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Abstract
Recently, the use of neural networks for image clas-

sification has become widely spread. Thanks to the avail-
ability of increased computational power, better per-
forming architectures have been designed, such as the
Deep Neural networks. In this work, we propose a novel
image representation framework exploiting the Deep p-
Fibonacci scattering network. The architecture is based
on the structured p-Fibonacci scattering over graph data.
This approach allows to provide good accuracy in clas-
sification while reducing the computational complexity.
Experimental results demonstrate that the performance
of the proposed method is comparable to state-of-the-art
unsupervised methods while being computationally more
efficient.

Introduction
The availability of low cost digital imaging devices

allows end users to easily act as content creators at al-

most no cost. The acquired images are often shared

among friends through some communication network.

Recent studies estimate that more than 250 billion pho-

tos have been uploaded to Facebook thus resulting in

350 million photos per day [1]. To manage this huge

amount of data, new tools and dedicated representation

frameworks are needed.

One of the basic tool is the automatic image clas-

sification that is fundamental in many fields, such as

handwriting recognition, object identification, biomet-

rics, etc. This task is usually performed by extracting

features from the images and creating clusters based

on some similarity criteria. The features extracted from

the image to be classified are compared with the rele-

vant features of each cluster: the image will belong to

the cluster showing the lower difference with respect

to the extracted features. Depending on the interaction

between the user and the system during the classification,

two types of classification can be identified: supervised

and unsupervised.

One of the problem affecting the performances of

image classification is the possible rigid rotation and/or

translation of the objects in the scene. The content vari-

ability does not affect the real information of the scene,

however, it heavily affects the similarity computation

between features extracted from the image under test

and reference features.

In this work the problem of image classification by

means of Deep Neural networks is addressed. In more

details, a theoretical analysis of p-Fibonacci scattering

network is performed and is used as basis for represent-

ing the images under test. The main goal is to extend

the method proposed in [2] by exploiting the Fibonacci

p-sequences in the scattering procedure thus improving

the classification performances. The contributions of this

work may be summarized as follows:

• a novel classification algorithm is proposed based

on an unsupervised learning approach;

• the scattering procedure is obtained by exploiting

the p-Fibonacci scattering that, based on the se-

lected p-sequence, allows more flexible selection

of the input coefficients;

• the p-Fibonacci based decomposition results in a

sparse representation of data that allows compu-

tational complexity and storage savings. Further-

more, as generally observed in sparse representa-

tions, there is a lower probability of having depen-

dencies due to noise in the data representation.

p-Fibonacci sequences
The p-Fibonacci sequence, the generalization of

famous Fibonacci sequence proposed by Leonardo da

Pisa in [3], can be defined as follows. Given (p,n) ∈ N,

the sequence of p-Fibonacci numbers F(p)(n) is:

Fp(n) =

⎧⎪⎨
⎪⎩

0 if n < 0

1 if n = 0

Fp(n−1)+Fp(n− p−1) if n > 0

The Zeckendorf theorem [4] states that every pos-

itive integer m can be represented uniquely as the sum

of one or more distinct p-Fibonacci numbers in the

sequence {an}, an = Fp(n), for n ≥ 1, in such a way

that the sum does not include any two consecutive p-

Fibonacci numbers.
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A useful representation of the p-Fibonacci numbers

is obtained by exploiting the binary p-Fibonacci tree

that is a non-oriented graph in which each node has

outdegree of at most two. In general, if there is a path

between two nodes a and b, a is called predecessor of b
and b successor of a. The depth of a node is the length

of the path from the root to that node. If depth(b) =
depth(a)+ 1 it is said that b is a child of a and a is a

parent of b.

In the Fibonacci case, the root is indexed by Fp(n) = N,

its sons are Fp(n−1) and Fp(n−1− p). This recursion

is repeated for each node until the last level which is

composed by N nodes. Let N = Fp(n) be the leaves of

the binary tree T; at the bottom level, the leaves are

clustered in three sets: w0, w1, and w2, where

• w0 = {α0, · · · ,αn | αiis a left outedge}
• w1 = {β0, · · · ,βn | βi is a right outedge}
• w2 = {γ0, · · · ,γk | γ j is a single child}

The cardinality of w2 is |w2|= Fp(n−1)−Fp(n−1−
p). It can be easily demonstrated that the cardinality of

w0 and w1 is Fp(n−1− p).
The core element of the scattering transform is the

p-Fibonacci matrix that can be obtained through the

p-Fibonacci binary tree. Starting from the root of the

p-Fibonacci tree, let us label each edge of the tree as

follows:

1. If the node has two children, the left outedge will

be denoted with 0 and the right one with 1.

2. If the node has only one child, the outedge will

have label 0.

Each node of the binary tree may be indexed by a vector

(α1(a), ....,αk(a)) (α j ∈ {0,1}, j = 1, ...,k), where k is

the node depth and α j are labels of the edges to that

node starting from the root of the tree. Each possible

path Fp(n) represents the row of a matrix of size Fp(n)×
Fp(n− 1) of elements 0 or 1. The p-Fibonacci matrix

can be obtained through recursion:

HFp(n) =

(
a HFp(n−1)

b HFp(n−1−p)

)

where a is a column of Fp(n−1) zeros and b is a column

of Fp(n−1− p) ones, HFp(n−1) and HFp(n−1−p) are the

matrices corresponding to Fp(n−1) and Fp(n−1− p)
and finally b is a Fp(n−1− p)∗ p matrix of zeros.

Proposed method
The proposed technique allows to represent an im-

age by exploiting a scattering transform based on the

p-Fibonacci decomposition. This transform results in a

translation and rotation invariant representation of the

data. Next, a supervised classification using a Gaussian

kernel Support Vector Machine is applied for pooling

the extracted features.

p-Fibonacci scattering transform
In [2], an algorithm for signal representation based

on a connectivity graph is introduced. The input layer of

the graph is a positive d-dimensional signal x ∈ (R+)d .

Let x( j) be the generic network layer at depth j. A deep

neutral networks computes x( j+1) by applying a linear

operator Hj to x( j). Due to the linearity property, the

distance is preserved, up to a constant normalization

factor λ so

∣∣∣
∣∣∣Hjy−Hjy

′ ∣∣∣
∣∣∣=

∣∣∣
∣∣∣Hj(y− y

′
)
∣∣∣
∣∣∣= λ

∣∣∣
∣∣∣y− y

′ ∣∣∣
∣∣∣ .

Applying Hj to x( j) the next network layer will be:

x( j+1) =
∣∣∣Hjx( j)

∣∣∣ .
This operation is iterated up to a maximum level J to

finally compute the last level x(J). This transformation

Hj , specified by the multi-layer pairings π j , is shown in

Figure 1.

Figure 1. Hierarchical partition of a graph.

The maximum level J must be

J ≤ n− p

where d = Fp(n). The operator Hj applies the two bijec-

tive transformations:

(α,β ) �→ (α +β , |α −β |) = (u,v) . (1)

where α ∈ w0 and β ∈ w1 and

γ �→ γ (2)
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where γ ∈ w2. Since this is an invariant permutation, α ,

β , and γ may be recovered as follows:

(
u+ v

2
,

u− v
2

)
= (max(α,β ) ,min(α,β )) (3)

Furthermore, it is a reversible algorithm thus allowing

to identify the initial array x starting from the last level

by applying the inverse formulas (Eq. 3).

In this contribution we extend the approach pro-

posed in [2] by exploiting the p-Fibonacci sequences

for pairing the elements. In more details, the number

of rows of x is a p-Fibonacci number N = Fp(n). The

procedure is based on i) the identification of the set w0,

w1, and w2, followed by ii) the application of the bi-

jective transformation defined in Eq. (1) to x(w0) and

x(w1), and the one defined in Eq. (2) to the set x(w2).
The application of

∣∣Hj
∣∣ to x( j) allows to compute the

next layer x( j+1) =
∣∣∣Hjx( j)

∣∣∣, obtained by re-grouping

of the coefficients of x( j) ∈ R
d into Fp(n−1− p) pairs

and without modifying the other part. This pairing is an

invariant permutation π j =
{

π j(w0),π j(w1)
}

:

x( j+1)(w0) = x( j)(π j(w0))+ x( j)(π j(w1)) (4)

x( j+1)(w1) =
∣∣∣x( j)(π j(w0))− x( j)(π j(w1))

∣∣∣ (5)

x( j+1)(w2) = x( j)(w2) (6)

The pairing π j specifies which index π j(w0) is paired

with π j(w1). However, the ordering index w is not rele-

vant, as w specifies the storing position in x( j+1) of the

transformed values. The output x(J) is computed with

Fp(n−1− p)× J additions and subtractions. It is worth

noticing that p = 0 is the classical Haar representation

d = 2n, where J ≥ 0 represents the maximum depth and

2J ≤ d, and |w0| = |w1| = d
2 . The classical Haar func-

tions are defined by the dyadic splitting of time interval,

resulting in an empty w2 set.

If p ≥ 1, d = Fp(n), J ≥ 0 is the maximum level

and it must be J ≤ n− p. As stated before, this is an

orthogonal p-Fibonacci scattering x(J) because it applies,

at each step, an orthogonal matrix to x, which depends

on x and J. Indeed, for any J ≥ 0 and any (x,y) ∈ R
2d

∣∣∣
∣∣∣x(J)− y(J)

∣∣∣
∣∣∣≤ ||x− y|| . (7)

Moreover, x(J) = DMx,Jx, where Mx,J is an orthogonal

matrix which depends on x and J, D is a Fp(n)×Fp(n)
diagonal matrix where the diagonal vector assumes 1√

2
in the rows indexed by w0 and w1, and 1 in the rest. The

result of the product is an orthogonal matrix, and

∣∣∣
∣∣∣x(J)

∣∣∣
∣∣∣≤ ||x|| .

From Eq. (3) it is possible to recover α and β . It

can be proved that the signal x can be reconstructed from

2J distinct orthogonal p-Fibonacci scattering transforms,

computed with different pairings π j at each layer. That

is, there exist 2J different transforms such that all x ∈R
d

can be reconstructed from the coefficients of these 2J

transforms.

Let us denote by V the set of d = Fp(n) vertices of a

graph. The input layer is

x(0)(w,0) = x(w).

The resulting x(1)(w,q) is an array of size Fp(n−1)×2,

where in the first column there are the even Fibonacci

numbers (those having 0 at the least significant bit in

representation) and in the second the odd Fibonacci num-

bers (1 in the least significant bit). The even Fibonacci

numbers derive from sums and the single child, while

the odd Fibonacci numbers derive from the differences.

The index w ∈ {1,2, ...,Fp(n−1)} specifies each pair

of nodes paired by π0 and k ∈ {0,1} indicates if the

coefficient is computed by a subtraction or a sum. If the

coefficients derive from a subtraction, then k is set to 1,

otherwise k = 0.

The next π1 is obtained by pairing Fp(n−1− p) pairs,

that is

π1 = (π1(w0),π1(w1))0≤w≤Fp(n−1).

The coefficients
{

x(1)(w,k)
}

w
are thus paired for k = 0

or k = 1.

It can be shown that x( j)(w,k) is an array of

size Fp(n − j) × Fp(p + j). For each j ≥ 0, w ∈{
1,2, ...,Fp(n− j)

}
is a spatial index of a set of Vj,w of

Fp(n) graph vertices, while k ∈ {
0, ...,Fp(p+ j)−1

}
indicates different p-Fibonacci scattering coefficients

computed from the values of x in Vj,w. Each x( j+1) is

computed by calculating a pairing π j of the Fp(n− j)
rows of x( j). The row pairing

π j =
{(

π j(w0),π j(w1)
)}

0≤w≤Fp(n− j) ,

pairs each (π j(w0),k) with (π j(w1),k) for 0 ≤ k ≤
Fp(p+ j). Let v0, v1 and v2 be the three sets of Fp(p+ j),
which are used to index the column of x( j+1).

If p = 0, then v2 = /0 and by applying

(α,β ) �→ (α +β , |α −β |)
to each element gives

x( j+1)(w,v0) = x( j)(π j(w0),k)+x( j)(π j(w1),k) (8)

and

x( j+1)(w,v1) =
∣∣∣x( j)(π j(w0),k)− x( j)(π j(w1),k)

∣∣∣ (9)
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where k ∈ {0,1, · · · ,Fp(p+ j)−1}.

For p ≥ 1, v2 
= /0: therefore to compute x( j+1) a

different procedure holds. In more details: at level zero,

k = 0, since x = x(0) there are not subtractions. When

j = 1 k ∈ {0,1}, in the first column there are the sums

and single child and in the second the differences are

computed. It follows that

x(1)(w,0) = x(0)(π1(w0),0)+ x(0)(π1(w1),0)

or

x(1)(w,0) = x(0)(w2,0)

and

x(1)(w,1) =
∣∣∣x(0)(π1(w0),0)− x(0)(π1(w1),0)

∣∣∣ .
For j ≥ 2 the matrix x( j+1) is obtained by inserting in

the column indexed by the elements of v0 the sums and

the only child of the rows of x( j), in the column indexed

by the elements of v1 the differences. The remaining

columns of x( j+1) correspond to the columns of x( j)

without any transformations. That columns of x( j) are

kept equal for p levels and at level j+ p+1 the elements

of the rows of that will be summed or subtracted. Let t0,

t1 and t2 be the three subsets of Fp(n− j−1)

x( j+1)(w,v0) =

=

⎧⎪⎨
⎪⎩

x( j)(π j(w0),k)+ x( j)(π j(w1),k), if w ∈ { t0, t1 }

x( j)(w2,k)if w ∈ { t2 }

x( j+1)(w,v1)=
∣∣∣x( j)(π j(w0),k)− x( j)(π j(w1),k)

∣∣∣ (10)

x( j+1)(w,v2) = x( j)(w, f ) (11)

Scattering order
The order m of a scattering coefficient is the num-

ber of subtractions involved in its computation. It can

be demonstrated that the amplitude of a scattering coef-

ficient of order m has a fast decay as m increases. The

number of columns of the scattering coefficients depends

on the scattering order m.

Since x(0) = x, all coefficients are of order 0 for

j = 0. If x( j)(w,k) is of order m, then (4) and (5) im-

ply that x( j+1)(w,v0) or x( j+1)(w,v2) is of order m and

x( j+1)(w,v1) is of order m+1. Meanwhile if x( j)(w, f )
has order m, x( j+1)(w,v2) has order m too. The columns

of the matrix x( j+1), taking into consideration only the

column of order i ≤ m, are selected. Let us denote by ti

the number of coefficients of order i ≤ m and m ≤ [ j+p
1+p ]

at level j. Let

k̃ =
m

∑
i=0

ti.

The size of x( j+1)(w,vl), with l ∈ {0,1,2} is Fp(n−
j)× k̃.

By exploiting Zeckendorf criteria, it results that

every n ∈ N can be thought as a sum of r different p-

Fibonacci numbers. The number of coefficients of order

m is related with the p-Fibonacci matrix, and it is equal

to the number of rows with m ones, which corresponds

to r. Let B ∈ N. The representation of the form

B =
n−1

∑
i=p

aiFp(i)

where ai ∈ {0,1} and Fp(i) is the generalized p-

Fibonacci number, is called a p-Fibonacci repre-

sentation of B. The vector by coefficients, ap =[
an−1,an−2, · · · ,ap

]
p is called a p-Fibonacci code of

B. As previously explained, the rows of the p-Fibonacci

matrix represent all n ∈ N 0 ≤ n ≤ N −1.

Wavelet on graph
Let V0,w = {w} for w ∈ V . For any j ≥ 0 and ∀

elements of {w0 },{w1 } and {w2 } it is defined

Vj+1,w =Vj,π j(w0)∪Vj,π j(w1)∪Vj,w2
.

V =
⋃

w Vj,w defines a partition. Let V1 and V2 be two

non-overlapping subsets of V . V1 and V2 are connected

if at least one element of V1 is connected to one ele-

ment of V2. In our case w0 and w1 are connected. A

graph p-Fibonacci scattering is constructed over partition

Vj,w of V, which are obtained by aggregating vertices

Vj+1,w = Vj,π j(w0) ∪Vj,π j(w1) ∪Vj,w2
. In the following,

χVj,w(ν) denotes the indicator function of Vj,w in V. Let

it be

Uj =Vj,w2
∪Vj,π j(w0).

It follows

Vj+1,w =Uj ∪Vj,π j(w1). (12)

A p-Fibonacci wavelet computes the difference between

Ψ j+1,w = χUj −χ j,π j(w1).

Inner products between signals defined on V are written

< x,x
′
>= ∑

ν∈V
x(ν)x

′
(ν).

For any

{
χVJ,w

}
0≤w<Fp(n−J)∪

{
Ψ j,w

}
0≤w≤Fp(n− j),0≤ j<J
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is a family of N orthogonal p-Fibonacci wavelets which

define an orthogonal basis of Rd . It can be proved that the

order m+1 coefficients are obtained by computing the

orthogonal p-Fibonacci wavelet transform of coefficients

of order m. Let w ∈ {w0,w1,w2 }, the sets of Fp(n− j−
1), km an element of order m

x( j)(w,km+1) = ∑
q

Vjm+1 ,q⊂Vj,w

∣∣∣< x̄( jm)(·,km),Ψm+1,q >
∣∣∣

(13)

with

x̄( jm)(·,k′
) = ∑

w∈{w0,m,w1,m }
x( jm)(w,k

′
)χVjm ,w

where (w0,m,w1,m are the sets of Fp(n− jm)).
If k = ∑m

i=0 ti and jm+1 ≥ jm then x( jm)(w,km) are

coefficients of order m, whereas x( j)(w,km+1) is a coeffi-

cient of order m+1. Eq. (13) proves that a coefficient of

order m+1 is obtained by computing the wavelet trans-

form of scattering coefficient of order m, and summing

their absolute values. A coefficient of order m+1 thus

measures the average variations of the mth scattering

coefficients on neighborhoods of size km+1 in the graph.

To further compare the graph p-Fibonacci scattering with

the classical wavelet transforms, it should be noticed that

if the absolute value in (9) and (10) is removed, these

equations define an orthogonal Walsh transform.

A graph p-Fibonacci scattering can thus be inter-

preted as an adaptive Hadamard transform over groups

of vertices, which outputs positive coefficients. Walsh

matrices are particular cases of Hadamard matrices.

Experimental results
The performances of the proposed method have

been evaluated on two databases largely used in literature

for assessing the classification performances: CIFAR-10

and MNIST. CIFAR-10 contains 60000 color images of

size 32*32 pixels, while the MNIST database is com-

posed by 70000 gray-scale images of size 28*28 pixels.

The obtained results have been compared to the state-

of-the-art and they are reported in Table 1 and Table 2.

In those tables the percentage error of the classification

is reported. It can be noticed that, if we compare the

performances of algorithms based on a supervised ap-

proach, their error rate is considerably smaller. Despite

of this fact, those systems need to have an additional

information and processing that is not needed in the un-

supervised approach. From the achieved results it can be

concluded that the proposed method slightly increases

the performances with respect to the reference one while

requiring a lower computational complexity.

Method Error (%)
Conv. nets (supervised) 9.8
RFL (unsupervised) 16.9
Roto-translation scattering 17.8
Graph Haar scattering 21.3
2-Fibonacci scattering 21.88
1-Fibonacci Haar scattering 21.81

Table 1: Error percentage on CIFAR-10
Method Error (%)
Conv. nets (supervised) 0.53
RFL(unsupervised) 0.53
Roto-translation scattering 0.43
Graph Haar scattering 0.59
1-Fibonacci scattering 0.50
1-Fibonacci Haar scattering 0.49

Table 2: Error percentage on MNIST

Conclusions
In this contribution, a novel image representation

framework is presented. It is based on the combination of

p-Fibonacci sequences and the deep scattering networks.

This approach results in a translation and rotation invari-

ant representation of the data. This framework has been

used for image classification. The performance is com-

parable with the those achievable by the state-of-the-art

unsupervised methods.
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