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Abstract
Recent work in prediction of overall HDR and WCG display

quality has shown that machine learning approaches based on
physical measurements performs on par with more advanced per-
ceptually transformed measurements. While combining machine
learning with the perceptual transforms did improve over using
each technique separately, the improvement was minor. How-
ever, that work did not explore how well these models performed
when applied to display capabilities outside of the training data
set. This new work examines what happens when the machine-
learning approaches are used to predict quality outside of the
training set, both in terms of extrapolation and interpolation.
While doing so, we consider two models – one based on physical
display characteristics, and a perceptual model that transforms
physical parameters based on human visual system models. We
found that the use of the perceptual transforms particularly helps
with extrapolation, and without their tempering effects, the ma-
chine learning-based models can produce wildly unrealistic qual-
ity predictions.

Introduction
High dynamic range (HDR) and wide color gamut (WCG)

capability have now become mainstream in consumer TV dis-
plays, and is making headway into desktop monitors, laptops, and
mobile device products. However, there is not one set of display
parameters that define such capability. Rather, there is a con-
tinuum of physical ranges generally dependent on cost, and the
resulting perceived quality depends non-linearly on those ranges.
Being able to quantify the perceived quality for these new and dif-
fering physical capabilities has become necessary for the display
business.

Various tools in machine learning have increasingly been
used to generate quality models based on subjective test data sets,
with most activity being in terms of video compression quality,
which is signal-dependent [1, 2, 3, 4, 5, 6, 7, 8, 9]. However,
display design generally favors signal-independent metrics that
can be determined from measurements of the display by a small
number of synthetic test images. Signal independent approaches
have been used for subjective studies investigating range issues of
key HDR parameters, such as contrast and brightness [10], per-
ceived HDR range [11], maximum luminance [12], and backlight
modulation [13].

From our experience in developing HDR displays, we think
there are five key HDR display parameters: maximum luminance,
minimum luminance, local contrast, bit-depth, and color volume.
Maximum luminance or ‘peak white’ of the range is very impor-
tant for enabling the highlights that distinguishes HDR from SDR.

Minimum luminance or ‘black level’ is also important for achiev-
ing the perception of depth that is often described for 2D HDR, as
well as purely aesthetic reasons. Local contrast is the technology-
neutral term that encompasses the resolution of backlight modula-
tion, and thus the spatial aspects of HDR performance. Bit-depth
addresses quantization precision, and the most noticeable distor-
tion from insufficient bit-depth is false edges (contouring, band-
ing). Lastly, color volume encompasses the max luminance, the
minimum luminance, and the color gamut.

We studied the overall quality of these five display parame-
ters with subjective tests where each was manipulated through a
range going from SDR to one of the most capable HDR displays.
For display quality, most existing work uses models with either
one display parameter or combines multiple parameters [14, 15]
to estimate display quality that correlates with user preference.
We consider two models – one based on the physically measured
display characteristics and another that transforms those using
models of the human visual system (HVS). All existing meth-
ods predict quality of displays that are in their training set. In
contrast to those works, we explore how well the models predict
quality for displays that are outside of the training set. Accord-
ingly, we investigate interpolation and extrapolation capabilities
of these models.

Experimental Setup
The underlying data was gathered from a subjective experi-

ment which compared a short video sequence displayed with the
best HDR quality available to our lab against the same content
shown with reduced display capabilities. The content were all
shown on a reference monitor known as the Pulsar, manufactured
by Dolby, using dual modulation (a.k.a local dimming). Of the
five key display parameters being studied, this display’s capa-
bilities are 4000 cd/m2(nits) maximum luminance, 0.005 cd/m2

minimum luminance, 12 bits/color in the SMPTE 2084 nonlin-
ear luminance domain, an RGB backlight resolution of 104 x 58
(6032 zones, identical horizontal and vertical aspect ratios), and
a P3 color gamut (DCI cinema). The LCD panel was 1920 x
1080 IPS and the frame rate was 24 fps. We provide a high-level
overview of the experimental setup in this section. For more de-
tails, please refer to our previous works [14, 15].

Stimuli
A total of 27 clips that included content from studio movies

and broadcast, optically captured and computer generated, and all
graded and mastered at 4000 cd/m2 maximum luminance, DCI-
P3, 12 bits, full resolution, and 0.005 minimum luminance were
used. Similar to a previous study [12], the maximum luminance
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levels and the color gamut areas were tested in a multivariate de-
sign. The white point was calibrated to D65. We also probed
black levels, bit-depth, and backlight resolution independently, in
a uni-variate design. The tested parameter variations are as fol-
lows:

• Maximum Luminance: 100, 400, 1000, 4000 cd/m2

• Color Gamut: BT. R.709, DCI-P3
• Black Level: 0.005, 0.01, 0.05, 0.1 cd/m2

• Bit Depth: 12, 10, 8, 7 bits
• Backlight Resolution: Pulsar’s full backlight resolution; 1/4

resolution; 1/8 resolution; global dimming (i.e., no resolu-
tion)

The tested variables were compared against a reference sequence,
which was always the Pulsar display’s best capability.

Viewing Conditions
Single participants viewed the sequences in a dark ambient

environment. The viewing distance was three picture heights, giv-
ing a field of view (FOV) of approximately 33◦. Sequences were
presented in a simultaneous, split-screen side-by-side format, ran-
domly presenting the reference image on either the right or left
side of the display. Subjects input their quality rating responses
via a slider. A GUI showing their rating response was presented
on a separate display that was placed below the viewing display.

Task
Participants were instructed to rate each version of the se-

quence on a continuous −20 to 100 scale. They were instructed
that the zero-point should correspond to their memory of SDR
quality, and to use 100 for the best HDR quality they have seen.
We allowed participants to rate quality below 0 in the instance that
they felt a sequence appeared to have a sub-SDR quality. For each
trial, one half of the display was the reference display parameters,
which served as a hidden upper anchor. They were not informed
of the specific distortion applied to the other half.

Modeling Display Characteristics
A general description of the design of a display quality met-

ric is shown in Figure 1. The metric consists of a weighted sum
of either physical or perceptually transformed display parameters
to form an overall quality metric. Reference and distorted videos
are displayed, where in this case the distorted are of a display with
reduced capabilities. The subjective experiment (blue lines) gen-
erates estimates of the magnitude of overall quality from the both
the reference and distorted pairs shown on the HDR display. The
reference display with full capabilities serves as an upper anchor.
Regression techniques based on machine learning (red lines) is
used to tune the weightings of the key display parameters to min-
imize the difference between the predicted quality rating and the
subjective scores.

In order to understand display characteristics, we consider
two different models — a physical model that uses physically
measured characteristics of the display and a perceptual model
that transforms the physical parameters by using HVS-based
models. We provide a high-level overview of the models in this
section. Please refer to our previous works [14, 15] for more de-
tails.

Figure 1. Description of general display quality metric development.

Physical Model
This model uses parameters that can be directly measured.

We consider the following 5 parameters:

• Maximum luminance (LW ) – This parameter describes the
maximum luminance (peak white) of a display.

• Minimum luminance (LK) – This parameter describes the
minimum luminance (black level) of a display.

• Color gamut (CG) – The color gamut is determined by mea-
suring the RGB primaries and converted to area in x,y.

• Bit depth (B) – This parameter describes the bit depth of the
content that is being presented on the display.

• Backlight resolution (RB)– We use angular resolution of hor-
izontal zones to calculate backlight resolution. We calculate
the angular resolution as follows –

RB =
FOV
ZH

, (1)

where ZH is the horizontal number of zones and FOV = 33◦.

Perceptual Model
The perceptual model is derived by transforming the physical

parameters using human vision system (HVS) models:

• Maximum luminance (LW−HV S) – This parameter is ob-
tained by applying the SMPTE ST-2084 Perceptual Quan-
tizer (PQ) EOTF transfer function [16] to the LW pa-
rameter of the physical model and is based on the light-
adaptive contrast sensitivity function of the human visual
system [17, 18, 19, 20].

• Minimum luminance, i.e. black level (LK−HV S) – This pa-
rameter is obtained by similarly applying the PQ transfer
function to the LK parameter of the physical model .

• Color Volume (CV−HV S) – This parameter is used to de-
scribe the range of colors produced by high dynamic range
and wide color gamut displays. It calculates the volume of
the 3D color solid in a perceptually uniform space in the
ICTCP domain.

• Bit depth JND (BHV S) – The perceptual aspect of bit depth
was based on computing the number of distinguishable gray
(NDG) levels [21], with a small deviation. We calculated
this by first converting linear luminance to normalized PQ
values. These PQ values are then quantized according to
JND experiments. Finally, we computed the maximum dif-
ference between two consecutive quantized values.

• Backlight resolution (RB−HV S) – To transform backlight res-
olution of displays into a perceptual model, we use a con-
trast metric called Perceptual Contrast Area [14, 15] (PCA)
that performs a PSF (point-spread function) analysis of the
local contrast capabilities of the display.
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Results and Discussion
In this section, we illustrate the performance of the physical

and perceptual models on data that lie outside the specifications of
the training set – i.e., we want to understand the interpolation and
extrapolation capabilities of our models. Interpolation is the pro-
cess of determining values at arbitrary points between two points
with known values. On the other hand, extrapolation is the pro-
cess of determining values at arbitrary points beyond the range
that is certainly known. We simulate 17 different display char-
acteristics, as combinations of the parameters mentioned in the
previous section and the parameter values of the physical and per-
ceptual model is shown in Table 1.

For each of the 17 display configurations shown in Table 1,
we collected subjective scores across all participants. These
scores were first normalized to account for intra-participant vari-
ations in their range of responses. Finally, we computed the mean
of those scores i.e., a mean opinion score (MOS) for each display.

To learn the relationship between models and the subjec-
tive scores (MOS), we compared linear regression and machine
learning techniques such as Support Vector Machine (SVM) re-
gression [22] and Random Forests [23]. We use an RBF kernel
for the SVM [22]. These machine learning methods are used
to train and test both physical and perceptual models using the
MOS. Since in our previous work [15], we have shown that SVM
outperforms both Multilayer perceptron [24] regression and Ra-
dial Basis Function (RBF) [25, 26] network regression, we do not
use those methods in this analysis. For validation, we use 5-fold
cross-validation.

Interpolation
In order to test the interpolation capability of the models, we

tested their performance for ranges that lie within the interval be-
tween the minimum and maximum value of the training data set.
Rather than training on the entire subjective data set, we omitted
specific parameters in the training and tested how well that par-
ticular trained model could predict the omitted parameter’s sub-
jective results. Specifically, we trained the models on rows 1, 2,
4, 5, 7, 8, 9, 11, 12, 14, 15 and 17 and tested it on rows 3, 6,
10, 13 and 16 of Table 1. Since our training set included displays
with maximum luminance in [100,4000] nits range, black levels
in [0.005,0.1] nits range, bit depths in [7,12] range and backlight
resolution in the range between full local dimming and global
dimming resolution, we tested the models on displays with the
following non-trained configurations – 400 nits maximum lumi-
nance and BT. R. 709 color gamut, 1000 nits maximum luminance
and P3 color gamut, black level of 0.05 nits, bit depth of 8 bits and
backlight resolution of 1/8. Note that the tested configurations lie
within the range of the training data set. Also, the configuration
that is being tested is not included during training. We normal-
ized the ratings to give the best display in the training set a score
of 100 and the worst display a score of 0 as seen in Figure 2(a).
Using those normalization parameters, we get subjective ratings
for the test displays. Considering the MOS of the testing set as
the “ground truth”, we evaluate the performance of each model
by comparing its predicted scores using different methods with
the “ground truth”.

From Figure 2(a) we can see that, the Pulsar 100 nits/ P3
display has a MOS of 0 and the Pulsar reference display has a
MOS of 100. Figure 2(b) shows the prediction performance of

(a)

(b)

Figure 2. Interpolation capability of our models. (a) MOS of displays used

for training (b) Predicted MOS on interpolated test set

the models in terms of interpolation capability. We can see that
perceptual models are better at interpolation than physical models.
Also, SVM is better at prediction than linear regression. We do
not visualize the results using Random Forests since it performs
worse than SVM (Refer to Table 2).

To quantify the performance, we use two standard perfor-
mance evaluation procedures and criteria [27] – Root mean square
error (RMSE) and Pearson linear correlation coefficient (PLCC).
RMSE is used for measuring prediction consistency and PLCC
for prediction accuracy. Lower values of RMSE indicates better
performance and higher values of PLCC imply better accuracy.
Table 2 provides the comparison between the models.

From Table 2, we can confirm that machine learning tech-
niques are generally better at prediction than the simple linear re-
gression method. Also, amongst the machine learning techniques,
SVM [22] Regression showed better performance than Random
Forests [23]. We can also confirm that the perceptual model is
better at prediction than the physical model (e.g., 0.95 Vs 0.61 for
PLCC). Combining machine learning techniques with the percep-
tual model has the best performance. However, its performance is
only marginally better than using a perceptual model with simple
linear regression method.

Extrapolation
In order to test the extrapolation capability of the models, we

tested their performance for ranges that lie beyond the interval be-
tween the minimum and maximum value of the training data set.
We trained the models on rows 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15
and 16 and tested on rows 1, 2, 11, 14 and 17 of Table 1. Since
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Table 1: Display characteristics for both physical and perceptual model. Key reduced physical parameters are marked in blue.
Otherwise, they match the reference capability (marked in yellow). Indices marked in red are used to test interpolation capability
and those marked in green are used to test extrapolation capability.

Idx. Display Maximum Minimum Color volume Bit depth Backlight
luminance luminance resolution
LW LW−HV S LK LK−HV S CG CV−HV S B BHV S RB RB−HV S
cd/m2 cd/m2 Area in bits ◦/zone
(nits) (nits) xy

1 100/R709 100 0.5081 0.005 0.0151 0.1120 0.0287 12 0.0002 0.317 0.8546
2 100/P3 100 0.5081 0.005 0.0151 0.1520 0.0405 12 0.0002 0.317 0.8546
3 400/R709 400 0.6526 0.005 0.0151 0.1120 0.0510 12 0.0002 0.317 0.8546
4 400/P3 400 0.6526 0.005 0.0151 0.1520 0.0720 12 0.0002 0.317 0.8546
5 1000/R709 1000 0.7518 0.005 0.0151 0.1120 0.0690 12 0.0002 0.317 0.8546
6 1000/P3 1000 0.7518 0.005 0.0151 0.1520 0.0975 12 0.0002 0.317 0.8546
7 4000/R709 4000 0.9026 0.005 0.0151 0.1120 0.0990 12 0.0002 0.317 0.8546
8 Reference 4000 0.9026 0.005 0.0151 0.1520 0.1400 12 0.0002 0.317 0.8546
9 0.01 4000 0.9026 0.01 0.0215 0.1520 0.1398 12 0.0002 0.317 0.8546
10 0.05 4000 0.9026 0.05 0.0461 0.1520 0.1389 12 0.0002 0.317 0.8546
11 0.1 4000 0.9026 0.1 0.0623 0.1520 0.1382 12 0.0002 0.317 0.8546
12 10 bits 4000 0.9026 0.005 0.0151 0.1520 0.1400 10 0.0039 0.317 0.8546
13 8 bits 4000 0.9026 0.005 0.0151 0.1520 0.1400 8 0.0588 0.317 0.8546
14 7 bits 4000 0.9026 0.005 0.0151 0.1520 0.1400 7 0.2284 0.317 0.8546
15 1/4 Res. 4000 0.9026 0.005 0.0151 0.1520 0.1400 12 0.0002 1.27 0.8544
16 1/8 Res. 4000 0.9026 0.005 0.0151 0.1520 0.1400 12 0.0002 2.54 0.8501
17 Global Res. 4000 0.9026 0.005 0.0151 0.1520 0.1400 12 0.0002 33 0.6194

Table 2: Quantitative comparison of interpolation capability.
RMSE PLCC

Physical Model
Linear Regression 0.1207 0.5533
SVM [22] Regression 0.0768 0.6138
Random Forests [23] 0.1204 0.5967

Perceptual Model
Linear Regression 0.0660 0.9392
SVM [22] Regression 0.0426 0.9455
Random Forests [23] 0.0655 0.9446

our training set now included displays with maximum luminance
in [400,4000] nits range, black levels in [0.005,0.05] nits range,
bit depths in [8,12] range and backlight resolution from [1/8,1]
resolution, we tested the models on displays with the following
configurations – 100 nits maximum luminance and color gamuts
of BT. R. 709 and P3, black level of 0.1 nits, bit depth of 7 bits and
global dimming backlight resolution. The tested configurations
correspond to endpoints of particular parameter ranges. The cho-
sen parameters for testing all lie on the lower end of the ranges.
We did not select parameters that lie on the other end of the spec-
trum viz., 4000 nits maximum luminance, 0.005 nits black level,
bit depth of 12 and full local dimming backlight resolution since
those correspond to Pulsar’s native display (Reference) and are
common to most display configurations. Removing them from
training would result in a very small training set, that would not
be conducive for learning.

Figure 3(a) shows the MOS of the training set and we can see
that, the Pulsar 400 nits/ R.709 display has a MOS of 0 and the
Pulsar reference display has a MOS of 100. Figure 3(b) shows
the prediction performance of the models in terms of their ex-
trapolation capability. Since our test set contained displays with
parameters from the lower end of ranges, we can consider them

to have “lower” quality than the ones in the training set. This is
illustrated in Figure 3(b) where the MOS of the test set is mostly
negative due to normalization parameters from the training set be-
ing used to obtain ratings for the test set. From Figure 3(b), we
can see that SVM are better at extrapolation than simple linear
regression. In general, perceptual models are better at prediction
than physical model. Combining linear regression prediction with
perceptual model seems to be an exception for predicting global
dimming backlight. This is because the variations in RB−HV S in
the training set are far less as compared to its value in the test set.
In some sense, the value of RB−HV S in the test set seems to be
an outlier resulting in bad prediction. However, SVM results in
much better prediction in this scenario. Once again, combining
perceptual model with SVM (machine learning techniques) are
better at prediction than using physical models.

We present quantitative scores of the extrapolation capabil-
ity of the models in Table 3. Similar to the trends for interpo-
lation, machine learning techniques are better at prediction than
linear regression. Also, SVM is better at extrapolation than Ran-
dom Forests. Perceptual model is also better than physical model.
Combining SVM with perceptual model results in best perfor-
mance. The RMSE for the perceptual model with linear regres-
sion is substantially higher than the others because of its bad pre-
diction of global dimming backlight, as seen in Figure 3(b).

For interpolation (Table 2), inclusion of perceptual trans-
forms substantially improves the prediction using SVM. For ex-
trapolation (Table 3), the improvements from using the perceptual
transforms is even more substantial than the case for interpola-
tion. As previously mentioned for interpolation, using SVM with
perceptual model is marginally better than using simple linear re-
gression with perceptual model. However for extrapolation, using
SVM with perceptual model is significantly better than using sim-
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(a)

(b)

Figure 3. Extrapolation capability of our models. (a) MOS of displays used

for training (b) Predicted MOS on extrapolated test set

ple linear regression with perceptual model.

Prediction outside our subjective study
We also explored display characteristics outside our subjec-

tive study for which we have extraneous evidence about subjective
ratings. In order to test such displays, we trained our models on
all rows of Table 1 and tested it on two values – .

• Bit-depth of 14 bits
• 1/2 backlight resolution

It is already known from extraneous experiments, that for the PQ
signal range of 0–10000 cd/m2 there is no distortion visibility,
and 14 bits would show no advantages [19]. For backlight reso-
lution of 1/2, our reference pilot studies showed the quality was
identical to the reference backlight resolution for the three picture
heights viewing distance. In order to predict MOS for 14 bits, we
explore the extrapolation capability of the models. Likewise, to
predict MOS for 1/2 backlight resolution, we explore the inter-

Table 3: Quantitative comparison of extrapolation capability.
RMSE PLCC

Physical Model
Linear Regression 0.5504 -0.1774
SVM [22] Regression 0.1821 0.4838
Random Forests [23] 0.2854 0.3145

Perceptual Model
Linear Regression 3.228 -0.0992
SVM [22] Regression 0.0784 0.9114
Random Forests [23] 0.2472 0.7216

(a)

(b)

Figure 4. Prediction for data outside of subjective study. (a) MOS of dis-

plays used for training (b) Predicted MOS on test set

polation capability of the models.
We normalized the ratings to give the best display in the

training set a score of 100 and the worst display a score of 0 as
seen in Figure 4(a). Using those normalization parameters, we get
ratings for the test displays. From Figure 4(a) we can see that, the
Pulsar 100 nits/ P3 display has a MOS of 0 and the Pulsar refer-
ence display has a MOS of 100. Figure 4(b) shows the prediction
results. For the reference display, which is a part of the training
set, we can see that SVM has almost perfect prediction, irrespec-
tive of the models being used. When extrapolating to 14 bits,
combining SVM with perceptual model also has perfect predic-
tion. Surprisingly, using a physical model with linear regression
is better than using it with SVM. Also, SVM has better predic-
tion when interpolating to 1/2 backlight resolution compared to
linear regression1. In general, combining perceptual models with
machine learning has the best prediction.

Conclusion & Future Work
In this paper, we test HDR display characteristics and trans-

form that into a single number pertaining to overall subjective
quality. This is one of the first attempts at predicting quality of
HDR displays that are outside of the training set – both in terms of
interpolation and extrapolation. We consider two different mod-
els – a physical model and a perceptual model that transforms the
physical characteristics using a HVS model. In addition to linear
regression, we use machine learning techniques such as Random

1We don’t have measured subjective values for backlight resolution
(1/2) for the perceptual model, but we informally know it should be very
close to the reference
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forests and SVM regression to learn the relationship between the
display parameters and the subjective scores. We conclude that
a perceptual model is much better at predicting subjective qual-
ity than a physical model. Machine learning techniques result in
better fit to the data as compared to linear regression. We found
that the machine learning approaches are subject to failure cases
when tested on conditions outside of their training set. Incorporat-
ing perceptually transformed components into the machine learn-
ing framework can reduce those failure cases. These effects are
more pronounced during extrapolation than during interpolation.
Therefore, using machine learning with the perceptual model re-
sults in the best performance.

Future work includes ascertaining the significance of these
results by conducting more experiments, involving more test im-
ages, subjects, and displays. We suspect our test content did not
adequately probe the value of extended color gamuts, black levels,
or higher bit depths.
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