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Abstract
In this paper, we propose a new no-reference image quality

assessment (NR-IQA). The method makes use of local binary pat-
terns (LBP) to label local textures of an image. These labels form
a LBP map that can be used to measure the characteristics of im-
age textures (texture map). Then, we compute the histogram of the
texture map and weight each LBP label according to its saliency,
which is obtained with a visual attention computational model.
The weighted histogram is used as input to a regression method
that estimates the quality of the image. Experimental results show
that the proposed method achieves competitive prediction accu-
racy and outperforms other state-of-the-art NR-IQA methods. At
the same time, the method is simple and reliable, demanding few
computational resources, such as memory and processing time.

Introduction
Due to recent advances in multimedia systems, a great ef-

fort of the academic community has been dedicated to the design
of image quality assessment (IQA) methods that correlate well
with the human perception of quality. Quantitative assessment of
image quality is an indispensable yet challenging problem in im-
age processing and computer vision research. IQA methods fall
into two approaches: subjective and objective. Subjective qual-
ity assessment is performed by humans, while objective quality
assessment is performed by algorithms designed to mock the sub-
jective judgments. Since quality is thought in terms of human per-
ception, subjective assessment is the utmost reference to describe
image quality. However, since it demands humans to perform the
scoring tasks, subjective assessments are time-consuming, cum-
bersome, expensive, and tiresome. In order to overcome these
disadvantages, there has been an increasing investment in devel-
oping objective methods to measure the image quality in consis-
tent with subjective evaluations.

According to the availability of a “ideal” non-distorted image
(reference), objective IQA methods are classified as full reference
(FR), reduced-reference (RR) and no-reference (NR). Most accu-
rate these methods determine the quality of images using complex
models of the human visual system. Naturally, they are demand-
ing in terms of computational resources [1]. Additionally, IQA
methods with the best accuracy performance are generally full-
reference IQA (FR-IQA) methods, i.e. methods that require the
original content to estimate image quality.

As an alternative, in recent years, several no-reference image
quality assessment (NR-IQA) methods have been proposed [2,
3, 4, 5, 6]. Some of the most popular approaches combine
image features and machine learning techniques. Some objec-
tive image quality assessment methods have been proposed for
specific applications and are distortion-specific (DS) methods.
Among the state-of-the-art DS-IQA methods, we can cite tech-

niques conceived to assess image sharpness [7, 8], JPEG degra-
dations [9, 10], blockiness artifacts [11, 12], etc. Although these
methods can be competent within a scope, they have limited ap-
plications in more diversified scenarios.

The alternative to DS-IQA methods are general-purpose
IQA (GP-IQA) methods, which do not require a prior knowl-
edge about the type of image impairments and are more suit-
able for diversified scenarios. GP-IQA methods make assump-
tions about the image characteristics instead of making assump-
tions about the characteristics of specific impairments. Among the
GP-IQA approaches, the methods can be classified as codebook-
based [13, 14], ensemble-based [15], or Natural Scene Statistics
(NSS)-based approaches [16, 17], as stated by Mittal et al. [18].
In codebook-based approaches, the codebook is used to encode
basic image features, such as pixel clusters or Gabor filters. In
NSS-based approaches, it is assumed that natural images present
observable statistic patterns. The quality is measured by com-
puting changes on these statistics of visual naturalnesss. Finally,
ensemble-based methods are based on ensemble of regressors,
trained on different types of features, such as texture or blur statis-
tics.

Although a better prediction performance is achieved with
these state-of-the-art methods, there are still some open questions
in the area of NR-IQA [1]. As claimed by Chandler et al. [1], NR-
IQA methods are focusing on improving prediction accuracy and,
so far, few works has been conducted to reduce computational
complexity, which is a crucial issue on developing real-time mul-
timedia applications.

In this paper, we propose a GP-NR-IQA method that deliv-
ers a good prediction performance and, at the same time, requires
limited computational resources. The method uses a machine
learning approach that takes into consideration texture features.
These texture features are generated using the local binary pattern
(LBP) [19] descriptor. This descriptor is chosen based on recent
IQA advances which demonstrate that visual impairments affect
image textures and their LBP statistics [20, 21, 22, 23]. After gen-
erating the texture-based features using the LBP operator, these
features are weighted by the saliency of the image regions, which
are computed using a visual attention computational model. With
a regression learning technique, the weighted features are mapped
into a quality score. These combination of texture and saliency
generate a new operator, the salient local binary patterns (SLBP),
that is proposed in this paper.

Proposed Method
The proposed method is based on two main assumptions.

First, visual impairments alter image textures and their statis-
tics. In other words, images with similar impairments, at similar
strengths, have textures that share similar statistical properties.

IS&T International Symposium on Electronic Imaging 2018
Image Quality and System Performance XV 367-1

https://doi.org/10.2352/ISSN.2470-1173.2018.12.IQSP-367
© 2018, Society for Imaging Science and Technology



(a) Original (I) (b) LBP (L) (c) BMS (W) (d) SLBP (S)
Figure 1. Example of original images (a), their LBP (b), BMS (c), and SLBP (d) maps.

This relation between texture and naturalness measures is used by
a few natural scene statistics (NSS) IQA methods [24]. Second,
salient visual areas attract more attention than non-salient areas
and, therefore, are considered to be more relevant to image qual-
ity. Based on this assumption, visual attention models are some-
times used to improve the performance of IQA methods [25].

The texture information of an image I can be quantified
using the uniform local binary pattern (LBP) operator [26], which

is defined as:

L [x,y] = LBPu
R,P(tc) =


P−1
∑

p=0
S(tp− tc), U ≤ 2,

P+1, otherwise,
(1)

where

U = |S(tP−1− tc)−S(t0− tc)|+
P−1

∑
p=1
|S(tp− tc)−S(tp−1− tc)|,
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Figure 2. SROCC distributions from 1,000 random trials on random testing subsets of LIVE2 database.

P is the total number of neighbors taken into consideration, R is
the radius of this neighborhood, and S(t) is a step function given
by:

S(t) =

{
1 t ≥ 0,
0 otherwise.

(2)

On the above formulation, tc = I [x,y] is the value of the pixel of
image I at position (x, y) and tp = I [xp,yp] is the value of its
neighbor, given by:

xp = x+Rcos
(

2π
p
P

)
,

and

yp = y−Rsin
(

2π
p
P

)
.

To estimate the saliency of the different areas of an image
I , we use a computational visual attention model. More especif-
ically, to keep the computational complexity low, we chose the
Boolean map-based saliency (BMS) model [27]. When compared
with other state-of-the-art visual attention models, BMS is notice-
able faster, while still providing a good performance.

After computing the LBP of all pixels of image I , we ob-
tain a LBP map L , where each L [x,y] gives the local texture
associated to the pixel I [x,y]. Similarly, the output of BMS is a
saliency map W , where each element W [x,y] corresponds to the
probability that the pixel I [x,y] attracts the attention of a human
observer. The first, second, and third columns of Fig. 1 depict
a set of original images I , the corresponding L , and W maps,
respectively.

We generate the feature vector by computing the histogram
of L weighted by W . The histogram H = {h[0],h[1], · · · ,h[P+
1]} is given by the following expression:

h[φ ] = ∑
i

∑
j

W [i, j] ·∆(L [i, j],φ), (3)

where

∆(v,u) =

{
1, if v = u,
0, otherwise.

(4)

The number of bins of this histogram is similar to the number of
distinct LBP patterns of L . So, we can remap each L [i, j] to
its weighted form, generating the map S displayed in Fig. 1-(d).
This figure depicts a heatmap representing the importance of each
local texture. We name this weighted LBP map the salient local
binary patterns (SLBP).

After computing the feature vector H, we use it to predict
the quality of the image I . The prediction is computed using
an ensemble-based regression algorithm. We chose the random
decision forests (RDF) regression because this technique has been
successfully used in pattern recognition applications [28].

Results
We compared the proposed method with the fastest state-of-

the-art NR-IQA methods: BRISQUE [4], CORNIA [2], CQA [5],
SSEQ [6], and LTP [3]. Given that the performance of NR-IQA
methods is measured by how well their predicted scores correlate
with the mean observer scores - MOS (scores given by subjects
in a psycho-physical experiment), we tested all methods using the
LIVE2 database [29]. LIVE2 is a popular image quality database
that contains five distortions (JPEG, JPEG2k, Gaussian blue - GB,
fast fading - FF, and white noise - WN). We divided the LIVE2
database into two random subsets: 80% for training and 20% for
testing. To prevent over-fitting, image contents of the testing sub-
set are not in the training subset, and vice-versa. This 80-20 split
is repeated 1,000 times. Table 1 shows the mean SROCC values
between predicted scores and MOS values, obtained by averaging
1,000 random trials on random testing subsets. Fig. 2 shows the
box plot of the SROCC distribution for each method, over all tri-
als. Additionally, for reference, we also show the results obtained
with the FR-IQA methods PSNR and SSIM [30].

In Table 1, the best SROCC results among all methods are
shown in italic. The best result among the NR-IQA methods are
shown in bold. Notice that, for the complete set of distortions
(ALL), the proposed method has the best performance, outper-
forming all other NR-IQA and FR-IQA methods. When analyz-
ing each type of distortion separately, the proposed method has
the best performance among all methods for three of the five dis-
tortions. Considering only the NR-IQA methods, the proposed
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method has the best performance for four of the five distortions.

Table 1. Average SROCC of 1,000 runs of simulations on
LIVE2.

Distortion PSNR SSIM BRISQUE CORNIA CQA SSEQ LTP SLBP

JPEG 0.8515 0.9481 0.8641 0.9002 0.8256 0.9122 0.8961 0.9211

JPEG2k 0.8822 0.9438 0.8781 0.9245 0.8366 0.9387 0.9218 0.9446

WN 0.9856 0.9793 0.9751 0.9501 0.9764 0.9544 0.9363 0.9808

GB 0.7818 0.8889 0.9304 0.9465 0.8661 0.9157 0.9256 0.9598

FF 0.8869 0.9335 0.8468 0.9132 0.8488 0.9041 0.8591 0.8708

ALL 0.8013 0.8902 0.9098 0.9281 0.8606 0.9355 0.9195 0.9414

To analyze the generalization capability of the tested NR-
IQA methods, we performed a cross-database validation test,
which consisted of training using the LIVE2 database and testing
using the CSIQ [31] and TID2013 [32] databases. Table 2 depicts
the SROCC values between predicted scores and MOS values. To
perform a straightforward cross-database comparison, only the
shared subset of distortions were selected from each database.
Notice that the proposed method outperforms the other methods
for almost all distortions, with the only exception of the GB dis-
tortion in TID2013. Therefore, the cross-database validation test
indicates that the proposed method has better generalization prop-
erties than the other state-of-the-art IQA methods.

To evaluate the computational cost of the NR-IQA meth-
ods, we resized the image shown in Fig 1-(a) from 64x64 to
2048x2048 pixels, creating a set of 8 images with different spatial
resolutions (see second column of Table 3). For each image in
this set, we computed the feature extraction running time. This
process was repeated 100 times and Table 3 shows the average
time. Since CQA has restrictions on the minimum spatial resolu-
tion required, we could not estimate the extraction running times
for resolutions smaller than 256× 256. Notice that SLBP has a
good time efficiency, loosing only for LTP. But, as depicted in
Fig. 3, the proposed method provides a good trade-off between
prediction accuracy and computational efficiency.

Conclusions
In this paper, we proposed the salient local binary pat-

terns (SLBP) operator and its use for GP-NR-IQA. Our results
show that the proposed SLBP method is a general-purpose NR-
IQA, presenting the best prediction performance for the LIVE2
database. SLBP is also generalizable and, therefore, more suit-
able for general multimedia applications, as can be noticed from
the cross-database result tests. The analysis of the computational
cost shows that the proposed method presents the best trade-off
between accuracy and efficiency, making it adequate for real-time
applications. Future works may include a parallel implementa-
tion of the SLBP algorithm and an investigation of its suitability
for video quality assessment (VQA).
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