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Abstract 
Imaging system performance measures and Image Quality 

Metrics (IQM) are reviewed from a systems engineering 
perspective, focusing on spatial quality of still image capture 
systems. We classify IQMs broadly as: Computational IQMs (CP-
IQM), Multivariate Formalism IQMs (MF-IQM), Image Fidelity 
Metrics (IF-IQM), and Signal Transfer Visual IQMs (STV-IQM). 
Comparison of each genre finds STV-IQMs well suited for capture 
system quality evaluation: they incorporate performance measures 
relevant to optical systems design, such as Modulation Transfer 
Function (MTF) and Noise-Power Spectrum (NPS); their bottom-
up, modular approach enables system components to be optimized 
separately. We suggest that correlation between STV-IQMs and 
observer quality scores is limited by three factors: current MTF 
and NPS measures do not characterize scene-dependent 
performance introduced by imaging system non-linearities; 
contrast sensitivity models employed do not account for contextual 
masking effects; cognitive factors are not considered. We 
hypothesize that implementation of scene and process-dependent 
MTF (SPD-MTF) and NPS (SPD-NPS) measures should mitigate 
errors originating from scene dependent system performance. 
Further, we propose implementation of contextual contrast 
detection and discrimination models to better represent low-level 
visual performance in image quality analysis. Finally, we discuss 
image quality optimization functions that may potentially close the 
gap between contrast detection/discrimination and quality. 

Introduction 
This paper is concerned with spatial image capture system 

performance measurement, spatial image quality modeling, and 
their relationship. Both involve spatial luminance contrast signals, 
which are principle carriers of information that is fundamental to 
human understanding of shape form and detail, and which 
contribute heavily toward the overall perceived image quality.  

Perceived image quality can be evaluated directly by 
psychophysical tests involving human observers. These tests are 
time consuming, expensive, and prone to inaccuracy with incorrect 
implementation. In parallel, performance measures such as the 
Modulation Transfer Function (MTF) and Noise-Power Spectrum 
(NPS) are used to characterize imaging system behavior. There are 
well-established assumptions about functional relationship(s) 
between these measures and overall subjective system image 
quality, or the quality of individual image attributes. Finally, image 
quality metrics (IQM) produce output scores that aim to correlate 
with perceived quality or fidelity. 

Linear system theory is core to MTF, NPS and any IQMs 
employing them as input parameters. It requires systems analyzed 
to be linear, spatially invariant and homogenous [1]. Today’s 
capture systems often apply non-linear content-aware processing 
algorithms. These introduce artefacts and alter structural content 
depending upon original scene information. This poses significant 
challenges to capture system characterization and quality 

modelling, as the targets and techniques used affect the results 
obtained. This paper reviews spatial performance measures and 
relevant IQMs from a capture systems engineering perspective, 
with this issue in mind. It further classifies IQMs into four genres, 
which we denote as: Computational IQMs (CP-IQM), Multivariate 
Formalism IQMs (MF-IQM), Image Fidelity Metrics (IF-IQM), 
and Signal Transfer Visual IQMs (STV-IQM). Frameworks are 
finally proposed to revise system performance measures and 
selected relevant IQMs, rendering them more appropriate for non-
linear content-aware capture systems. 

Spatial System Performance Review 
The MTF and NPS are standard measures of spatial signal 

transfer and noise performance, respectively. They are both based 
on Fourier theory of image formation [1].  

Noise-Power Spectrum (NPS) 
The NPS characterizes a system’s additive noise, and thus 

informs upon system noisiness. Equation 1 defines NPS, where 
𝑔 𝑥, 𝑦  is the intensity of the captured image at x,y coordinates, 
and 𝑔 𝑥, 𝑦  is its expectation values (i.e. the mean signal). Noise is 
commonly measured from uniform luminance patches, rendering 
𝑔 𝑥, 𝑦  constant across all pixel locations. Uniform patches 
characterize linear system noise accurately, but are not necessarily 
suitable when characterizing non-linear content-aware systems. 
 
        𝑁𝑃𝑆(𝑢, 𝑣) = 𝐷𝐹𝑇(𝑔 𝑥, 𝑦 − 𝑔 𝑥, 𝑦 ) 1 (1) 
 

 
Figure 1. Noise images generated from a camera simulation pipeline. Poisson 
noise was generated at a linear signal-to-noise ratio of 10. Non-linear content-
aware denoising and sharpening were then applied. The noise image obtained 
by processing a uniform patch (left) underestimates the noise present in 
pictorial images (right). Noise is measured from the latter by subtracting the 
mean of ten replicate pictorial images, from a single frame, as per Figure 6. 
Noise image contrast is enhanced to demonstrate noise scene-dependency. 
 
Non-linear content-aware denoising filters are a common source of 
image capture system non-linearity. They preserve image structure 
and edge content by making local adjustments to their processing 
intensity, according to signal gradient characteristics. Since local 
image structure impedes their denoising ability, the intensity and 

IS&T International Symposium on Electronic Imaging 2018
Image Quality and System Performance XV 231-1

https://doi.org/10.2352/ISSN.2470-1173.2018.12.IQSP-231
© 2018, Society for Imaging Science and Technology



 

 

spatial distribution of an image’s noise, after filtration, is scene-
dependent (Figure 1). Uniform patches provide the easiest scenario 
for such algorithms to operate in, and resultant NPS measurements 
underestimate real-world noise power. Later in this paper, we 
propose a scene and process-dependent NPS (SPD-NPS) measure 
that addresses this issue, by measuring noise from pictorial images. 

Modulation Transfer Function (MTF) 
The MTF (and the related Spatial Frequency Response (SFR) 

[2]) characterize a system’s reproduction of modulation, as a 
function of spatial frequency. MTF informs upon system resolution 
and sharpness, which are major contributors to overall quality. It is 
traditionally measured from sinusoid, edge and noise targets. For 
non-linear systems, however, no unique MTF exists, and the above 
methods deliver different results. Sinusoid and edge targets 
describe limiting resolution and subjective sharpness respectively 
for these systems [3], but do not describe perceived texture loss 
effectively [4]. Texture loss is a primary driver of overall 
perceived image quality in today’s non-linear capture systems [5].   

Dead leaves MTFs provide useful measurements of texture 
loss, and general spatial performance of non-linear content-aware 
systems. They do so by replicating statistical properties of natural 
scenes to trigger non-linear content-aware processes at ‘normal’ 
levels [4]. The direct dead leaves implementation [6] (Equation 2) 
improves accuracy by subtracting the system’s NPS measured from 
a uniform patch (𝑁𝑃𝑆234534(𝑢)), from the output target power 
spectrum (𝑃𝑆634534 𝑢 ); 𝑃𝑆78534 𝑢  is the input target power 
spectrum; 𝑢 is the spatial frequency. A further intrinsic 
implementation characterizes performance of the lens and imager; 
it is not sensitive to reversible image processing such as sharpening 
or contrast stretching [7], which affect perceived image quality.   
 

        𝑀𝑇𝐹 𝑢 = :;<=>?=>(3)@A:;<=>?=>(3)
:;BC?=>(3)

	 (2) 

 
The dead leaves target does not characterize non-linear 

content-aware system performance with respect to a given scene. 
The scene and process-dependent MTF (SPD-MTF) measure 
proposed by Branca et al. [8] achieves this by substituting pictorial 
image power spectra into the direct dead leaves calculation, to 
trigger non-linear content-aware processing appropriately for each 
scene. Initial results suggest that real capture systems display 
scene-dependent signal transfer performance. This was shown to 
be greater in measurements from a smartphone than a professional 
DSLR camera, due to the former’s increased non-linear content-
aware processing [8]. As with the direct dead leaves MTF, this 
version of the SPD-MTF calculation accounts for NPS measured 
from uniform patches, which introduces error. The SPD-MTF 
framework proposed later in this paper mitigates this problem by 
implementing a revised and more suitably measured SPD-NPS. 

A Review of Image Quality Metrics (IQM)  
IQMs are used to evaluate image or imaging system quality, 

without need for psychophysics (Figure 2). They map objective 
input data (images or system performance measurements) to output 
scores that aim to correlate with impressions of quality, quality 
difference or fidelity (perceived magnitude of image differences). 

 

 
Figure 2.  Flow-chart describing image quality metrics (IQM) in general terms. 

Image quality modelling forms a converging point of several 
research areas: neural physiology, visual psychophysics, computer 
vision, machine learning, signal and image processing and imaging 
systems engineering. Specialists have approached IQM 
development from different angles, and a broad spectrum of IQMs 
has evolved, with various advantages and applications. 

Classification of Image Quality Metrics (IQM) 
IQM classifications are summarized below. Univariate and 

artefact-specific IQMs predict quality with respect to a single 
image quality attribute or artefact, respectively. Multivariate IQMs 
measure quality with respect to two or more quality attributes. 

Visual modelling differs greatly between IQMs. Bottom-up 
approaches model separate low-level visual processes in a step-by-
step fashion with direct reference to underlying physics, and 
psychophysical data. Top-down approaches model the combined 
effect of low-level vision and high-level cognitive processing in 
one step, or as a combination of black box sub-processes. 

IQMs that require images as input data are categorized as no-
reference, full-reference and reduced-reference. No-reference 
IQMs require data from a single output image, and correlate with 
Mean Opinion Scores (MOS) or quality scores in just-preferable 
difference (JPD) units. Full-reference and reduced-reference IQMs 
compare data from a test and reference image, where the former is 
a processed version of the latter. Full-reference IQMs require all 
information from both images. Reduced-reference IQMs require 
certain features only. Full-reference IF-IQMs measure fidelity and 
either correlate with probabilities for image difference detection or 
fidelity scores in units of just-noticeable difference (JND). Full-
reference and reduced-reference IQMs designed to predict quality 
correlate with Differential Mean Opinion Scores (DMOS) or 
quality scores related by JPD. This paper classifies IQMs into four 
further genres, which we name: STV-IQMs, CP-IQMs, MF-IQMs 
and IF-IQMs. Each genre is summarized in Table 1, and is 
reviewed later from a capture systems engineering perspective. 

Table 1: Summary of IQM genres 

 

Signal Transfer Visual Image Quality Metrics (STV-IQM) 
STV-IQMs were traditionally useful when engineering analog 

and early digital systems, and have been reviewed extensively [9]. 
They combine imaging system performance measures and bottom-
up visual modelling, as per linear system theory. Input parameters 
may include MTF, NPS, scene DFT power spectra, and models of 
vision incorporating viewing conditions. 

Univariate STV-IQMs such as the Square Root Integral 
(SQRI) [10] and the Modulation Transfer Acutance (AMTA) [11] 
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model perceived sharpness according to the system’s signal 
transfer characteristics, and the viewing conditions. They 
commonly use an integrated cascade calculation, as generalized in 
Equation 3, where 𝑀𝑇𝐹EFE4GH 𝑢  is the system’s MTF, 𝐶𝑆𝐹 𝑢  is 
a visual contrast sensitivity model, 𝑢 is the retinal spatial 
frequency and 𝑢HJ8 and 𝑢HKL are the minimum and maximum 
perceptible frequencies, respectively. 
 
𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠	𝑆𝑐𝑜𝑟𝑒 = 𝑀𝑇𝐹EFE4GH 𝑢 . 𝐶𝑆𝐹 𝑢3WXY

3WZC
𝑑𝑢 (3) 

 
Multivariate STV-IQMs such as SQRI with Noise (SQRIn) 

[12], Pictorial Information Capacity (PIC) [13] and Effective 
Pictorial Information Capacity (EPIC) [14] consider additive noise 
as well as system signal transfer characteristics. Most model image 
quality as the integral of a visually weighted signal-to-noise ratio 
(SNR), where the numerator weights scene content and system 
signal transfer parameters with a CSF, and the denominator 
consists of a visual noise model and visually weighted system 
noise parameter. Equation 4 generalizes these common 
multivariate STV-IQM calculations, where 𝑃𝑆E\G8G 𝑢  is the 
scene’s DFT power spectrum,  𝑀𝑇𝐹EFE4GH 𝑢  is the system’s 
MTF, 𝑁𝑃𝑆EFE4GH 𝑢  is the system’s NPS, 𝑁𝑃𝑆]JE3K^ is the neural 
noise, 𝐶𝑆𝐹 𝑢  is the contrast sensitivity function, 𝑢 is the retinal 
spatial frequency and 𝑢HJ8 and 𝑢HKL are the minimum and 
maximum perceptible frequencies, respectively. 
 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦	𝑆𝑐𝑜𝑟𝑒 =
:;cdeCe 3 .fghcic>eWj 3 .k;hj 3
A:;cic>eW 3 k;hj 3 lA:;mZc=Xn 3

o.p3WXY
3WZC

q3
3
	 (4) 

Multivariate Formalism (MF-IQM) 
MF-IQMs model image quality as a Minkowski combination 

of the perceived strength of individual quality attributes [15], 
where the most significant attribute dominates the overall score. 
Each attribute is modelled by a univariate metric in units of JND.  
 

 
Figure 3. Flow chart summarizing the CPIQ group’s MF-IQM [5]. Input 
parameters are specified for spatial signal transfer and noise components. 

The Camera Phone Image Quality (CPIQ) group’s MF-IQM [5] 
models the combined effect of color saturation, color uniformity, 
geometric lens distortion, chromatic aberration, edge-sharpness, 
texture-sharpness, and visual noise. Texture-sharpness and edge-
sharpness metrics employed are univariate acutance STV-IQMs, 
implementing direct dead leaves [6] and ISO 12233 slanted-edge 
[2] MTFs respectively. The visual noise metric follows Annex B of 
ISO 15739 [16] and uses uniform patch noise measurements. 

Figure 3 summarizes the CPIQ’s MF-IQM, including input 
parameters for the above spatial signal transfer and noise metrics. 

Image Fidelity Metrics (IF-IQM) 
IF-IQMs are inherently full-reference, and model the 

perceptibility of differences between distorted (test) and optimum 
(reference) images. Threshold IF-IQMs model the probability for 
discrimination of such differences. Suprathreshold IF-IQMs model 
their perceived magnitude in units of JND.  

Threshold IF-IQMs [17] such as the Visible Difference 
Predictor (VDP) [18] were developed for compression, imaging 
systems and display optimization applications. Initial processing 
often accounts for display characteristics, amplitude non-linearity, 
divisive normalization, visual masking and contrast sensitivity. 
Differences between test and reference images are then calculated, 
and probability models are applied. Output distortion maps state 
the probability for threshold discrimination of image differences at 
each pixel, and can be pooled to single figures using different 
techniques. 
 

 
Figure 4. Generalization of threshold IF-IQM processing. 

Suprathreshold IF-IQMs such as S-CIELAB [19] and the 
modular image difference model [20] filter opponent color space 
images with CSFs or suprathreshold contrast discrimination 
models. JND calculations are generally performed using standard 
color difference/appearance models, which may account for local 
contrast detection and chromatic adaptation [20]. The resultant 
image difference maps can also be pooled to single figures. 

 

 
Figure 5. Generalization of suprathreshold IF-IQM processing. 

Computational Metrics (CP-IQM) 
CP-IQMs are the most commonly published IQMs of the past 

decade and have been reviewed frequently, e.g. [21]. They 
establish relationships between MOS/DMOS scores and image 
features or natural scene statistics (NSS), and usually implement 
top-down visual modelling. Full-reference and reduced-reference 
examples correlate with DMOS, and include mathematical, 
structural, visual attention, information theoretical, hybrid and 
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machine learning approaches. No-reference examples correlate 
with MOS, and include information theoretical and machine 
learning approaches. Each is summarized below. 

Early mathematical approaches such as Mean Square Error 
(MSE) are most popular due to their simplicity and mathematical 
tractability. But they lack human visual system (HVS) modelling, 
and are less perceptually relevant than more complex CP-IQMs.  

Since the introduction of the Structural Similarity (SSIM) 
index [22], structural IQMs have become the most widely accepted 
full-reference CP-IQMs. They assume the HVS is highly sensitive 
to structural distortions, defined as loss of correlation between test 
and reference images, after accounting for differences in their 
luminance and variance (contrast). Later revisions of SSIM 
implement multi-scale [23] and wavelet domain [24] processing. 

Visual attention approaches [25, 26] weight image content 
with eye-tracking data, prior to the implementation of CP-IQMs 
such as MSE or SSIM. This generally improves accuracy, but can 
cause issues when relevant distortions are in non-salient areas [26]. 
Implementation of algorithmically generated saliency maps instead  
increases computational complexity and is less accurate [26]. 

Information theoretical approaches such as Visual Information 
Fidelity (VIF) [27] and the Information Fidelity Criterion (IFC) 
[28] share foundations in information theory with some STV-IQMs 
[13, 14]. They differ from the latter since their visual modelling is 
top-down. This accounts for divisive normalization and 
orientational selectivity, but not the CSF or luminance masking.  

Hybrid approaches generally combine bottom-up low-level 
visual models with black box high-level vision models [29, 30]. 
Others extend existing CP-IQMs to account for low-level vision. 

Machine learning approaches [31, 32] consider image quality 
assessment as a supervised regression problem between images 
and MOS/DMOS scores. Features are extracted to narrow-down 
the input data. These are commonly distortion specific, such as 
ringing, blocking, texture, blurring and noise. Several recent 
examples solve this regression task using Convolutional Neural 
Networks (CNN), and include unsupervised approaches [33]. 

A Capture Systems’ Engineering Perspective of IQMs 
MF-IQMs are used widely in capture system image quality 

assessment, and feature in recent ISO 20462 image quality ruler 
[34] and CPIQ IQM [5] standards. They are modular, adaptable 
and provide logical pathways towards their quality scores. They 
employ standard system performance measures and mechanistic 
bottom-up visual models that account for viewing conditions, and 
thus can control system performance characteristics, relative to the 
perceived image quality. The CPIQ’s implementation (Figure 3) is 
more complex to execute and computationally intensive than STV-
IQMs, or CP-IQMs. Out of its seven univariate IQM components, 
those relating to spatial signal transfer and visual noise are most 
significant to overall perceived quality [5]. Both these components 
are covered by multivariate STV-IQMs. When texture-sharpness 
models are employed, issues regarding scene-dependent system 
performance are possibly mitigated, but edge-sharpness and visual 
noise models suffer from them. The employed CSFs do not 
account for visual masking present in image viewing. 

IF-IQMs are modular cascade-based calculations that also 
provide logical pathways towards their fidelity scores, and 
implement mechanistic bottom-up HVS models that account for 
viewing conditions. Comparing test and reference images on a 
pixel-to-pixel level allows them to implement more extensive 2D 
HVS models (e.g. 2D CSFs), and increases computational 
workload. Reference images, however, do not exist in capture 
system image quality assessment, and standard system 

performance measures are unaccounted for. Perceived fidelity and 
quality also correlate only to some extent. No universal method 
exists for pooling distortion maps into single figures. Threshold IF-
IQMs generally clip suprathreshold image differences rendering 
them unsuitable for some image quality assessment applications.  

CP-IQMs fulfill the increasing demand for accurate IQMs that 
are simple to implement (including in real-time) with minimal 
input parameters. They are rarely used in capture systems image 
quality assessment, for the following reasons. Standard system 
performance measures are not included, and thus a link between 
system design and perceived quality is not readily available. Their 
top-down visual models are generally non-mechanistic, where low-
level and high-level components consist of black box sub-
components that often have limited psychophysical basis, or rely 
on domain specific knowledge. Also, they generally do not account 
for the viewing conditions. No-reference CP-IQMs are better 
suited for capture system quality assessment than full and reduced-
reference CP-IQMs, although they are generally less modular, and 
often have minimum, or no relation to the underlying system’s 
physics. 

STV-IQM characteristics are most suitable for capture 
systems’ image quality assessment, alongside MF-IQMs. Their 
visual modelling makes them more relevant to image quality 
assessment than assumptions based upon MTF or NPS measures 
alone, whilst they still relate directly to each performance measure. 
As with MF-IQMs and IF-IQMs, quality scores are computed in 
logical and modular step-by-step calculations, where input 
parameters are (or relate directly to) real physical quantities. Thus, 
they model the relationship between perceived image quality and 
its underlying physics, establishing causal justification for their 
quality scores. Input parameters can be altered independently, 
enabling imaging chain variations to be simulated, under different 
viewing conditions. As with MF-IQMs, STV-IQMs are reliant, 
however, upon traditional 1D system performance measures and 
visual models which do not fully characterize the relevant imaging 
system or visual perceptive processes. STV-IQMs have been most 
successful when modelling linear system image quality. They 
encounter problems when assessing non-linear processes, which 
can create visually unpleasant artefacts that are unaccounted for, or 
contribute positively to metric scores. Although STV-IQMs may 
correlate well with subjective ratings for individual images from 
such non-linear systems, overall correlation is generally poor [9].  

Based on the above, we hypothesize that some inaccuracies 
may result from the following contributing factors:  

1. MTF and NPS measures currently employed do not account for 
scene-dependency in imaging system performance. 
2. CSFs currently employed do not accurately describe visual 
performance relevant to image quality assessment tasks.  
3. Cognitive factors are not taken into account. 

Factor 1 has been expanded previously, during the system 
performance measure review. Factors 2 and 3 are discussed below.  

STV-IQMs apply 1D CSFs directly as weighting functions, 
thus assuming they are HVS transfer functions. Decades of 
successful STV-IQM usage suggests this assumption may be valid 
to some extent, although HVS linearity only applies near to 
threshold limits [35]. The question whether image quality is a 
function of threshold or suprathreshold vision has been debated; it 
is likely that both processes are involved [36]. In either case, the 
analyzed image signals are complex, and viewed in the context of 
other image content, thus introducing contrast and texture masking 
effects. We propose that Contextual Contrast Sensitivity Functions 

231-4
IS&T International Symposium on Electronic Imaging 2018

Image Quality and System Performance XV



 

 

(cCSFs - threshold models), and Contextual Visual Perception 
Functions (cVPFs - suprathreshold models) [36] are more 
appropriate models than the CSFs currently employed, which are 
based upon viewing isolated simple stimuli. cCSF and cVPF 
describe detection and discrimination of real scene content 
respectively, and account for the visual masking that results from 
viewing complex image signals [36].  

Cognitive processing – which accounts for observer quality 
consciousness and subjective preference – is unaccounted for by 
CSFs. Cognitive processing tends to prioritize the importance of 
certain suprathreshold signals above others during subjective IQA 
tasks. Signals of importance may be from the image itself, or its 
artifacts. These effects are usually scene-dependent. 

In the following section, we propose a revised STV-IQM 
framework that accounts for Factors 1 and 2; A method to account 
for Factor 3 is briefly discussed in the conclusions. 

Proposed Framework 
We propose a STV-IQM framework, in which the input 

parameters (i.e. NPS, MTF, CSF) represent the response of the 
imaging and visual systems to real, complex images, rather than 
simple test charts or stimuli.   

Scene and Process-Dependent NPS (SPD-NPS) 
The proposed SPD-NPS accounts for non-linear, content-

aware processes at the expense of increased computational 
processing. SPD-NPS is ideally measured from pictorial images. 
Alternatively, it can be measured from the dead leaves target to 
approximate the system’s noise performance for an ‘average scene 
spectrum’. Our initial simulations using non-linear content-aware 
camera pipelines indicate that both SPD-NPS variants are more 
representative image noise measures than NPSs measured from 
uniform patches. SPD-NPS is described in Figure 6, and calculated 
as per Equation 1, where 𝑔 𝑥, 𝑦  is the output image, and 𝑔 𝑥, 𝑦  
is the mean output of several individual output image replicates. A 
rotational average of 2D SPD-NPS yields the 1D SPD-NPS. All 
images must be accurately registered. Fixed Pattern Noise (FPN) is 
unaccounted for, but is less significant in contemporary capture 
systems under most conditions, and can be measured separately.  

 
Figure 6. Flow-chart describing the SPD-NPS framework. 

Scene and Process-Dependent MTF (SPD-MTF) 
The proposed SPD-MTF expands upon the original SPD-

MTF measurement presented in [8], where the system MTF is 
measured directly from natural scenes. SPD-NPS (Figure 6) is 
implemented to account for scene-dependent processing of noise 
during the signal transfer calculation. Our initial simulations using 
non-linear content-aware camera pipelines indicate SPD-MTFs are 
more representative of system performance than direct dead leaves 
MTFs.  

 
Figure 7. Flow-chart describing the revised SPD-MTF framework. 

SPD-MTF is described in Figure 7 and calculated as per 
Equation 2, where 𝑁𝑃𝑆234534(𝑢) is SPD-NPS and 𝑃𝑆78534(𝑢) and 
𝑃𝑆234534(𝑢) are input and output pictorial image power spectra. 

Revised Multivariate STV-IQM Framework  
Existing multivariate STV-IQM frameworks (as generalized 

in Equation 4) are revised as per the following changes. SPD-MTF 
and SPD-NPS replace the imaging system MTF and NPS derived 
from test charts. Both are expected to reduce STV-IQM inaccuracy 
due to imaging system scene-dependency (Factor 1, above). cCSF 
or cVPF [36] functions (or a combination of both) are substituted 
in place of the traditional CSF. Their inclusion should reduce STV-
IQM inaccuracy due to lower-level HVS model limitations (Factor 
2, above). Figure 8 describes this revised STV-IQM framework.  

 
Figure 8. Flow-chart describing the revised multivariate STV-IQM framework. 
 

Conclusions  
Imaging system performance measures and genres of IQMs 

are reviewed from a capture systems’ engineering perspective. The 
latter review concludes that multivariate STV-IQMs have 
advantageous characteristics, but require updating. SPD-NPS and 
SPD-MTF measures, which account for non-linear content-aware 
processing are thus proposed to replace the traditionally measured 
NPS and MTF input parameters. These measures form the basis of 
the revised STV-IQM framework, alongside cCSF and cVPF 
visual models that account for effects of masking on contrast 
detection and discrimination. The proposed measuring techniques 
and IQM framework are currently in the process of validation. 

Finally, in order to fully describe image quality perception, 
STV-IQMs will need to account for high-level cognitive 
processing, associated with observer quality consciousness and 
subjective preference characteristics.  This is a real challenge since 
these factors are scene and observer-dependent. We propose the 
incorporation of Optimal Contrast Weighting (OCW) functions 
[37] in STV-IQMs to describe the required frequency domain 
individual image/observer optimization of the visual quality. 
Optimization is achieved by cascading high-pass filters with scene-
dependent cCSF/cVPF functions, thus only boosting certain 
detected and discriminated signals. Optimized images contain 
slightly higher than natural levels of mid-to-high frequency 
contrast, thus enhancing perceived sharpness and structure. OCWs 
do not account for the presence of suprathreshold image artefacts, 
or their impact on the quality evaluation process. They are 
currently being investigated further, using a purpose-built image 
band contrast equalizer [38], and can be implemented as 
parameters in the STV-IQMs presented in this paper, to model 
relevant cognitive processes concerning spatial image quality 
judgement. This is with the intention of further closing the gap 
between system performance measurement, contrast 
detection/discrimination modelling and image quality perception. 

Abbreviations 
SPD-MTF…………………… Scene and Process-Dependent MTF 
SPD-NPS…………………….. Scene and Process-Dependent NPS 
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STV-IQM………….. Signal Transfer Visual Image Quality Metric 
MF-IQM………….. Multivariate Formalism Image Quality Metric 
IF-IQM…………………………………….. Image Fidelity Metric 
CP-IQM……………………. Computational Image Quality Metric  
cCSF…………………… Contextual Contrast Sensitivity Function 
cVPF……………………... Contextual Visual Perception Function  
OCW……………………… Optimal Contrast Weighting Function 
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