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Abstract
In this paper, we report the results of a set of psychophysical

experiments that measure the perceptual strengths of videos with
different combinations of blockiness, blurriness, and packet-loss
artifacts and the overall annoyance. Participants were instructed
to search each video for impairments and rate the strength of
their individual features (artifacts). A repeated measure Anova
(RM-ANOVA) performed on the data showed that artifact phys-
ical strengths have a significant effect on annoyance judgments.
We tested and reported a set of linear models on the experimental
data and we found that all these models give a good description of
the relation between individual artifact perceptual strengths and
the overall annoyance. In other words, all models presented a
very good correlation with the experimental data, showing that
annoyance can be modeled as a multidimensional function of
the individual artifact perceptual strengths. Additionally, results
show that there are interactions among artifact signals.

Introduction
In the past decades, several quality assessment methods have

been proposed with the goal of automatically measuring the video
quality at the user side [1, 2]. Most available methods are full-
reference video quality assessment (FR-VQA) methods, which
require the use of the original (reference) video [3, 4]. The de-
sign of blind methods, i.e. no-reference video quality assessment
(NR-VQA) methods, is still a challenge [5, 6]. Given that the
overall video quality can be estimated by combining the individ-
ual artifact perceptual strengths [7–12], there is a considerable
number of NR-VQA methods that use this ‘multidimensional’
approach [13–15]. These methods, known as distortion-specific
(DS) VQA methods, estimate the strength of a set of artifacts and
combine these estimates to obtain an overall quality score for the
impaired video. Among the state-of-the-art DS-VQA methods,
we can cite the papers of Hadizadeh & Bajic [16], Bahrami &
Kot [17], Golestaneh & Chandler [18], and Li et al. [19–21].

The performance of DS-VQA methods depends on: the ac-
curacy of the perceptual artifact strength models, which give an
estimate of the perceived strength for each artifact, and the accu-
racy of the combination quality models, which compute a overall
quality scores considering the perceptual strengths of each arti-
fact and their interactions. So, the design good artifact metrics
requires a good understanding of the perceptual characteristics of
each artifact, as well as a knowledge of how the strength of each
artifact contributes to the overall quality [22]. Up to our knowl-
edge, besides the work by Farias et al., little work has been per-
formed to study and characterize the appearance and perception
of combined artifacts [3]. As a consequence, currently there is no
clear knowledge on how spatial and temporal video artifacts com-

bine perceptually and how their impact depends on the physical
properties of the video.

In this work, we study the characteristics of two spatial
artifacts (blockiness and blurriness) and one temporal artifact
(packet-loss), which are among the most commonly found arti-
facts in digital transmission scenarios. More specifically, we an-
alyze the relationship between the perceptual strengths of these
artifacts and the overall annoyance. We also analyze the relation-
ship between physical and perceptual artifact strengths and study
masking effects between artifacts. With this goal, we perform a
set of six psychophysical experiments in which subjects estimated
the strength and annoyance of blockiness, blurriness, and packet-
loss artifacts, either in isolation or in combinations. With these
goals, we performed an analysis of the subjective data obtained
from these experiments and tested a set of combination models
with the goal of predicting overall annoyance from the perceptual
strengths and physical strength parameters of these three artifacts.
This work is a follow-up on a previous work [23,24], in which we
investigated the impact of physical strength parameters of block-
iness, blurriness, and packet-loss on overall annoyance.

Experimental Methodology
Experiments were performed using a PC computer with test

sequences displayed on a Samsung LCD monitor of 23 inches
(Sync Master XL2370HD) with resolution 1920× 1080 @60hz
(FullHD 1080p). We used a constant illumination of approxi-
mately 70 lux and participants were kept at a fixed distance of
0.70 meters from the monitor using a chin-rest. The experimen-
tal methodology was the single-stimulus with hidden reference,
with a 100-point continuous impairment scale [24, 25]. The par-
ticipants, mostly graduate students from the author’s institutions,
were considered naive of most kinds of digital video defects and
the associated terminology.

The experimental session started with a brief oral introduc-
tion. Then, participants performed a training, which consisted
of watching highly impaired and pristine sequences to get ac-
quainted with the typical artifact combinations and strengths. Af-
ter the training, the scoring session started. Since initial judg-
ments are generally erratic, we included 5 practice trials, which
were not recorded [25]. Besides eliminating erratic answers, prac-
tice trials exposed subjects to a good range of impairments and
gave them a chance to try the scoring interface. Experimental
trials were performed with the complete set of test sequences pre-
sented in a random order. Videos were played once and subjects
were not allowed to go back and watch them again. Experimen-
tal sessions lasted between 45 and 60 minutes. To avoid fatigue,
experimental sessions were broken into sub-sessions.

As mentioned earlier, a total of six experiments were per-
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formed using the same set of test sequences. In three of the ex-
periments (experiments 1, 3, and 5), we asked participants to es-
timate the annoyance of the test sequences. More specifically,
participants were asked to estimate the annoyance caused by the
artifacts, by giving a score between ‘0’ and ‘100’. Artifacts as
annoying as the worst artifacts in the training session should have
be given a ‘100’, artifacts half as annoying a ‘50’, and so on.
For each test sequence, these experiment provided one annoyance
score per participant. We computed the Mean Annoyance Value
(MAV ) corresponding to each test sequence by taking the average
of the annoyance scores provided by all participants.

In the other three experiments (experiments 2, 4, and 6),
participants were asked to give a strength score to each individ-
ual type of artifact of the test sequence. Artifacts as strong as
those seen in the training session should be given a ‘100’, arti-
facts half as strong a ‘50’, and so on. The number of artifacts in
each test sequence varied. Data gathered from these three experi-
ments provided up to three Mean Strength Values (MSV) for each
test sequence: MSVbloc, MSVblur, and MSVpck, which correspond
to MSVs for blockiness, blurriness, and packet-loss, respectively.
MSVs are computed by averaging the strength values over all sub-
jects for each video and artifact type.

To study how the artifact strengths combine to predict the
perceived annoyance of videos impaired by multiple and over-
lapping artifacts, we fit a set of linear models to the MSV sub-
jective data and the MAV data collected (for the same test se-
quences) in the previous experiments [23, 24]. To estimate the
performance of the models, we calculate the Pearson correlation
coefficient (PCC) and the Spearman Rank Order Correlation Co-
efficient (SCC) between the subjective and predicted scores. To
test the effect of the artifact parameters on annoyance, we perform
a repeated-measure ANOVA (RM-ANOVA) with a significance
level of 95% (α = 0.05).

Genration of Test Sequences
We used seven high definition original videos, chosen with

the goal of generating a diverse content, with spatial resolution
of 1280×720, temporal resolution of 50 frames per second (fps),
and duration of 10 seconds. Three types of artifacts were used:
blockiness, blurriness, and packet-loss (more details about these
artifacts can be found in ITU Recommendation P.930 [26]). To
add artifacts to the originals, we used a system for generating ar-
tifacts [27, 28] that allowed a control of the artifact combination,
visibility, and strength, what would be difficult using, for exam-
ple, a compression codec.

To add blockiness to each video frame in our dataset, we
calculated the average value of each 8×8 block of the frame and
of the 24×24 surrounding block, then added the difference be-
tween these two averages to the block. To generate blurriness, we
used a simple low-pass filter, as suggested by Recommendation
P.930 [26]. Although we can vary the filter sizes and the cut-off
frequencies to control the amount of blurriness, we used a sim-
ple 5×5 moving average filter. We generated test sequences with
combinations of blockiness and blurriness by linearly combining
the original video with blockiness and blurriness artifact signals
in different proportions (i.e. 0.4, 0.6, and 0.8) [27, 28] .

To generate packet-loss artifacts, we first compressed the
videos at high compression rates, what avoids inserting additional
artifacts. Then, packets from the coded video bitstream were

Table 1: Exps. 1-2: Combinations of the parameters PDP and M
used for each of the 7 originals.

Comb M PDP Comb M PDP Comb M PDP
1 4 0.7 5 8 0.7 9 12 0.7
2 4 2.6 6 8 2.6 10 12 2.6
3 4 4.3 7 8 4.3 11 12 4.3
4 4 8.1 8 8 8.1 12 12 8.1

Table 2: Exps. 3-4: Set of combinations used for each of the 7
originals: ‘bloc’ and ‘blur’ correspond to the blockiness and blur-
riness intensities, respectively.

Comb (bloc;blur) Comb (bloc;blur) Comb (bloc;blur)
1 (0.0;0.0) 5 (0.4;0.4) 9 (0.6;0.6)
2 (0.0;0.4) 6 (0.4;0.6) 10 (0.0;0.8)
3 (0.0;0.6) 7 (0.6;0.0) 11 (0.8;0.0)
4 (0.4;0.0) 8 (0.6;0.4)

randomly deleted using different percentages of deleted packets
(PDP), with higher percentages corresponding to higher levels of
degradation [24]. To vary the time interval between consecutive
artifacts, we changed the number of frames (M) between I-frames.

Experimental Setup
As mentioned earlier, this works analyzes the data collected

from six different experiments. Sixteen participants rated the an-
noyance in Experiment 1, whilst fourteen participants rated the
artifacts’ strength in Experiment 2. In both experiments, test se-
quences contained only packet-loss artifacts. The set of PDP and
M parameters used in this experiment are given in Table 1. A total
of 7 originals and 12 parameter combinations were used, resulting
in 91 test sequences.

Sixteen participants rated annoyance in Experiment 3, whilst
fifteen participants rated the artifacts’ strength in Experiment 4.
In both experiments, test sequences contained different strengths
of blockiness and blurriness artifacts, presented in isolation or
in combination. These combinations are represented by a vec-
tor (bloc; blur), where ‘bloc’ is the blockiness signal intensity and
‘blur’ is the blurriness signal intensity. The experiment contained
a set of videos with all possible combinations of the two artifact
types (full factorial design: 32 = 9), plus two additional combina-
tions of strong pure blockiness and pure blurriness. Table 2 shows
all combinations used in the experiment. A total of 7 originals and
10 combinations were used in this experiment, resulting in 77 test
sequences.

Twenty-three participants rated annoyance in Experiment 5.
whilst thirty-five participants rated the artifacts’ strength in Ex-
periment 6. In both experiments, the test sequences contained
different strengths of blockiness, blurriness, and packet-loss arti-
facts, presented in combinations. The strength combinations are
represented as a vector (PDP;bloc;blur), where ‘PDP’ is the in-
tensity of packet-loss, ‘bloc’ is the intensity of blockiness, and
‘blur’ is the intensity of blurriness. To limit the number of artifact
combinations, we selected a subset of all possible artifact combi-
nations considering the results of the previous experiments (1-4).
Table 3 shows all combinations used in this experiment, which
include three intensities for each artifact type. Again, 7 originals
and 19 combinations were used, resulting in 140 test sequences.

234-2
IS&T International Symposium on Electronic Imaging 2018

Image Quality and System Performance XV



Table 3: Exps. 5-6: Combinations for each original: ‘bloc’ corre-
sponds to the blockiness intensity, ‘blur’ to the blurriness inten-
sity, and ‘PDP’ to the percentage of deleted packets.

Comb. (PDP;Bloc;Blur) Comb. (PDP;Bloc;Blur) Comb. (PDP;Bloc;Blur)
1 (0.0;0.0;0.0) 8 (8.1;0.0;0.6) 15 (0.7;0.6;0.0)
2 (0.0;0.6;0.0) 9 (0.7;0.4;0.0) 16 (8.1;0.6;0.0)
3 (0.0;0.0;0.6) 10 (8.1;0.4;0.0) 17 (0.7;0.6;0.4)
4 (8.1;0.0;0.0) 11 (0.7;0.4;0.4) 18 (8.1;0.6;0.4)
5 (0.7;0.0;0.4) 12 (8.1;0.4;0.4) 19 (0.7;0.6;0.6)
6 (8.1;0.0;0.4) 13 (0.7;0.4;0.6) 20 (8.1;0.6;0.6)
7 (0.7;0.0;0.6) 14 (8.1;0.4;0.6)

(a) (b)
Figure 1: Exps. 1-2: (a) MSVpck plots, and (b) Average MAV plots
for clustered error for M = 4, 8, and 12.

Experiments 1 and 2
Figure 1 show graphs of the average MSVpck and the average

MAV versus PDP, grouped according to the M value. Notice that,
for M = 4, 8, and 12, both the highest MSVpck and MAV always
correspond to the strongest artifact (e.g. PDP = 8.1%). Although
average values increase with both PDP and M, PDP seems to have
a bigger effect than M. In fact, an RM-ANOVA test shows that the
effect of PDP on MSVpck and MAV, for any pair of M values, is
statistically significant.

Experiments 3 and 4
Figure 2 (a) and (c) show graphs of the average MSVblur

(green) and MSVbloc (blue), and the average MAV, for test se-
quences containing combinations of only-blurriness and only-
blockiness, respectively. Notice that, the highest MSVs are ob-
tained for the combinations with higher artifact strengths. In ad-
dition, we can notice that the average MAVs increase with the
artifact strength. An RM-ANOVA was performed to check if
MSVs and MAVs differences for different blockiness and blur-
riness strengths are significant. The results show that there are
significant statistical differences in MAVs and MSVs for all pairs
of different strengths in only-blockiness and only-blurriness se-
quences. These results indicate that participants correctly per-
ceived the different artifact strengths introduced in the videos.

Figure 2 (b) and (d) show graphs of the average MSVblur and
MSVbloc, and the average MAV for all combinations of blockiness
and blurriness (e.g. (0.4;0.4), (0.4;0.6), (0.6;0.4), and (0.6;0.6)),
respectively. An RM-ANOVA test shows that differences be-
tween MSVs and MAVs obtained for any two combinations of
blockiness and blurriness are statistically significant. The only
exceptions are for the combination pairs (0.4;0.4) and (0.6;0.4)
for which MSVblur differences are not statistically significant, and
for the combination pairs (0.4;0.6) and (0.6;0.4) for which MAV
differences are not found significant. This means that a change in
the artifact strength was perceived by the participants.

(a) (b)

(c) (d)
Figure 2: Exps. 3-4: Plots for combinations (bloc;blur) with:
(a) MSV for only-blockiness and only-blurriness, (b) MSV for
blockiness and blurriness, (c) MAV for only-blockiness and only-
blurriness and, (d) MAV for blockiness and blurriness.

(a) (b)
Figure 3: Exps. 5-6: (a) MSV and (b) MAV for combinations
(0.0;0.0;0.6), (0.0;0.6;0.0), and (8.1;0.0;0.0).

Experiments 5 and 6
Figure 3 shows the MSV and MAV plots for combinations of

pure blockiness, blurriness, and packet-loss. Notice that the high-
est MSVs correspond to the only artifact in the video. An RM-
ANOVA shows that there are significant statistical differences in
MSV, for any pair of combinations, with exception of the com-
bination pair (8.1;0.0;0.0) and (0.0;0.6;0.0). The average MSV
and MAV is higher for blockiness, followed by packet-loss, and
blurriness. In a similar way, for stronger artifacts, MAV also in-
creases.

Figure 4 shows the MSVs and MAVs for combinations with
two types of artifacts ((PDP;bloc;0.0) or (PDP;0.0;blur)). The
strongest artifact received the highest MSV. Nevertheless, an in-
crease in the strength of a particular artifact signal does not al-
ways result in a proportional increase in this artifact perceived
strength. For example, for (PDP;0.0;blur) combinations, an in-
crease in the strength of blurriness causes a decrease in the per-
ceived strength of the packet-loss (see Fig. 4 (a)). An RM-
ANOVA test shows that there are significant statistical MSVs dif-
ferences between all combinations of (PDP;0.0;blur). The only
exceptions are the combination pairs ((0.7;0.0;0.4), (8.1;0.0;0.4))
and ((0.7;0.0;0.6), (8.1;0.0;0.6)), whose MSVblur differences are
not statistically significant. For these two combinations, only the
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(a) (b)

(c) (d)
Figure 4: Exps. 5-6: (a) MSV and (c) MAV for combinations
(PDP;0.0;blur), and (b) MSV and (d) MAV for combinations
(PDP;bloc;0.0).

packet-loss strength changes while the blurriness strength is kept
constant. This result suggests that blurriness may be masking the
perceived strength of packet-loss.

The presence of packet-loss in the (PDP;bloc;0.0) combi-
nations changes the perceived strength of the blockiness artifact
(see Fig. 4 (b)). This indicates that increasing the packet-loss
strength in a (PDP;bloc;0.0) combination can intensify the per-
ceived strength of blockiness. This may be caused by the sim-
ilarity of blockiness and packet-loss artifacts, which are both
characterized by the presence of rectangular areas distributed
over the video frames. An RM-ANOVA test shows that there
are significant statistical differences in MSVpck for all com-
binations pairs (PDP;bloc;0.0). The only exceptions are the
combination pairs (0.7;0.4;0.0), (0.7;0.6;0.0)) and ((8.1;0.4;0.0),
(8.1;0.6;0.0). Another RM-ANOVA test also shows that there
are significant statistical differences in MSVbloc for the com-
bination pairs ((0.7;0.4;0.0), (8.1;0.4;0.0)) and ((0.7;0.6;0.0),
(8.1;0.6;0.0)). Also, an RM-ANOVA test shows that there are
significant statistical MAVs differences between all combinations
of (PDP;0.0;blur) and (PDP;bloc;0.0).

For combinations that correspond to videos with the three
types of artifact signals, the average MSVbloc is higher than the av-
erage MSVpck and MSVblur. Figure 5 shows plots of combinations
with different values of packet-loss, blockiness, and blurriness
strengths. An RM-ANOVA test shows that there are significant
statistical differences between MSVs for most combinations of
(PDP;bloc;blur), except for the combination pairs ((0.7;0.4;0.4),
(0.7;0.4;0.6)) and ((8.1;0.4;0.4), (8.1;0.4;0.6)) in MSVpck. Al-
though only the strength of blurriness vary in both combina-
tion pairs, MSVbloc also increases as MSVblur increases. This
result suggests that the blockiness is affected by increasing the
blurriness. For the combination pairs ((0.7;0.4;0.4),(8.1;0.4;0.4))
and ((0.7;0.4;0.6), (8.1;0.4;0.6)), the MSVbloc and MSVblur dif-
ferences are not statistically significant. For these combinations,
the MSVs variations are higher for MSVbloc than for MSVblur.
These results support the assumption that packet-loss artifacts in-

(a) (b)

(c) (d)
Figure 5: Exps. 5-6: (a) MSV and (c) MAV for combinations
(PDP;0.4;blur), and (b) MSV and (d) MAV for combinations
(PDP;0.6;blur).

Table 4: Exps. 5-6: Fitting parameters for linear model without
intercept (PAE3,L1) (* Significant at 0.05 level.)

Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC
α 0.340 0.022 18.330 < 2e−16∗

0.937 0.936β 0.470 0.020 23.210 < 2e−16∗
γ 0.413 0.026 16.040 < 2e−16∗

Table 5: Exps. 5-6: Fitting parameters for linear model with in-
tercept (PAE3,L2). (* Significant at 0.05 level.)

Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC
δ 3.846 1.870 2.057 0.042*

0.937 0.937
α 0.370 0.026 14.313 < 2e−16∗
β 0.456 0.021 21.448 < 2e−16∗
γ 0.371 0.033 11.326 < 2e−16∗

tensify the perception of blockiness artifacts. An RM-ANOVA
shows that there are significant statistical differences between
MAVs for most combinations of (PDP;bloc;blur), except for the
combination pairs ((8.1;0.4;0.4), (0.7;0.4;0.6)) and ((8.1;0.6;0.4),
(0.7;0.6;0.6)).

Annoyance Models
We tested a set of linear models fitting them on the MSV

and MAV data of Experiments 5-6. We chose these experiments
because they contained all three artifacts. The first tested linear
model is a simple linear model, without any interaction term:

PAE3,L1 = α ·MSVpck +β ·MSVbloc + γ ·MSVblur. (1)

Next, we adapt Eq. 1 to include an intercept coefficient (δ ):

PAE3,L2 = δ +α ·MSVpck +β ·MSVbloc + γ ·MSVblur. (2)

Tables 4 and 5 show the fitting results for both models. Notice that
all coefficients (i.e. δ , α , β , and γ) are statistically significant (see
Columns 5 in Tables 4 and 5, respectively).
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Table 6: Exps. 5-6: Fitting parameters for the linear metric with
interactions PAL3,E3 (* Significant at 0.05 level).

Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC
α 5.476e-01 3.572e-02 15.327 < 2e−16∗

0.956 0.947

β 5.470e-01 4.535e-02 12.062 < 2e−16∗
γ 4.432e-01 3.530e-02 12.558 < 2e−16∗
ρ1 -2.918e-03 1.054e-03 -2.768 0.006*
ρ2 -3.414e-03 1.321e-03 -2.585 0.011*
ρ3 -1.855e-04 1.277e-03 -0.145 0.885
ρ4 1.908e-05 2.834e-05 0.673 0.502

Table 7: Exps. 5-6: Fitting parameters for the linear metric with
interactions and an intercept term PAL3,E4 (* Significant at 0.05
level).

Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC
δ -1.857e+01 2.768e+00 -6.710 5.22e-10*

0.965 0.957

α 8.516e-01 5.488e-02 15.516 < 2e−16∗
β 8.411e-01 5.888e-02 14.286 < 2e−16∗
γ 7.670e-01 5.713e-02 13.424 < 2e−16∗
ρ1 -7.729e-03 1.161e-03 -6.654 6.93e-10*
ρ2 -8.740e-03 1.393e-03 -6.274 4.66e-09*
ρ3 -5.488e-03 1.360e-03 -4.036 9.17e-05*
ρ4 1.062e-04 2.778e-05 3.821 0.000*

Since we are also interested in understanding if the percep-
tual strengths interact with one another, we tested a linear model
with interactions, as given by:

PAE3,L3 = α ·MSVpck +β ·MSVbloc + γ ·MSVblur

+ρ1 ·MSVpck ·MSVbloc +ρ2 ·MSVpck ·MSVblur

+ρ3 ·MSVbloc ·MSVblur +ρ4 ·MSVpck ·MSVbloc ·MSVblur.

(3)

We also adapt Eq. 3 to include an intercept coefficient (δ ):

PAE3,L4 = δ +α ·MSVpck +β ·MSVbloc + γ ·MSVblur

+ρ1 ·MSVpck ·MSVbloc +ρ2 ·MSVpck ·MSVblur

+ρ3 ·MSVbloc ·MSVblur +ρ4 ·MSVpck ·MSVbloc ·MSVblur.

(4)

Tables 6 and 7 show the fitting results for both models. Notice
that most first, second, and third order coefficients are statistically
significant (Columns 5 in Tables 6 and 7, respectively). The ex-
ceptions are ρ3 and ρ4 in PAE3,L3 (see Table 6), which correspond
to the interaction of (bloc;blur) and (PDP;bloc;blur). Notice also
that most second order coefficients are negative, what may indi-
cate masking effects, i.e. when two artifacts are present, one of
them may attenuate the strength of the other artifact(s).

The interaction coefficient with highest magnitude corre-
sponds to the interaction (PDP;blur), which suggest that packet-
loss artifacts affect how blurriness artifacts are perceived.

Conclusions
We presented the methodology, statistical analysis, and con-

clusions of six psychophysical experiments. The goals of these
experiments were to measure the artifact strengths and annoyance
scores of videos with different combinations of blockiness, blurri-
ness, and packet-loss artifacts. We also wanted to understand how
these artifacts combine and interact to produce overall annoyance.
The results showed that, when the artifact signals were presented
alone at a high strength, subjects were able to identify them cor-
rectly. At low strengths, on the other hand, other artifacts were
reported. Annoyance increased with both the number of artifacts
and their strength.

Annoyance models were obtained by combining the artifact
perceptual strengths using linear models, with and without inter-
cepts and with and without interaction terms. Performing RM-
ANOVA tests, we found that all types of artifact signal strengths
had a significant effect in the overall annoyance. The tests also
indicated that there were interactions among some of the artifact
perceptual strengths. In summary, results show that annoyance
can be modeled as a multidimensional function of the individual
artifact strengths.

These results indicate that a blind image quality assessment
method based on artifact measurements is indeed a valid ap-
proach. Nevertheless, although annoyance cannot be predicted
using only one individual artifact signal measurement, it is not
necessary to use all possible artifacts. It suffices to use the
most (perceptually) significant artifacts. For example, blockiness
seems to have the biggest effect on MAV. Finally, results show
that there are interactions among artifact signals. Therefore, while
designing quality models, it is important to take this into consid-
eration to avoid underestimating or overestimating quality.
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