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Abstract

Existing full-reference metrics still do not provide a desirable
degree of adequacy to a human visual perception, for evaluation of
images with different types and levels of distortions. One reason
for this is that it is difficult to incorporate the peculiarities of
human visual system in the metrics design. In this paper, a robust
approach to full-reference metrics’ design is proposed, based on a
combination of several existing full-reference metrics. A
preliminary linearization (fitting) of the dependence of MOS with
respect to the components metrics is performed in order to
compensate shortcomings of each component. The proposed
method is tested on several known databases, and demonstrate
better performance than existing metrics.

Keywords: image visual quality assessment, full-reference
metrics, combined metrics, robust metrics

Introduction

A volume and resolutions of acquired images, which need to
be transmitted, processed, stored and disseminated, are
continuously increasing. Since most of images are subject to a
visual inspection and analysis, the methods of objective assessment
of original image quality and efficiency of image processing
application that take into account peculiarities of human vision
system (HVS) become actual [1-3]. This leads to a rapid
development of so-called visual quality metrics including so-called
full-reference (FR) quality metrics used for the verification of the
results of various image processing tasks, such as denoising,
deblurring, lossy compression, super-resolution, etc. Based on such
an assessment, it is possible to optimize (adjust) parameters of
image processing algorithms [2-4], etc.

The main problem with the most of existing metrics is that
they use simplified mathematical models of human visual
perception. Due to this, even the best performing metrics on the
largest databases of test images (for example, TID2013) show low
values of the Spearman rank order correlation coefficient (SROCC,
determined between mean opinion score (MOS) and a metric)
reaching only the level of 0.83-0.85 [3]. One way to improve
metrics’ performance is to combine them. Several ways to combine
visual quality metrics have been proposed in literature [5-10]. This
can be done using simple functions, with elementary metrics used
as the arguments [5]. Other ways to combine is to employ some
decision rules [9], clustering, neural networks or other learning
techniques [7, 8, 10]. On one hand, more complex ways of
combining elementary metrics lead to better results (i.e. a larger
correlation of a metric with the mean opinion score for certain
databases of distorted images) [10]. On the other hand, in practice,
one needs a simple but yet universal metric. This restricts the
number of elementary visual quality metrics used jointly in a
combined metric.

Existing visual quality metrics have different nonlinear
dependencies with MOS and different ranges of metric values.

There are metrics (e.g. PSNR, expressed in dBs) that have
unlimited range [6], whilst there are other metrics that have limited
ranges (e.g., from 0 to 1), and, moreover, metric values mostly
concentrate only in a part of this range [11]. Besides, MOS can
vary in different limits [1, 11]. To get around aforementioned
inconsistency, different approaches have been used. Fitting with a
further linearization is one of them [7].

The combined metrics have to be optimized or trained, and it
is important to choose a proper set of test images for it. Since the
main goal of this study is to create a “universal” metric which is
robust to some types of image distortions and their combinations,
the combined metric should be optimized for the large databases
containing various types of distortions, such as blur, noise (Poisson,
spatially correlated, impulse and others), artifacts caused by
filtering or lossy compression, etc. Thus, a metric design and
optimization requires a large image database. An example of such
a database is TID2013 [3]. Note, that the metrics which are
optimized for one database should also perform well for other
databases.

Thus, the goal of this paper is to design a simple and universal
framework of combined visual quality metrics that have quasi-
linear dependence with MOS and outperform existed metrics on
different databases.

Proposed approach to a combined metric
design

As it has been mentioned above, image quality metrics may
have different ranges of variations of metric values. In this regard,
the MOS to metric fitting with a linearization offers opportunities
of providing possible transformation of a metric value into the
corresponding MOS value or a value proportional to MOS. This
operation is simple and can be done in advance for any elementary
metric obtaining a proper dependence (e.g., power function) for
each component – elementary visual quality metric. After such a
transformation, one, in fact, has the number of MOS estimates as
the number of component metrics considered. These MOS
estimates can be further processed linearly or nonlinearly. In this
paper, we follow the latter approach. Since we consider a limited
number of elementary metrics (up to five) to ensure a simple
structure of a combined metric, we have a limited number of
variants for robust processing of MOS estimates, based on, e.g.,
sample median or alpha-trimmed mean.

The main idea of the proposed approach is in the following.
Recall that there are no elementary visual quality metrics that
perform equally well for different types of degradations in images.
One metric can over-estimate quality of images for one type of
degradation whilst it under-estimates quality for images with other
type or types of distortions. In other words, a given visual quality
metric can produce obviously or sufficiently erroneous estimate of
MOS. Then, if the different metrics have different advantages and
shortcoming (week points, “unfavorable” types of distortions),
then their joint processing in the form of linearized MOS using
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robust estimation shall lead to a decrease of erroneous estimate
influence. This property diminishes the drawbacks of elementary
metrics (inaccurate assessment of images for a particular type or
types of distortions).

Below, we consider the robust linearized combined metrics
designed for the following three configurations: median of MOS
for three component metrics, median of MOS for five component
metrics, alpha-trimmed mean of five MOS estimates. Optimization
presumes finding the best set of component metrics among
available ones. Before describing an optimization procedure and its
results, let us consider more practical but still an important task of
linearization.

Linearization of the elementary metrics

In general, there are number of ways to linearize
dependencies presented in the form of scatter-plots (MOS vs a
metric in our case). For example, it is possible to apply exponential,
logarithmic, power functions as well as polynomials of different
order. Let us give more details and requirements to fitting and
linearization, keeping in mind that they can influence further stages
of joint processing. Recall that a linearization (and fitting) also
depends on amount of data and a way scatter-plot is obtained.
Accuracy of fitting can be described by different parameters and
this should be taken into account as well.

To have a variety of distortion types and many points of our
scatter-plots, we have exploited the database TID2013 [3] which is
currently the largest open database according to the number of
distorted images (3000), analyzed types of distortions (24) and
volunteers participating in the experiments (about 1000) used to
obtain MOS.

To explain what is expected from the fitting and what is
undesirable, let us consider several examples presented for
different metrics in Fig. 1. Recall here that MOS for images in the
database TID2013 potentially varies from 0 to 9 and, in fact, limits
of variations are from almost zero (very bad quality) to slightly
larger than 7 (perfect quality without visible distortions).
Horizontal axis in all scatter-plots corresponds to a considered
metric whilst vertical axis corresponds to MOS. Note that we
expect that dependence of MOS on a metric is monotonous, i.e. a
larger value of a metric (desirably) relates to a larger MOS
associated with better visual quality.

Our examples in Fig. 1 relate to two groups of visual quality
metrics that are most popular nowadays. They are based on (are
extensions of) either conventional PSNR or SSIM [12]. Among
these extensions, we have considered those metrics that have the
largest values of Spearman rank order correlation coefficient
(SROCC) [3] with MOS. PSNR is calculated as:

PSNR = 10 log10(2552/MSE) , (1)

where MSE is the mean square error for pixel-wise comparison of
distorted and reference images. Modifications mainly relate to
calculation of modifications of MSE [6, 13]. All these metrics are
expressed in dB with larger values corresponding to better visual
quality.

SSIM-based metrics “analyze” similarity between two images
(distorted and reference ones) using correlation analysis. Their
values vary from 0 to 1, but, in fact, are mainly concentrated in the
limits from 0.8 to 1.0 (see data in Fig. 1).

First, it is seen that the fitted curve is not always monotonous
(we have used Curve Fitting Toolbox that provides wide

opportunities of employing different functions for this purpose).
The examples are dependencies of MOS on SSIM [12] for the
functions Exp2 and Fourier3, dependence of MOS on
PSNRHMAm [13] (which is modification of PSNR-HMA [6]) for
the functions Gauss1 and Fourier3, for MOS on FSIMc [4] for the
function Poly4. There can be also the case when the fitted curve is
monotonous but it does not suit the considered task – this happens
for the dependence of MOS on PSNRHMAm for the function
Exp1 (the MOS values can be larger than 9). Meanwhile, there are
also examples (Fig. 2) of intuitively good approximations as MOS
on PSNR for the function Power1.

Second, it becomes clear that one type of approximating
functions can be, in general, better than others. In particular,
polynomials of high order (e.g., >6) can overfit the data. Besides, it
is worth applying some quantitative measures of fitting quality.
This can be, for example, conventional Pearson correlation (PC) or
root mean square error (RMSE) (recall that SROCC does not
change in cases of monotonous fitting).

The fitting results for four aforementioned metrics are
presented in Table 1. As it is seen, the best fitting for the metric
PSNRc according to both quantitative criteria (maximal PC and
minimal RMSE) has been provided by the fifth order polynomial,
although the difference in fitting quality between all considered
variants is not large. The best fitting for the metric PSNRHMAm is
observed for polynomials of the third and fourth order according to
RMSE and Fourier functions according to PC.

SSIM is the best approximated by the fifth order polynomial.
The same relates to FSIMc.

According to both accuracy measures, the best fit takes place
for the metric PSNRHMAm. Note that in the case of the best fit the
values of PC are approximately the same as the corresponding
values of SROCC presented in the last row.

Fig. 2 also gives an example of three types of fitting functions
where the variant Power2 is obviously the best one according to
the quantitative criteria and visual analysis. Keeping in mind this
property and recommendations given in [8], we have obtained
fitting results for fitting function Power2.

Robust linearized metrics

Suppose now that one has several estimates of MOS obtained
by linearization of different metrics for the database TID2013. The
chosen metrics are those analyzed in [3] that are among the best
elementary metrics. The obtained data are presented in Table 2. PC
and RMSE values are given to characterize the quality of fitting.
Besides, all three parameters of the fitting function are given in
three rightmost columns. SROCC values are presented as well.

As it is seen, the largest PC values are attained for the metrics
FSIMc, SFF [14], and PSNRHMSm that also have the largest
SROCC and the smallest RMSE values. While selecting the
metrics for joint processing (to design a combined metric), we
should use good but different (complementing each other) metrics.

If one uses three metrics jointly, there are numerous ways to
choose them from the set of elementary metrics given in Table 2.
Table 3 presents five best results (totally 1771 combinations have
been studied) obtained for three visual quality metrics for which
final MOS has been obtained as the median of three MOS
estimates from three different elementary metrics after
linearization. Optimization (selection of the best sets) has been
carried out for TID2013 database using two criteria – either
SROCC or standard Pearson correlation. According to these
criteria, the obtained results are similar.
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Fig. 1 Examples of nonmonotonous fitting functions

Fig. 2 Examples of monotonous fitting functions

Table 1. Fitting functions and accuracy of fitting

Notation Function PSNR PSNRHMAm SSIM FSIMc
RMSE PC RMSE PC RMSE PC RMSE PC

Exp1 f(x) = a*exp(b*x) 0.930 0.662 0.750 0.798 0.923 0.668 0.615 0.869
Exp2 f(x) = a*exp(b*x) + c*exp(d*x) 0.930 0.662 0.817 0.811 0.913 0.677 0.596 0.877
Fourier1 f(x) = a0 + a1*cos(x*w) + b1*sin(x*w) 0.911 0.679 0.636 0.859 0.902 0.686 0.617 0.868
Fourier2 f(x) = a0 + a1*cos(x*w) + b1*sin(x*w) + a2*cos(2*x*w)

+ b2*sin(2*x*w)
0.908 0.682 0.635 0.859 0.896 0.692 0.595 0.877

Fourier3 f(x) = a0 + a1*cos(x*w) + b1*sin(x*w) + a2*cos(2*x*w)
+ b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w)

0.905 0.685 0.634 0.860 0.892 0.696 0.595 0.877

Gauss1 f(x) = a1*exp(-((x-b1)/c1)^2) 0.928 0.663 0.642 0.856 0.923 0.668 - -

Poly1 f(x) = p1*x + p2 0.904 0.660 0.614 0.832 0.958 0.652 0.687 0.832
Poly2 f(x) = p1*x^2 + p2*x + p3 0.903 0.663 0.556 0.859 0.918 0.676 0.603 0.867
Poly3 f(x) = p1*x^3 + p2*x^2 + p3*x + p4 0.879 0.678 0.553 0.859 0.917 0.683 0.564 0.869
Poly4 f(x) = p1*x^4 + p2*x^3 + p3*x^2 + p4*x + p5 0.878 0.68 0.548 0.858 0.907 0.692 0.560 0.877
Poly5 f(x) = p1*x^5 + p2*x^4 + p3*x^3 + p4*x^2 + p5*x + p6 0.875 0.681 0.548 0.858 0.903 0.694 0.560 0.877
Power1 f(x) = a*x^b 0.931 0.661 0.695 0.829 0.939 0.654 0.625 0.864
Power2 f(x) = a*x^b+c 0.928 0.663 0.641 0.856 0.917 0.673 0.603 0.874

SROCC 0.687 0.854 0.637 0.851
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Table 2. Characteristics of metrics after linearization

Metrics SROCC Power2 f(x) = a*x^b+c

PC RMSE a b c
PSNRc 0.687 0.663 0.928 0.006518 1.817 1.838

MSSIM 0.787 0.834 0.685 3.774 8.777 1.823

SSIM 0.637 0.673 0.917 3.175 2.738 2.358

VSNR 0.681 0.661 0.930 -44.9 -1.051 6.09

VIF 0.677 0.767 0.796 6.288 0.3041 -0.785

VIFP 0.608 0.712 0.871 -7.148 -0.1762 12.62

NQM 0.635 0.604 0.989 -14 -0.208 11.82

WSNR 0.579 0.521 1.059 0.6048 0.5245 0.642

IFC 0.540 0.632 0.961 -2.426 -0.4234 5.788

IWSSIM 0.777 0.829 0.693 3.681 6.774 1.842

CWSSIM 0.562 0.563 1.025 1.679 2408 3.588

DCTUNE 0.620 0.610 0.982 5.535 -0.3485 2.284

MAD_INDEX 0.781 0.819 0.711 -0.004784 1.369 5.637

PSNRHVS 0.653 0.590 1.001 -56.14 -0.9029 7.272

PSNRHVSM 0.624 0.590 1.002 -22.85 -0.4282 9.741

PSNRHAc 0.819 0.833 0.686 -362.5 -1.342 8.244

PSNRHMAc 0.813 0.829 0.693 -210 -1.133 8.601

FSIM 0.801 0.857 0.640 4.042 8.627 1.542

FSIMc 0.851 0.874 0.603 3.999 8.713 1.719
SRSIM 0.807 0.865 0.623 4.115 14.65 1.45
SFF 0.851 0.868 0.616 4.089 16.76 1.675

PSNRHMAm 0.854 0.856 0.641 -131.4 -0.9193 10.25

Table 3 – Median of three estimates of MOS

## Metrics SROCC PC
1 FSIMc, SFF, PSNRHMAm 0.8794 0.8964
2 SRSIM, SFF, PSNRHMAm 0.8775 0.8953
3 MAD_INDEX, SFF, PSNRHMAm 0.8765 0.8950
4 FSIM, SFF, PSNRHMAm 0.8757 0.8935
5 DCTUNE, FSIMc, SFF 0.8742 0.8915

As one can see, the use of the median for MOS of three
elementary metrics leads to SROCC and Pearson correlation
coefficient about 0.89 for several combinations. There are several
sets producing similar results. Thus, we have the benefit of about
0.02 for both SROCC and PC.

The use of five component metrics (totally more than 33000
combinations have been studied) allows further increasing of
SROCC and Pearson correlation to almost 0.9 (see data in Table 4).

These results can be still improved a little if α-trimmed
estimate (Table 5) is applied (the largest and the smallest MOS
estimates are rejected and three remained ones are averaged).

Therefore, sufficient improvement compared to elementary
metrics (and compared to the best metric among them) has been
attained.

Table 4 – Median of five estimates of MOS

## Metrics SROCC PC
1 VIFP, DCTUNE, FSIMc, SFF,

PSNRHMAm
0.8847 0.9022

2 SSIM, DCTUNE, FSIMc, SFF,
PSNRHMAm

0.8844 0.8989

3 IFC, DCTUNE, FSIMc, SFF,
PSNRHMAm

0.8839 0.9016

4 UQI, DCTUNE, FSIMc, SFF,
PSNRHMAm

0.8838 0.9003

5 DCTUNE, VIF, FSIMc, SFF,
PSNRHMAm

0.8831 0.9018

Table 5 - α-trimmed mean

## Metrics SROCC PC
1 IFC, DCTUNE, FSIMc, SFF, PSNRHMAm 0.8871 0.9053
2 SSIM, DCTUNE, FSIMc, SFF,

PSNRHMAm
0.8871 0.9001

3 VIFP, DCTUNE, FSIMc, SFF, PSNRHMAm 0.8862 0.9045
4 UQI, DCTUNE, FSIMc, SFF, PSNRHMAm 0.8851 0.9013
5 DCTUNE, VIF, FSIMc, SFF, PSNRHMAm 0.8847 0.9044

A question is what has one to pay for this improvement.
Obviously, it becomes necessary to determine three or five
elementary metrics instead of one, then to carry out determination
of three or five MOS estimates using linearization and to apply the
considered robust estimator. The latter two operations are simple
and do not require essential efforts. Determination of elementary
metrics can be done in parallel and then time for their calculation is
approximately the same as for the computationally most complex
metrics.

It is worth stressing that the best combinations in Tables 3, 4,
and 5 are based on elementary metrics that incorporate different
principles. For example, the best combination in Table 3 includes
FSIMc, SFF, and PSNRHMAm, i.e. SSIM and SNR based metrics
as well as SFF that employs sparse features.

It is possible to compare the obtained results to other
approaches of combined metric design. BMMF [9] provides
SROCC equal to 0.834 for TID2013. The best combination of the
product of three metrics with the optimized powers gives
SROCC=0.8749 [7]. The combined metric that employs trained
neural network (NN) [8] provides SROCC about 0.89 but this
metric is more complex than the proposed ones. Finally, the most
advanced NN-based metrics are characterized by SROCC larger
than 0.95 but they are even more complex.

Being optimized or trained for a certain database (TID2013 in
the considered case), any metric can perform not well enough for
other databases [15-20]. Thus, it is worth verifying the proposed
metric performance for other databases.

The most known among them are LIVE Multi-Distortional
[15], LIVE [16], and CSIQ [17]. They differ from TID2013 by
methodology of choosing test images and experiments performed
with volunteers. They are described below:

1) LIVE Multi-Distortional Database consists of 450 test
images distorted by combinations of Noise with Blur and JPEG
compression with Blur. Each type of distortions has four levels of
intensity, where 0 corresponds to no distortion and 1-3 relate to
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different levels of intensity according to the predetermined
parameters described in [16]. For both pairs of distortions using 15
reference images, 90 images with a single distortion and 135
multiple ones were generated. Image subjective quality assessment
was performed using a single stimulus (SS) approach, when a
single image (either distorted or reference in random order) was
shown to an experiment participant and estimates in the range
1..100 with the semantic labels ‘Bad’, ‘Poor’, ‘Fair’, ‘Good’ and
‘Excellent’ were obtained. Difference mean opinion scores
(DMOS) for images have been evaluated as the mean of all
difference values between reference and distorted images obtained
during all experiments. Lower a DMOS, better quality is observed.

2) LIVE is the earlier released database that contains 779
distorted images with single distortions (Gaussian blur, white noise,
JPEG compression, JPEG2000 compression and fast fading
Rayleigh) that varied in the wide range and were not grouped by
predetermined levels. As in the previous database, for subjective
experiments a single-stimulus methodology was used “because the
number of images to be evaluated was prohibitively large for a
double-stimulus study”. Experiments were divided to sessions by
distortion types. For aggregating results from sessions into one
dataset, scale realignment has been made. At the final step, DMOS
values with the correction according to realignment were obtained.

3) CSIQ image database contains 30 reference images and
866 distorted images with the most common types of distortions:
JPEG compression, JPEG2000 compression, additive white
Gaussian noise, additive Gaussian pink noise, Gaussian blur and
global contrast decrements. These types of distortion were
generated with 4-5 different levels. As authors describe “CSIQ
images are subjectively rated based on a linear displacement of the
images across four monitors placed side by side on equal viewing
distance to the observer. All of the distorted versions of an original
image were viewed simultaneously on the monitor array and
placed in relation to each other according to an overall quality.
Across image ratings are realigned according to a separate, but
identical, experiment in which observers place subsets of all the
images linearly in space”. Ratings are reported in the form of
DMOS. For objective comparisons, we further employ fitting
functions presented in Table 2 for the considered metrics and use
them for the studied databases. The obtained values of SROCC and
PC are presented in Table 6.

Comparing the results for elementary metrics for different
databases, it is possible to note that a metric performance
sufficiently depends on which database it was originally developed
and tested. For example, the metrics VIF, NQM, IFC and other
metrics developed by A.C. Bovik and his co-authors perform well
for databases LIVE and LIVE MD (SROCC values about 0.88 and
higher are typical). Meanwhile, for TID2013 their performance is
considerably worse. An opposite situation takes place for the
metric PSNRHA and its modification PSNRHMA optimized for
TID2013 and applied to LIVE MD. The oldest among the
considered database LIVE is not “complex” for the best of the
modern metrics. Almost all of them have SROCC and PC over 0.9.

Concerning the leaders for CSIQ, they are elementary metrics
that have quite low SROCC and PC values for TID2013 whilst
they perform rather well for LIVE MD. These results evidence in
favor of “overfitting” of metrics that have been trained or
optimized for the particular databases. The metrics FSIMc, SFF,
SRSIM and MAD_INDEX perform rather well for all four
considered databases.

SROCC and PC values for the proposed best metrics are
presented in Table 7 for all four databases.

Table 6. SROCC and PC for different databases with fitting
according to Table 2

Metrics
TID2013 LIVE MD LIVE CSIQ

SROCC PC SROCC PC SROCC PC SROCC PC

PSNR 0.687 0.663 0.677 0.740 0.909 0.911 0.806 0.759
MSSIM 0.787 0.834 0.839 0.874 0.947 0.933 0.915 0.897
SSIM 0.637 0.673 0.642 0.728 0.925 0.937 0.853 0.831
VSNR 0.681 0.661 0.777 0.816 0.939 0.907 0.815 0.758
VIF 0.677 0.767 0.882 0.898 0.976 0.964 0.923 0.928
VIFP 0.608 0.712 0.838 0.871 0.963 0.968 0.888 0.905
NQM 0.635 0.604 0.894 0.897 0.937 0.932 0.736 0.722
WSNR 0.579 0.521 0.763 0.821 0.938 0.940 0.774 0.744
IFC 0.540 0.632 0.885 0.903 0.951 0.956 0.767 0.823

IWSSIM 0.777 0.829 0.883 0.908 0.959 0.936 0.923 0.901
CWSSIM 0.562 0.563 0.621 0.677 0.839 0.814 0.582 0.593
DCTUNE 0.620 0.610 0.810 0.849 0.883 0.898 0.673 0.647

MAD_INDEX 0.781 0.819 0.865 0.894 0.957 0.955 0.947 0.950
PSNRHVS 0.653 0.590 0.713 0.796 0.937 0.918 0.830 0.789
PSNRHVSM 0.624 0.590 0.741 0.818 0.944 0.931 0.822 0.783
PSNRHA 0.819 0.833 0.711 0.780 0.938 0.929 0.926 0.917
PSNRHMA 0.813 0.829 0.740 0.802 0.947 0.934 0.912 0.904

FSIM 0.801 0.857 0.862 0.890 0.961 0.935 0.925 0.909
FSIMc 0.851 0.874 0.867 0.896 0.960 0.938 0.931 0.917
SRSIM 0.807 0.865 0.867 0.887 0.959 0.932 0.932 0.911
SFF 0.851 0.868 0.870 0.887 0.969 0.943 0.963 0.961

PSNRHMAm 0.854 0.856 0.719 0.786 0.938 0.926 0.899 0.877

Table 7. SROCC and PC results of the best combinations for
different databases

Databases Metrics SROCC PC
3 metrics (median)
TID2013 FSIMc, SFF, PSNRHMAm 0.8794 0.8964
LIVE MD FSIMc, SFF, PSNRHMAm 0.7975 0.8371
LIVE FSIMc, SFF, PSNRHMAm 0.9627 0.8995
CSIQ FSIMc, SFF, PSNRHMAm 0.9430 0.9288
5 metrics (median)
TID2013 VIFP, DCTUNE, FSIMc, SFF,

PSNRHMAm
0.8847 0.9022

LIVE MD VIFP DCTUNE FSIMc SFF
PSNRHMAm

0.8507 0.8709

LIVE VIFP DCTUNE FSIMc SFF
PSNRHMAm

0.9620 0.9071

CSIQ VIFP DCTUNE FSIMc SFF
PSNRHMAm

0.9455 0.9419

5 metrics (α-trimmed mean)
TID2013 IFC, DCTUNE, FSIMc, SFF,

PSNRHMAm
0.8871 0.9053

LIVE MD IFC DCTUNE FSIMc SFF
PSNRHMAm

0.8654 0.8885

LIVE IFC DCTUNE FSIMc SFF
PSNRHMAm

0.9631 0.9662

CSIQ IFC DCTUNE FSIMc SFF
PSNRHMAm

0.9457 0.9444
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The combined metric based on the median of three
elementary metrics (case 1 in Table 3) does not perform well
enough for the database LIVE MD. This can be due to bad
performance of the elementary metric PSNRHMAm for this case.
Meanwhile, this metric performs well for the databases LIVE and
CSIQ.

The proposed combined metric that uses median of five
estimates of MOS (variant 1 in Table 4) performs better for all four
databases. A combination based on α-trimmed mean leads to
slightly better results. Thus, the use of five elementary metrics for
obtaining MOS estimates via linearization and robust processing of
these estimates leads to the positive outcomes. α-trimmed mean
(case 1 in Table 5) seems to be the best choice of joint processing.
In our opinion, good results are obtained mainly due to universality
of the metrics SFF and FSIMc that appear to be “universal”
enough for different types of distortions.

We have also used four top-best combined metrics from Table
5 (variants 2…5) for the considered databases Multidistortion-
LIVE, LIVE and CSIQ. These metrics do not perform better than
the case 1.

Conclusions
Robust linearized combined metrics have been designed for

three configurations: median of three estimates of MOS resulting
from elementary metrics, median of five estimates, alpha-trimmed
mean of five estimates. Fitting and linearization aspects have been
considered. Optimization that presumes finding the best sets of
elementary metrics among the available ones has been carried out
for TID2013 database using one of the criteria –SROCC or
standard Pearson correlation. The use of median for MOS of three
component metrics has led to SROCC and Pearson correlation
coefficient about 0.88 for several good combinations. The use of
five component metrics allows further increasing of SROCC and
Pearson correlation to 0.9. The proposed solutions have been
verified for other existing databases. There are problems remaining
for the database LIVE MD although for LIVE and CSIQ databases
the proposed metrics perform well.
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