
Introduction 
Sometimes the region of interest in a high-resolution image does not 

fit the field of depth when a scene has been shot, due to insufficient 

focus depth. In addition, defocus in high-resolution images is easily 

observed when displayed on large, high-resolution screens. At the same 

time, there is no necessity to remove defocus if the background (e.g. a 

wall or mountains) has been intentionally placed out of focus by the 

user. 

The goal of our paper is to present a novel method for improving the 

sharpness of images and video that suffer from defocus blur. 

Previous Work 
The two most popular approaches to sharpening images are 

deconvolution [17] and unsharp masking [18]. Deconvolution was 

introduced to image processing by Enders Robinson in 1950 [19], and 

has been further developed by many researchers since then [17]. 

Unsharp masking was invented by German photographers in the 1930s 

[18]; it was successfully transferred to the digital realm in the 1990s 

and is widely used in graphical editing software today. 

In the 1980s and 1990s, Morrone, Owens and other researchers 

suggested the local energy model of feature perception [8-16]. This 

postulates that features are perceived at points in an image where the 

Fourier components are maximally in phase. Peter Kovesi further 

developed this model, using the phase ‘congruency term’, and applied 

it to detect corners and edges. Our contribution is that we employ phase 

congruency to enhance perceptually important image details.  

Phase congruency characterises coherence among image 

components in the frequency domain. It has been used for image 

symmetry, corner, edge and feature detection [1-4], defining sharpness 

metrics [4-6] and the detection of image splicing [7].  

To our knowledge, the approach described below represents the first 

attempt to use phase congruency for image sharpness improvement and 

blur reduction. 

Method Description 
While phase congruency is usually used for edge and corner 

detection, our technique employs it for sharpness improvement and the 

removal of defocus blur. Our method consists of the following steps: 

1. The RGB colour of each pixel of a video frame is converted to the 

YCbCr colour space (no conversion is needed in the case of a video 

stream).  

2. We take only the luminance value, Y, at each pixel; the resulting 

Y image is broken up into overlapping tiles.  

3. The Fourier transform is applied to the luminance of each tile after 

windowing using a Gaussian function.  

4. The Fourier spectrum of the tile is rebalanced based using phase 

congruency analysis.  

5. The tiles are merged after the inverse Fourier transform; again, 

Gaussian windowing is used to ensure seamless stitching of the tiles.  

6. The new Y value is combined with the initial Cb, Cr into Y’CbCr, 

and Y’CbCr is converted to RGB (no conversion is needed in the case 

of a video stream).  

 The method workflow is illustrated in Figures 1 and 2. 

 

 
Figure 1. The method workflow 

The Y component of the video signal is transferred to the chip, where 

our algorithm is implemented using a form of System on Chip (SoC) 

solution. It is processed there and then admixed with the original CbCr 

components.  
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Abstract  
We suggest a method for sharpening an image or video stream without using convolution, as in unsharp masking, or deconvolution, as in 

constrained least-squares filtering. Instead, our technique is based on a local analysis of phase congruency and hence focuses on perceptually 

important details. The image is partitioned into overlapping tiles, and is processed tile by tile. We perform a Fourier transform for each of 

the tiles, and define congruency for each of the components in such a way that it is large when the component’s neighbours are aligned with 

it, and small otherwise. We then amplify weak components with high phase congruency and reduce strong components with low phase 

congruency. Following this method, we avoid strengthening the Fourier components corresponding to sharp edges, while amplifying those 

details that underwent a slight or moderate defocus blur. The tiles are then seamlessly stitched. As a result, the image sharpness is improved 

wherever perceptually important details are present.  

 

 

IS&T International Symposium on Electronic Imaging 2018
Image Processing: Algorithms and Systems XVI 218-1

https://doi.org/10.2352/ISSN.2470-1173.2018.13.IPAS-218
© 2018, Society for Imaging Science and Technology



 

The resulting Y’CbCr signal is displayed on a LED panel.  

 

 
Figure 2. Colour processing.  

Suppose we have a set of complex numbers 𝑌 = {𝑦𝑖 , 𝑖 = 1. . 𝑛}. We 

define phase congruency with a phase 𝜔 and a non-zero constant 𝛿 as 

𝐶𝑌(𝜔, 𝛿) = ∑
|𝑦𝑖|

|𝑦𝑖| + 𝛿
cos (arg(𝑦𝑖) − 𝜔)

𝑖

 

We process an image or video frame by applying the discrete Fourier 

transform that places the zero-frequency component at the spectrum 

center. For each frequency (𝑙, 𝑘) , we suggest that the following 

spectrum area be analyzed (see Figure 3): 

𝐷(𝑙, 𝑘) = {(𝑖, 𝑗): |𝜑𝑖,𝑗 −  𝜑𝑙,𝑘| ≤ ∆𝜑  ∧ 𝑟𝑖,𝑗 ∈ [𝑟𝑙,𝑘 − ∆𝑟 , 𝑟𝑙,𝑘]} 

Here, (𝑟𝑖,𝑗 , 𝜑𝑖,𝑗) are the spherical coordinates of the point (𝑖, 𝑗), and 

∆𝜑, ∆𝑟 are the parameters of the algorithm. Such a choice of the areas 

to be analyzed is inspired by the following observation: if the image 

has a pronounced edge at the center, the spectrum acquires high-

congruency regions of shapes similar to the one defined above. The 

areas 𝐷(𝑙, 𝑘) determine a manifold of the patterns like those shown in 

Figure 5. 

 
Figure 3. Elements of the phase maps chosen for the averaging of complex 
magnitudes 

According to the local energy model [10, 11], perceptually important 

features produce the Fourier components that are maximally in phase 

[8-16]. To sharpen perceptually important image details, we first do the 

Fourier transform of a Gaussian-windowed tile. We then consider the 

Fourier components  𝑥𝑙𝑘  whose frequencies (𝑙, 𝑘)  have moderate 

values – that is, they are not too big and not too small. Too small 

components are of no interest to us because they are responsible for 

slowly varying image constituents rather than details. Big frequencies 

are excluded in order to ignore sharp edges and most of noise. 

After we selected the Fourier components of interest, we compute 

phase congruency for them as 𝐶𝐷(𝑙,𝑘)(𝑎𝑟𝑔(𝑥𝑙𝑘) , 𝛿). Then we amplify 

weak components with high phase congruency and reduce strong 

components with low phase congruency. Notice that the parameter 𝛿 

helps us segregate unreliable spectrum points (𝑙, 𝑘) . Namely, 

frequencies where the magnitude is noticeably smaller than 𝛿 almost 

do not contribute to the phase congruency.  

We experimented with clusterization of points in 𝐷(𝑙, 𝑘) based on 

their phase congruency. We found that it is difficult to define robust 

criteria for such clusterization within 𝐷(𝑙, 𝑘) . However, we 

implemented a variant of the algorithm, in which the computation of 

phase congruency includes only points where the phase arg(𝑦𝑖𝑗) 

differs by not more than ±𝜋/2 from the phase of the point in question 

arg(𝑥𝑙𝑘). 

 
Figure 4. Demonstration of typical congruency patterns and spectrum 
enhancement with our approach. On spectrum images, the color hue encodes the 
phase, the brightness encodes the magnitude. 

 
Figure 5. Demonstration of image pattern (b.) corresponding to spectrum area 

with phase congruence. 

Results 
To numerically evaluate our method, we generated in-focus and 

defocused images from light fields provided by Stanford University 

(http://lightfield.stanford.edu/lfs.html), using the Java applet available 

there. Tables 1 and 2 below show how PSNR and MSSIM change after 

the application of our algorithm. The computation time for images with 

a resolution of 1536x1280 was less than or approximately equal to 1 s 

on a PC with Intel Core i7-3770. 

Table 1. Test results, PSNR measurements 

PSNR, dB 

Test name Defocused 

vs. ground 

truth 

Sharpened 

vs. ground 

truth 

Delta 

Treasure Chest 22.283 22.403 0.121 

Eucalyptus 

Flowers 

31.256 31.899 0.643 

Lego 24.181 24.44 0.26 

Average PSNR 25.907 26.248 0.341 
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Table 2. Test results, MSSIM measurements.  

MSSIM  

Test name Defocused 

vs. ground 

truth 

Refocused 

vs. ground 

truth 

Delta 

Treasure Chest 0.606 0.66 0.054 

Eucalyptus 

Flowers 

0.862 0.889 0.027 

Lego 0.716 0.748 0.032 

Average MSSIM 0.728 0.766 0.037 

 

 

 

 
Figure 6. An example of the results of sharpness improvement obtained with 
our method: the upper image is the original frame from a video (courtesy of 
4KSamples), and the lower image is the frame obtained by processing using 
our method 

 

Figures 7 and 8 show a comparison of our method with certain 

deconvolution techniques [17, 19] and unsharp masking [18]. As can 

be seen from the above images, our method is the least prone to 

artefacts compared to other methods, and noticeably improves 

sharpness (notice the fur on the puppy’s nose). The processing time is 

about 30 s for one UHD frame on a PC with an Intel Core i7-3770, 

3.40GHz.  

 

      

 

 
 
Figure 8. Comparison of our method with deconvolution methods. The upper 
left image is the original one; the upper right is the result of CLS filtering [17]; 
the lower left image is the result of the truncated CLS [20]; and the lower right 
is our result 
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Conclusion 
We present a new method for improving the sharpness of high-

resolution images and videos.  

The differentiation points of our approach are as follows: (1) it uses 

image processing based on a model of human visual perception in the 

frequency domain, employing local phase congruency analysis; (2) it 

offers uniform multi-scale feature enhancement; (3) it has the 

capability of highly selective amplification of subtle, faint features, 

textures and details; (4) it has an artefact-free sharpening/clarifying 

effect; and (5) it has no over-contrast distortion.  

To enhance detail in very dark and very bright areas, our company 

offers a technology called Samsung Micro Dimming. The proposed 

method improves sharpness in areas that lack sharpness due to defocus. 

The use of the suggested sharpening technique based on local phase 

congruency to complement Micro Dimming is worthy of interest. 

Other possible applications include synthesising high-quality still 

images from video sequences or shot bursts, content enhancement of 

UHD videos, and semi-automatic adaptive video/image editing. 

   

 
Figure 7. Comparison of our method with unsharp masking 
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