ma-

trices and we apply the 1-bit matrix completion algorithm to the

all-mode matricizations of the tensor as illustrated in Figure 1.

To the best of our knowledge, this is the first work that examines

the interaction between quantization and sampling in high-order

structured data. Furthermore, by considering binary encoding, the

proposed scheme is directly applicable to tensor data compres-

sion, a new and underexplored research topic. In short, the key

novelties of this work are

• Explore the recovery of missing and real-valued entries of

highly quantized high-order tensors.

• Propose a formally approach for the recovery of a tensor

from a small number of binary observations.

• Investigate the performance of the proposed method on pub-

licly available hyperspectral images.

Related Work
The problem of low-rank tensor completion can be regarded

as an extension of low rank Matrix Completion. According to

MC, the recovery is possible provided the matrix is characterized

by a small rank (compared to its dimensions) and enough ran-

domly selected entries of the matrix are acquired [3]. Unfortu-

nately, rank minimization is an NP-hard problem therefore can-

not be used for reasonably size data. Since the rank of a matrix

corresponds to the number of nonzero singular values, the rank

minimization can be replaced by the minimization of the nuclear

norm, which is the sum of the singular values of the matrix [4].

The nuclear norm is a convex function which makes the above

problem easy to solve, while under mild conditions, the nuclear

norm minimization can estimate the same matrix as the rank min-

imization with high probability [5]. To solve the nuclear norm

minimization problem, various approaches have been proposed

including the Singular Value Thresholding [7] and the Augmented

Lagrange Multiplier Method [8].

There are many methods which extent the problem of LRTC

to low-rank matrix completion. Specifically, in [17, 18] is em-

ployed matrix nuclear-norm minimization and is used the singu-

lar value decomposition (SVD) in the algorithms. A non-convex

approach of this problem presented in [20], where the authors ap-

ply low-rank matrix factorization [9] to each mode unfolding of
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Figure 1. The proposed method applied to a binary and subsampled 3D tensor. Specifically, we have a tensor with two possible values (two colors) and

missing entries (white cubes), we unfold it into 3 matrices and we apply the 1-bit matrix completion algorithm to its all-mode matricizations. Then, we fold each of

the recovered matrices, which have all their real-valued entries (different colors) and we take the weighted sum of the estimated tensors, with dynamic weights

which depend on the fitting error.

the tensor in order to enforce low-rankness and update the matrix

factors alternatively. This approach has better performance than

the model that performs low-rank matrix factorization to only one

mode unfolding [19].

Although numerous algorithms have been presented for the

recovery of the missing entries of a tensor, no prior work has

been presented for the recovery of a tensor from quantized ob-

servations, especially to a single bit. Unlike tensors however, ex-

isting methods for quantized matrix completion in [10, 11, 12]

have developed statistical models to solve the convex optimiza-

tion problem of the recovery of a low-rank matrix from quantized

and possibly corrupted measurements, either estimating the set of

quantization bin boundaries from observed data using an alterna-

tive optimization procedure, or assuming that the quantization bin

boundaries are known. For the extreme case of noisy 1-bit obser-

vations, recent work has estimated the matrix with all its real en-

tries via solving a constrained maximum likelihood optimization

problem. Under the assumption that the matrix is low-rank these

works have used convex relaxations for the rank via the nuclear

norm [14] or max-norm [15], assuming that the entries are sam-

pled according to a uniform distribution, or a non-uniform distri-

bution respectively. In addition, in [16] is considered constrained

maximum likelihood estimation of the underlying matrix, under a

constraint on its entry-wise infinity-norm and an exact rank con-

straint.

Quantization and Statistical Model
We aim at the recovery of an unknown, low-rank tensor M ∈

R
I1×...×IN from partial binary observations Y = PΩ(Q(M )),

where Ω⊆{1, ..., I1}× ...×{1, ..., IN} is the index set of observed

entries and PΩ is a random sampling operator which keeps the

entries in Ω and zeros out others, retaining only a small number

of entries from the tensor. In addition, the function Q(·) : R→ F
corresponds to a non-uniform scalar quantizer that maps a real

number to a set of two ordered labels F = {1,2} according to

Q(x) =
{

1, if w0 < x ≤ w1

2, if w1 < x ≤ w2
(1)

where {w0,w1,w2} represents the set of quantization bin bound-

aries of all measurements, which satisfies w0 ≤ w1 ≤ w2. We will

assume that the set of quantization bin boundaries is known a pri-

ori.

Let Yi1...iN ∈ F represents the binary measurement of the

(i1, ..., iN)− th entry of the (unknown) tensor M . We use the

following model for the binary measurements Yi1...iN :

Yi1...iN = Q(Mi1...iN + εi1...iN ), (i1, ..., iN) ∈ Ω
εi1...iN ∼ Logistic(0,1) or εi1...iN ∼ N (0,1)

(2)

The quantities εi1...iN model the uncertainty on each measurement

of Mi1...iN . Logistic(0,1) denotes a logistic distribution with zero

mean and unit scale and N (0,1) denotes the standard normal

distribution.

In terms of the likelihood of the observations Yi1...iN , the

model in (2) can be written equivalently as

p(Yi1..iN |Mi1..iN ) = Φ(Ui1..iN −Mi1..iN )−Φ(Li1..iN −Mi1..iN ),

(3)

where the I1 × ...× IN tensors U and L contain the upper and

lower bin boundaries corresponding to the measurements Yi1...iN ,

i.e., we have Ui1...iN = wYi1 ...iN
and Li1...iN = wYi1 ...iN −1. Fur-

thermore, the function Φ(x) corresponds to an inverse link func-

tion. For the logistic model (logistic noise), we use the inverse
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logit link function Φlog(x) = 1
1+e−x , and for the probit model

(standard normal noise), we use the inverse probit link function

Φpro(x) =
∫ x

−∞
N (s | 0,1)ds. The proposed algorithm can be for-

mulated for both noise models.

1-Bit Tensor Completion
In order to recover the missing entries, but also recover the

real values of the low-rank tensor M from partial binary ob-

servations, we unfold the measurement tensor Y ∈ R
I1×...×IN

into N matrices and for each of them, we apply the 1-bit ma-

trix completion algorithm. Formally, the n-th of these matrices is

called the mode-n matricization or unfolding of the tensor Y , and

is denoted as unfoldn(Y ) = Y(n) ∈ R
In×∏ j �=n I j and corresponds

to a matrix with columns being the vectors obtained by fixing

all indices of Y except the n-th index. The estimated tensors

Zn = foldn(Z(n)),n = 1, ...,N. is produced by folding each of the

recovered matrices Z(n) such that:

M ≈
N

∑
n=1

an ·Zn (4)

where an, n = 1, ...,N, are weights, which depend on the fitting

error, and satisfy ∑n an = 1.

1-Bit Matrix Completion Algorithm
Our model can be regarded as an extension of the quantized

matrix completion [11] to the case of quantized tensor comple-

tion, for the extreme case of 1-bit observations. In particular, in

order to recover the low-rank mode-n matricization M(n) from

binary measurements, one seeks to minimize the negative log-

likelihood of Y(n) j,k
, ( j,k) ∈ Ωn (where Ωn is the index set of

observed entries of M(n)), given by (3), subject to a low-rank con-

straint on M(n), i.e., we seek to solve the following constrained

optimization problem:

minimize M(n) − ∑
j,k:( j,k)∈Ωn

log p(Y(n) j,k
| M(n) j,k

)

subject to ‖M(n)‖∗ ≤ λ .
(5)

The nuclear norm constraint ‖M(n)‖∗ ≤ λ is a convex relaxation

of the low-rank constraint which promotes low-rankness of M(n)
[6] and the parameter λ > 0 is used to control its rank.

Since the gradient of the negative log-likelihood of the in-

verse logit and probit link functions are convex in M(n) when

keeping the quantization bin boundaries w0,w1,w2 fixed, the op-

timization problem in (5) can be solved efficiently. Starting with

an initialization of the estimated matrix Z(n) as the measurement

matrix Y(n), i.e., Z1
(n) = Y(n), the algorithm performs two steps at

each iteration l = 1,2, ... . Both steps are repeated until a max-

imum number of iteration lmax is reached or the change in Z(n)
between consecutive iterations is below a given threshold.

The first step aims at reducing the objective function

f (Z(n)) = −∑ j,k:( j,k)∈Ωn
log p(Y(n) j,k

| Z(n) j,k
) of (5) and is

given by

Ẑl+1
(n) ← Zl

(n)− sl ·∇ f , (6)

where sl is the step-size at iteration l. For simplicity, we use a

constant step-size sl =
1
L , where L is the Lipschitz constant, which

is given by Llog = 1
4 for the logistic model and Lpro = 1 for the

probit model. The gradient of the objective function f (Z(n)), with

respect to Z(n), is given by

[∇ f ] j,k =

⎧⎨
⎩

Φ′
(L(n) j,k−Z(n) j,k)−Φ′

(U(n) j,k−Z(n) j,k)

Φ(U(n) j,k−Z(n) j,k)−Φ(L(n) j,k−Z(n) j,k)
if ( j,k) ∈ Ωn

0 otherwise,

where L(n) and U(n) are the mode-n matricizations of L and U
and contain the lower and the upper bin boundaries of the obser-

vations Y(n) j,k
respectively, i.e., L(n) = unfoldn(L ) and U(n) =

unfoldn(U ). The derivative of the inverse link function Φ′
(x) can

be calculated as Φ′
log(x) =

1
2+e−x+ex and Φ′

pro(x) = N (x | 0,1).

The second step aims to impose low-rankness on Z(n) in or-

der to make the solution satisfy the constraint ‖Z(n)‖∗ ≤ λ . In

order to achieve this, we apply the Augmented Lagrangian Mul-

tipliers (ALM) method [8]. Specifically, we solve the following

optimization problem

min
Zl+1
(n)

‖Zl+1
(n) ‖∗ subject to Zl+1

(n) +El+1 = Ẑl+1
(n) , PΩ(El+1)= 0 (7)

As El will compensate for the unknown entries of Ẑl
(n) are simply

set as zeros. So, the partial augmented Lagrangian function of (7)

is

L(Zl+1
(n) ,E

l+1,Al+1,μ) = ‖Zl+1
(n) ‖∗+

< Al+1, Ẑl+1
(n) −Zl+1

(n) −El+1 >+ μ
2 ‖Ẑl+1

(n) −Zl+1
(n) −El+1‖2

F

(8)

Then we can have the inexact ALM approach for the matrix com-

pletion problem, where for updating El the constraint PΩ(El) =
0 should be enforced when minimizing the Lagrangian function

L(Zl
(n),E

l ,Al ,μ). The inexact ALM approach is described with

more details in [8].

Dynamic weights
The weights a1, ...,aN in (4) can uniformly set to 1

N . But, in

some cases, the recovery in one unfolding maybe better than oth-

ers. Therefore, instead of fixed weights, we use dynamic weights

which depend on the fitting error

fitn(Z(n)) = ‖PΩ(foldn(Z(n))−Y )‖F , (9)

where ‖X ‖F =
√
< X ,X > is the Frobenius norm of X (with

< X ,Y >= ∑I1

i1=1 ..∑
IN
iN=1 xi1..iN yi1..iN is denoted to be the in-

ner product of X ,Y ∈ R
I1×..×IN ). The smaller fitn(Z(n)) is, the

larger an should be. Specifically, we set

an =
[fitn(Z(n))]

−1

N

∑
i=1

[fiti(Z(i))]
−1

, n = 1, ...,N. (10)

As demonstrated below, the dynamic weights an can improve the

recovery quality of the recovered tensor.
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Experimental results
In this section, we present experimental results on hyper-

spectral Earth Observation images taken from airbornes or satel-

lites which are publicly available [21]. Specifically, we consid-

ered the hyperspectral images over Indian Pines, Botswana, Pavia

Center, Pavia University and Kennedy Space Center, in order

to validate the efficacy of the 1-bit tensor completion algorithm

(1BTC). The first two images use 14 bits per pixel, the other two

use 13 bits per pixel and the last one uses 16 bits per pixel. We

quantized the images to a single bit, we subsampled their entries

and we recovered each image applying the proposed algorithm.

To assess the recovery performance of our algorithm for different

sampling percentages, we use the Spectral Angle Mapper (SAM)

[22]. SAM is spectral technique that measures the similarity of

image pixel spectra to the spectra of the reconstructed image.

Figure 2 presents the results of the 1-bit tensor completion al-

gorithm to each mode matricization, using the probit model on the

hyperspectral image over Indian Pines. In this figure, is demon-

strated that the dynamic weights improve the recovery quality of

the recovered tensor, as the mode 1 and mode 2 matricizations

have better performance than the mode 3 matricization.
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Figure 2. Reconstruction error to each mode matricization, using the probit

model and the hyperspectral image over Indian Pines.

In Figure 3, we can see the original and the reconstructed

image for 20% sampling percentage, using the same hyperspectral

image and the same model.

Figure 3. The original and the reconstructed image of Indian Pines for 20%

sampling percentage, using the probit model.

Figure 4 shows the proposed algorithm applied on the test

image of Figure 3, using the logistic and the probit model, in

comparison with the linear interpolation method for the recovery

of the unknown tensor. As we can see, our method outperforms

the linear interpolation even for low sampling percentage. In addi-

tion, the logistic and the probit model have the same performance.
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Figure 4. Comparison of 1BTC algorithm using the logistic and the pro-

bit model versus linear interpolation on the hyperspectral image over Indian

Pines.

For Figure 5, we quantized a part of the hyperspectral image

over Indian Pines to 1, 4, 8 and 14 bits and we used these images

as the original image in each case. Applying the 1-bit tensor com-

pletion algorithm using the probit model, the results are presented

in Figure 5. As it was expected, the fewer the bits per pixel of the

original image, the better the performance of reconstruction.
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Figure 5. Reconstruction error for each number of bits per pixel of the

original image, using the probit model.

Finally, in Figure 6 we applied the 1-bit tensor completion

algorithm on each hyperspectral image that was described above

and we measured the performance by computing the peak signal

to noise ratio (PSNR) in decibels, between the original and the

estimated image. Higher PSNR represents better the quality of

the recovered image. Specifically, PSNR is computed using the
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equation

PSNR = 10 · log10(
R2

MSE
) (11)

where R is the maximum fluctuation in the input image data type

and MSE is denoted as the mean square error, which is the aver-

age of the squares of the differences between the original and the

estimated signal.
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Figure 6. PSNR for each hyperspectral image, using the probit model.

In Figures 7 and 8, we can see the original and the recon-

structed image for 50% sampling percentage of the hyperspectral

images over Pavia Center and Pavia University, using the probit

model.

Figure 7. The original and the reconstructed image of Pavia Center for 50%

sampling percentage, using the probit model.

Figure 8. The original and the reconstructed image of Pavia University for

50% sampling percentage, using the probit model.

Conclusions
In this work, we presented a novel approach for the recovery

of a low-rank tensor from an incomplete set of its binary entries.

This problem is crucial especially in compression while, in many

applications of tensor completion are considered discrete observa-

tions, often in the form of binary measurements. However, a sim-

ple method like linear interpolation, is extremely ill-posed, even if

one collects a binary measurement for each of the tensor entries.

Experimental results on real data demonstrate that it is better to

take into account that the quantization of the measurements com-

pared to treating them as actual observed values. An other issue

that would also be interesting to study is how the proposed al-

gorithm performs with measurements that are quantized to more

than 2 (but still a small number) of different values, but we leave

such investigations for future work.
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