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Abstract
Today, most advanced mobile phone cameras integrate

multi-image technologies such as high dynamic range (HDR)
imaging. The objective of HDR imaging is to overcome some of
the limitations imposed by the sensor physics, which limit the per-
formance of small camera sensors used in mobile phones com-
pared to larger sensors used in digital single-lens reflex (DSLR)
cameras. In this context, it becomes more and more important
to establish new image quality measurement protocols and test
scenes that can differentiate the image quality performance of
these devices. In this work, we describe image quality measure-
ments for HDR scenes covering local contrast preservation, tex-
ture preservation, color consistency, and noise stability. By moni-
toring these four attributes in both the bright and dark parts of the
image, over different dynamic ranges, we benchmarked four lead-
ing smartphone cameras using different technologies and con-
trasted the results with subjective evaluations.

Introduction
Despite the very tight constraint on form factor, the smart-

phone camera industry has seen big improvements on image qual-
ity in the last few years. To comfortably fit in our pockets, smart-
phone thickness is limited to a few millimeters. This limits the
pixel size and the associated full well capacity, which in turn re-
duces its dynamic range. The use of multi-image technologies is
one of the key contributors to the image quality improvement in
the last years. It allows to overcome the limitation of small sen-
sors by combining multiple images taken simultaneously (with
multiple sensors, multiple cameras) or sequentially (using brack-
eted exposures, bursts). Multi-image processing enables many
computational photography applications including spatial or tem-
poral noise reduction [9], HDR tone mapping [15, 8, 14], mo-
tion blur reduction [10, 11], super-resolution, focus stacking, and
depth of field manipulation [25], among others.

The creation of a single image from a sequence of images
entails several problems related to the motion in the scene or the
camera. We refer to [5, 7, 1] and references therein for a review
of methods for evaluating and dealing with these issues. In a pre-
vious work [1] we explored these artifacts and provided a first
approach to evaluating multi-image algorithms. In this work we
focus on the evaluation of the tone mapping of HDR scenes. Since
the images must be displayed on screens with limited dynamic
range, the tone mapping algorithm becomes a critical part of the
system [14]. This process is qualitative in nature as it aims at
tricking the observer into thinking that the image shown on a low
dynamic range medium has actually a high dynamic range [4, 12].
Nevertheless, as we will see below, the quantitative assessment of
some attributes is possible and it fits with our perception of the
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Figure 1. A typical application of high dynamic range (HDR) imaging for

consumer photography is illustrated in the first row. Beyond consumer pho-

tography, HDR is also relevant in the context of advanced driver-assistance

systems (ADAS) as seen in the second row, and in the context of surveillance

as shown in the last row.

scene.
Current image quality measurements are challenged to quan-

tify the performance of these cameras[6, 13, 22] because of the
limited dynamic range of the test scenes. Furthermore, the sophis-
tication of algorithms requires more complex test scenes where
several image attributes such as local contrast, texture, and color
can be measured simultaneously. Beyond consumer photography,
image quality in HDR scenes is also very important for other ap-
plications such as automotive or surveillance, as illustrated in Fig-
ure 1.

The objective of the paper is to present new measurement
metrics, test scenes, and a new protocol to assess the quality of
digital cameras using HDR technologies. The measurements eval-
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Figure 2. The proposed setup for measuring the device capacity to capture

HDR scenes contains two back-lit targets. Each target contains a color chart,

a texture chart, and a grayscale of 63 uniform patches between 0 and 100%

of transmittance. The luminance of the light source in the right is always

13000 cd/m2, while the luminance of the left source varies between 100 and

13000 cd/m2. The photo is taken with the Device A of our evaluation and the

intensity difference corresponds to ∆EV = 6.

uate local contrast, texture, color consistency, and noise in a lab-
oratory setup where the light intensity as well as color tempera-
ture can be adjusted to simulate a wide variety of high dynamic
range scenes (Figure 2). The proposed measures are evaluated by
benchmarking digital cameras with different HDR technologies,
and establishing the correlation between these new laboratory ob-
jective measures and human perception of image quality on natu-
ral scenes (Figure 3).

The novelty of this approach is a laboratory setup that allows
to create a reproducible high dynamic range scene with the use
of two programmable light panels and printed transparent charts.
The two light panels allow to measure and trace the gain in con-
trast and color attained by the multi-imaging technology on scenes
with a dynamic range that is increased through predefined stops.
Also, the measurements through the proposed setup are indepen-
dent of the content of the scene. The results of this research will
be added to the DxOMark Image Labs testing solution, which
includes the hardware setup and software necessary for the mea-
surement: a set of programmable light panels to independently
and automatically control light intensity and color temperature; a
set of transparent chart with specific test patterns used for the au-
tomated qualitative analysis of local contrast, color, texture, and
noise; and specific algorithms to compute from the shots the quan-
titative image quality information for the device under test.

In the next section we describe the proposed objective mea-
sures of local contrast, texture, color, and noise. We will remind
the rationale behind each measure [1] and describe the laboratory
setup conceived so as to evaluate these attributes in HDR images.
Then we will evaluate the proposed measures by applying them
to four devices and validate the results of objective metrics by
correlating them with observations on natural images.

Objective HDR measures
High dynamic range imaging aims at reproducing a greater

dynamic range of luminosity than is possible with standard digi-

 

 

Figure 3. Comparison of quality attributes observed in natural and lab-

oratory setups. The two photos correspond to different devices observing

the same natural scene under the same conditions. The proposed objective

measurements are scene independent and allow to study the rendition by

the same devices in a controlled laboratory setting. For instance, the tex-

tures shown in the bottom-right (called Dead Leaves pattern) are used in

the laboratory to evaluate the texture preservation. Note that in the labora-

tory shots, textures are reproduced similarly to the textures captured in the

natural setting (crops in the bottom-left).

Figure 4. An important aspect of HDR rendering is perceptual contrast

preservation. The pictures illustrate this as (a) is less contrasted and some

colors are lost as compared with (b).

tal imaging techniques. For our HDR laboratory setup, we use the
static scene composed of two diffuse and adjustable light sources
(Kino Flo LED 201 DMX devices, DMX for short) as proposed
in [1]. This allows to precisely adjust the luminous emittance
from 5 to 17000 cd/m2. In front of the DMX devices we placed
two identical transparent prints containing a grayscale, a color,
and a texture chart. Our final image contains the two DMX de-
vices as it can be seen in Figure 2. The two DMX devices are
then programmed. They begin with the same luminous emittance
(13000 cd/m2) and progressively decrease the left one by reduc-
ing one EV each time, until the ∆EV = 7. By stretching the in-
tensities of the two DMX devices we intend to create scenes with
increasing dynamic range. For each dynamic range setting we
acquire a photograph with the HDR setting and automatic expo-
sure.1

The characteristics we want to measure are the preservation
of local contrast, texture, color consistency, and noise consistency.
Simply scaling the high dynamic range of the scene to fit the dy-
namic range of the display is not good enough to reproduce the
visual appearance of the scene [14]. We want to quantify how the
device compresses the HDR scene to fit the display range, while
preserving details and local contrast, how colors are altered and
how noise is handled.

1In most devices exposure can be "forced" so that a point of interest is
well exposed (by tapping on it).
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Low Light Bright Light

Entropy: 5.2 Entropy: 7.3
Figure 5. Local contrast analysis using the entropy. The images show the

dark and bright part of the setup (Figure 2) with ∆EV = 6 acquired with device

D. The figures correspond to the grayscales, the corresponding normalized

histograms, and entropy. Note that a grayscale with many saturated values

(left column) have a lower entropy value than an evenly distributed grayscale

(right column).

Local contrast preservation. Tone mapping algorithms allow
to display an HDR image on a support with limited dynamic
range. The local contrast perception is an important part of a
good HDR image, as illustrated in Figure 4. The tone mapping
algorithm must produce a pleasant rendering of the image while
preserving low contrast details [3]. This is usually done by lo-
cal contrast adaptations, which are inspired on perceptual princi-
ples [4] (i.e. humans do not perceive absolute intensities but rather
local contrast changes).

Our measure uses the grayscale part of the charts in Fig-
ure 2, which is composed of 63 uniform patches with linearly
increasing transmission. Having two grayscales with two differ-
ent luminance on the same scene allows to measure how a device
preserves the local dynamic range of each part of the image. To
measure the dynamic range we adopt the metric proposed in [1],
which computes the entropy of the normalized histogram histgs of
the grayscale chart

Entropygs = ∑
k

histgs(k) log
1

histgs(k)
. (1)

The entropy can be seen as the quantity of information con-
tained in the grayscale chart. A grayscale with many saturated
values in the dark or in the bright parts will have an entropy value
lower than an evenly distributed grayscale (as illustrated in Fig-
ure 5). A grayscale with evenly distributed values will have an
entropy equal to the dynamic of the grayscale.The entropy has
some clear limitations related to the fact that it does not incorpo-
rate spatial information. A dithering grayscale, for instance, can
have bad entropy and good visual appearance, and a grayscale
with strong halos can have good entropy but bad visual appear-
ance. Nonetheless, in [1] it is shown that the entropy provides a
good indicator of the perceived contrast.

In the proposed experimental setup the entropy is measured
on each grayscale chart for the different ∆EV s. This will provide
information about the contrast trade-offs made by the different
tone mapping algorithms.

(a) observed grayscale (b) reference grayscale
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Figure 6. Tone curve extraction and inversion. Image (a) shows the ob-

served grayscale and (b) the reference one. Matching the patches we esti-

mate the tone curve that maps the reference to the observed one. Then we

invert the tone curve avoiding stretching the saturated part (c). The same in-

verse tone curve is used to linearize the observed Dead Leaves chart. Image

(d) illustrates the effect of linearization on the grayscale (a), the non-saturated

part should match the reference grayscale.

Texture preservation. Preservation of fine details is different
from contrast; it is possible to have a locally low contrasted scene
with good texture and a locally highly contrasted scene with no
texture. The texture preservation measure is designed to evaluate
how fine details are preserved after tone mapping and denoising
have been applied [16, 17, 18]. The Dead Leaves pattern [16]
is used to simulate a texture with natural image properties (see
Figure 3), which are hard for post processing to enhance. Let us
define the spatial frequency response (SFR) [17, 21] as the mea-
sured power spectral density (PSD) of the texture divided by the
ideal target power spectral density

SFRtex( f ) =

√
PSDtex( f )−PSDnoise( f )

PSDideal( f )
, (2)

where PSDideal is the known spectral density of the observed pat-
tern [16], and PSDnoise denotes the power spectral density of the
noise present in the image, which is measured on uniform patches.
Then, the acutance metric A is computed. The acutance provides
a measure of the perceived sharpness of the image and is defined
as the weighted average of the texture SFR with the contrast sen-
sitivity function (CSF), which represents the sensitivity of the hu-
man visual system to different frequencies

A =
∫

SFRtex( f )CSF( f )d f . (3)

The acutance gives information about how texture is pre-
served, however it is contrast dependent. Hence, similarly to [1],
a linearization preprocess is applied. The linearization scales the
gray levels of the observed image to the levels of the reference
chart. Unlike [1] a high resolution tone curve is estimated using
the 63 patches of the grayscale (see Figure 2). Then, the inverse
tone curve is applied to the Dead Leaves chart. As illustrated in
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(a) before exposure correction

(a) after exposure correction
Figure 7. Color consistency measurement before and after exposure cor-

rection. The diagrams illustrate the color difference in the a*,b* plane, for an

exposure difference ∆EV = 6 (corresponding to Device A). Without exposure

correction the color differences are large because of the nonlinear relations

between the luminance and color channels om the CIE L*a*b* color space.

Figure 6, special care must be taken with the saturation points, in
order to avoid singularities in the inversion. In the HDR setup, for
each ∆EV the acutance of each chart is computed, which permits
to analyze the behavior of the tone mapping algorithm.

It is worth noting that a tone curve would not undo the lo-
cal adaptation effects of HDR tone mapping. This implies that
there is no guarantee that the estimated tone curve is valid on the
texture. Nevertheless, the perceptual validation confirms that this
setup captures the effects of texture loss.

Color consistency. Color consistency can be described as the
ability of a camera to preserve colors at different exposures and
at different intensities within the same image (Figure 14). Here,
we extend the classic color reproduction evaluation methods [20,
19] to HDR images. Each chart in Figure 2 contains a set of 24
representative colors, inspired by the Macbeth ColorChecker.

The classic approach to measuring color consistency con-
sists in capturing charts with calibrated spectral responses under
known illumination. However, since the repeatability of the il-
lumination and print properties of the back-lit HDR setup is not
as good as that of the ColorChecker, we recommend to measure
color consistency with respect to a reference shot of the same
chart, which is acquired with ∆EV = 0.

Color consistency is a single value metric aimed at measur-
ing the capacity of the device to reproduce the same color between
two photos, especially between a low dynamic scene and a high

dynamic one. To compare colors between images having a dif-
ferent contrast we propose to first apply an exposure correction
and then compare the corrected values in the CIE L*a*b* color
space. The exposure correction must be done using linear coor-
dinates, this is because (in order to mimic the nonlinear response
of the eye) in the in CIE L*a*b* the luminance and chrominance
channels are nonlinearly related.

Let us suppose we want to compute the color consistency be-
tween two photos, a sample S and a reference R. On each photo,
we have a set of uniform color patches. We also know the the-
oretical color value of those patches expressed in the CIE 1931
XYZ color space. For correcting the exposure we first convert the
photos to the CIE 1931 XYZ color space and compute the mean
value of each patch (X ,Y,Z) on this color space. The exposure
correction is done by imposing the luminance of the theoretical
patch (Xr,Yr,Zr) on the measured patch as:

(X ′S,Y
′
S,Z
′
S) =

Yr

YS
(XS,YS,ZS). (4)

The impact of the exposure correction is illustrated in Figure 7.
After the exposure correction, we convert the values

(X ′R,Y
′
R,Z
′
R) and (X ′S,Y

′
S,Z
′
S) to the CIE L*a*b* color space. For

each patch we then compute the distance ∆ab as given by the fol-
lowing formula:

∆ab =
√

(a∗S−a∗R)
2 +(b∗S−b∗R)

2. (5)

Noise analysis. Noise analysis is particularly interesting in
HDR imaging because the multi-image algorithms may end up
mixing inconsistent levels of noise in the same image. This can
happen when a multi-image fusion algorithm stitches images with
incoherent noise as seen in Figure 8(a). It is important to analyze
this noise artifact because this incoherence can be interpreted as
the presence of texture.

In Figure 8(b) we show the dark part of the sample image,
which not only has high levels of noise, but the noise level is also
discontinuous. This incoherent noise can be seen between the fifth
and sixth lines of the grayscale image, which was the one that
originated the curve shown in Figure 8(b). The plot also show
the noise levels corresponding to a ∆EV = 0. This differential
analysis permits to study the stability of the image quality as the
dynamic range is stretched.

Another important aspect of the noise analysis is the appar-
ent noise level. For that we analyze the evolution of the visual
noise (defined in ISO 15739) for increasing dynamic ranges. The
visual noise is a metric that measures noise as perceived by end-
user. Prior to computing the visual noise the image is converted
to the CIE L*a*b* color space and it is filtered (in the frequency
domain) to take into account the sensitivity of the human visual
system to different spatial frequencies under the current viewing
conditions. Then the visual noise is computed [24] as the base-10
logarithm of the weighted sum of the noise variance estimated on
the CIE L*a*b* channels of the filtered image u

K log10[1+σ
2(uL∗)+σ

2(ua∗)σ
2(ub∗)]. (6)

The noise variances are computed over large uniform areas of
the image with known graylevels. We sample seven different
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(a) An example of noise artifact due to the HDR stitching.
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(b) Noise consistency plot computed on the HDR chart.
Figure 8. Noise artifact due to the HDR stitching. Notice in (a) the rupture

of noise consistency in the 6th and 7th rows. In the plot (b) we can see

that the estimated standard deviation of noise in the sample image (which

corresponds to the left side of the mire, shown in image (a)) not only has

elevated levels of noise, but it also presents discontinuities. The plot also

shows the noise level of the reference image, which is acquired with both

light panels at the same intensity. This image corresponds to the dark side

of the setup with a ∆EV = 3, acquired with the Device B of our evaluation.

graylevels: the six gray patches present on the ColorChecker, plus
the background of the chart. The visual noise for other intensity
levels is linearly interpolated from the samples.

Evaluation of four devices
Our final objective is to develop a single metric that quan-

tifies the system performance to simplify comparisons between
devices. In this paper we compare the devices using the individ-
ual metrics, which will eventually be combined into a single one.

For that purpose, the laboratory setup and the metrics pre-
sented above are evaluated by comparing four devices launched
between 2014 and 2016. We denote the devices with a letter from
A to D, where A is the more recent and D is the oldest one. The
interest of comparing these devices is that they permit to observe
the evolution of the HDR technology over time. In the next sec-
tion we will also perform a subjective validation for two of the
proposed measures.

Contrast preservation measure. We evaluate the contrast
preservation of a device by computing, for different ∆EV , the en-
tropy of the two grayscales in the laboratory setup shown in Fig-
ure 2. The results for the four devices considered in the evaluation
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Figure 9. Contrast preservation measures of four devices in the laboratory

setting. The plots show the measured entropy in the dark part (left side) and

bright part (right side) of the setup (Figure 2) for increasing ∆EV .

∆EV A B C D

0 7 7 7 7

1 7 7 7 7

2 7 7 7 7

3 7 7 7 7

4 7 7 7 6.85

5 7 6.9 6.9 6.5

6 6.75 6.45 6.2 6.1

7 6.2 5.6 5.45 5.5

SUM ∆EV 4 to 7 26.95 25.95 25.55 24.95
Figure 10. Aggregated contrast preservation measures of four devices.

The table shows the average entropy (from Figure 9 thresholded at 7) for all

the ∆EV . We see a strong loss of contrast in the dark part of the setup as

∆EV increases.

are shown in Figure 9. A high entropy means that the different val-
ues of the grayscale are well represented by the device. We note
that all the devices tend to preserve the bright part of the scene
(right side) and sacrifice the dark part as the ∆EV increases. For
all the considered devices these losses correspond to saturation of
dark or bright areas.

Taking into account that an entropy above 7 is not perceptu-
ally relevant [1] we conclude that, on the bright side of the setup
(right) all the tested devices have a similar behavior and we ob-
serve that device B has a the tendency of saturating for large ∆EV .
From the left side of the setup we see that older devices (from D
to A) have a worse contrast preservation, as their entropy curves
decline faster for larger ∆EV .

These measures are interesting per-se and could be used to
compare against a reference photo taken with ∆EV = 0, or with
respect to a reference device. However, to obtain an overall score
we must combine the scores on the left and right parts of the setup.
We propose to start by thresholding the entropy at 7, then average
the thresholded entropies on the two sides to obtain a single score
for each ∆EV . Since the entropy is a concave function of the
measured dynamic range, averaging the two entropies allows to
penalize the case in which just one of the sides is well contrasted,
while the other one is poorly contrasted.

The overall score for a device can then be obtained by ag-
gregating the scores for all the considered ∆EV . The aggregated
results for the four devices are shown in Figure 10. We can ob-
serve that the score improves for more recent devices (from D to

IS&T International Symposium on Electronic Imaging 2018
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Device A Device B

Device C Device D
Figure 11. Comparison of contrast preservation of the four devices. Note

that device B seems to be more contrasted than A, despite having a slightly

lower score in Figure 10, This is because device B saturates the high and

low levels of the image, while device A preserves them, as can be seen in

the clouds details.

A), which is evidence of the improvement of the tone mapping
technology over time.

Figure 11 shows an HDR scene captured with the four de-
vices. It is interesting to observe that the image corresponding
to device B, despite having a slightly lower score than device A,
seems to be more contrasted. This is because device B saturates
the high and low levels of the image, while device A preserves
them, as can be seen in the cloud details. The perceptual valida-
tion conducted in the next section also confirms that the observers
indeed prefer device B over device A. It is worth noticing that,
this slight saturation of the bright part of the scene for device B
could be identified in the laboratory measurement (Figure 9) as
the decrease in entropy in the bright part of the setup.

Texture preservation measure. The acutance measurements
for all the devices for different ∆EV are summarized in Figure 12.
We start by observing that, while a good acutance should be be-
tween 0.8 and 1, device B has an acutance larger than 1. This
behavior is due to an over-sharpening of the output, which in-
creases the measure but does not produce pleasant results. We
shall see in the perceptual validation that indeed, the sharpening
is not mistaken as texture by the users.

Devices A and C perform similarly for all the ∆EV , while
device D is systematically below them by 0.2 points. We also
observe that for large ∆EV all the devices loose texture on the dark
part of the setup, which is consistent with the saturation of the
dark levels. From these measures we can conclude that devices A
and C have the best texture preservation, followed by D and B.

The result of the subjective evaluation presented in the next
section confirm the conclusions we reached by analyzing the lab-
oratory measurements of Figure 12.
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Figure 12. Texture preservation measures of four devices in the laboratory

setting. The plots show the measured acutance in the left and right side of

the setup (Figure 2) for increasing ∆EV . We observe that for large ∆EV all

the devices loose acutance on the dark part of the setup. A good acutance

should be between 0.8 and 1, the acutance above 1 of Device B is due to

an over-sharpening of the result, which implies that textures are not well

preserved. The best results are obtained by devices A and C, which perform

similarly for all the ∆EV on both sides, while device D is systematically below

them by 0.2 points.
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Figure 13. Color preservation results for the four devices in the laboratory

setting. The plots present, for different ∆EVs, the average ∆ab (Equation 5

averaged over all the ColorChecker patches) computed with respect to a

reference image acquired with ∆EV = 0. We see from the graph, that color

consistency deviates strongly on the dark of the setup when ∆EV increases,

while colors are more consistent on the bright part.

Color consistency measure. For a given device and ∆EV , we
propose to measure the color consistency as the average of ∆ab
(Equation 5) computed with respect to a reference image ac-
quired with ∆EV = 0. The average is computed over all the Col-
orChecker patches. This measure yields two average ∆ab per shot,
one for each side of the setup.

The results of this evaluation are summarized in Figure 13.
From the plot corresponding to the bright part of the setup we can
see that, as ∆EV increases, devices B and C become less consis-
tent, while devices A and D are better at preserving the colors for
all the exposures. However, these differences are not perceptually
relevant, as a ∆ab < 8 is barely noticeable.

In the dark part of the scene, on the other hand, we observe
larger differences. Devices A, C, and D perform similarly up
to ∆EV = 5, with color differences below the barely noticeable
threshold, for larger ∆EV the errors of all devices rise because of
saturation. For Device B however, we observe much higher errors
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(a) Device A

(a) Device B

(c) Device A: reference vs. measured
patch comparison table

(d) Device B: reference vs. measured
patch comparison table

Figure 14. Color consistency evaluation of devices A and B for ∆EV = 6. The images (a) and (b) are crops (for each device) of the laboratory shots with

∆EV = 6. The color consistency plotted in Figure 13 is computed with respect to a reference image taken with ∆EV = 0 (not shown here). The color comparison

tables (c) and (d) show (in 2×2 grids) the exposure corrected patches from the left (L) and right (R) side for the Reference and Measured images. Note that

while both images (a) and (b) have the same exposure, the colors reproduced by device B are less consistent as seen in the table (d) and in the image (b),

particularly the orange and yellow patches.

even for small ∆EV . To illustrate the impact of a large ∆ab we
show in Figure 14 the ColorChecker for the shots of devices A
and B with ∆EV = 6. Note that while both images have the same
exposure, the colors reproduced by device B are less consistent
as seen in the corresponding comparison table and in the image
(particularly visible in the orange and yellow patches).

In conclusion the best color consistency across ∆EV is at-
tained by devices A and D, followed closely by device C, and
then device B.

Noise analysis. Figure 15 shows (for the four devices) the evo-
lution of the visual noise computed for a value L*=50 (CIE
L*a*b*) with an increasing ∆EV . This measure is proportional
to the perceived noise, a visual noise below 1 is not visible in
bright light conditions (above 300lux), and below 3 is not visible
in low light conditions. The two plots correspond to each side of
the setup (low light and bright light). The low light conditions
(below 300lux) are only attained on left side for ∆EV 6 and 7.

On the bright side of the setup all the devices remain within
a visual noise of 2, with devices B and D strictly below 1. On the
dark part of the setup, for all the devices except B, we see a strong
increase of visual noise as ∆EV increases. Device B maintains
a low visual noise, at the expense of the textures, by applying a
stronger denosing.

In Figure 14(a,b) we can compare the images correspond-
ing to ∆EV = 6, for the devices A and B. We can easily see that
device A (with a visual noise of 5) is indeed noisier than the im-
age produced by device B (which is strongly denoised). A visual
noise below 6 is not necessarily bad, and may even be a design
choice. Visual noise levels above 6, on the other hand, are more
disturbing. In conclusion, except for device B (which applies a
strong denoisng), device A has the lowest visual noise followed
by devices C and D.

Perceptual validation of texture and contrast
measures

To validate the results of the texture and contrast measures
we conducted a subjective evaluation. For our evaluation, six nat-
ural HDR scenes were shot with the four devices in auto exposure
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Figure 15. Visual Noise for a value L*=50 (CIE L*a*b*) for an increasing

∆EV for the four devices in the evaluation. This measure is proportional to the

perceived noise, a visual noise below 1 is not visible in bright light conditions

(above 300lux), and below 3 is not visible in low light conditions. The two

plots correspond to each side of the setup (dark and bright). For all devices,

except B, we see a strong increase of visual noise on the dark part as ∆EV

increases. Device B which applies a strong denoising to the results.

Figure 16. The six scenes used in the subjective evaluation of the contrast

preservation, and from which the crops for evaluating the texture preservation

(Figure 17) are extracted.
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(a) Device A (b) Device B
Figure 17. Subjective evaluation of HDR texture preservation. The subfigures show the six crops of textured parts of the images in Figure 16, for two devices.

mode. These scenes (shown in Figure 16) were acquired on a
cloudy day and had a dynamic range of around 7 to 8 stops. We
define the dynamic range of a scene as the exposure difference
between a picture well-exposed on the brightest part of the scene
and a picture well-exposed on the darkest part. We measure this
by bracketing the scene with a DSLR, increasing the exposure by
1 stop in each image.

Fifteen subjects participated in the subjective evaluation.
The evaluation used a two-alternative forced choice method (de-
scribed below) which presents the observers with two images and
asks to rank them. For the evaluation of the contrast preserva-
tion measure we present the subjects with the entire images (Fig-
ure 16) and ask the observer to choose the image with better con-
trast. For the evaluation of the texture preservation measure we
present pairs of crops containing preselected textured parts of the
scenes (shown in Figure 17) and ask the observer to choose the
image in which the texture is best preserved.

Two-alternative forced choice evaluation. For the subjective
evaluation of the texture and contrast measures we used a forced-
choice method. In [2] the authors compared different perceptual
quality assessment methods and their potential in ranking com-
puter graphics algorithms. The forced-choice pairwise compar-
ison method was found to be the most accurate from the tested
methods.

In forced choice, the observers are shown a pair of images
(of the same scene) corresponding to different devices and asked
to indicate an image that better preserves texture (or contrast).
Observers are always forced to choose one image, even if they
see no difference between them (hence the forced-choice name).
There is no time limit or minimum time to make the choice. The
ranking is then given by nS, the number of times one algorithm
is preferred to others assuming that all pairs are compared. The
ranking score is normalized p̂= nS/n by dividing with the number
of tests containing the algorithm n. So that p̂ can be associated to
a probability of choosing a given algorithm.

By modeling the forced-choice as a binomial distribution we
can compute confidence interval of the ranking score p̂ using the
formula

p̂± z

√
1
n

p̂(1− p̂), (7)

where z is the target quantile. This formula is justified by the
central limit theorem. However, the central limit theorem applies
poorly to this distribution when the sample size is less than 30, or
when the proportion p̂ is close to 0 or 1. For this reason we adopt
the Wilson interval [23]

1
1+ 1

n z2

[
p̂+

1
2n

z2±
√

1
n

p̂(1− p̂)+
1

4n2 z2

]
, (8)

which has good properties even for a small number of trials and/or
an extreme probability.

Results and analysis. Figure 18 summarizes the results of sub-
jective evaluation for texture preservation. Devices A and C are
identified by the subjects as the best performing. This is coherent
with the results of the acutance measurements seen in Figure 12,
where devices A and C have very similar scores. Moreover, as
mentioned above, the observers penalized the over-sharpening in-
troduced by device B placing it slightly below device C.

Figure 19 presents the results of the subjective evaluation of
contrast preservation. The subjective evaluation ranks devices B
and A as the best performing and then devices C and D. This is
coherent (except for the inversion B,A) with the ranking based on
the laboratory measurement, shown in Figure 10, which ranks the
devices as: A, B, C, and D.

Let us concentrate on the inversion between the objective
measurement and the subjective evaluation results for the devices
A and B. Closer inspection of this case reveals that the verdict
of the contrast measure is correct. Device A better preserves the
dynamic range, while the device B tends to saturate the brights
and dark areas of the image. However, this saturation is associ-
ated to more contrast by the human observers, hence the higher
perceptual score. This is a nuanced point that highlights a lim-
itation of the proposed entropy-based measure. Addressing this
issue would require a more accurate modeling of human visual
system to capture this preference for slightly saturated images.

Conclusion
In this paper we presented a novel laboratory setup that cre-

ates a high dynamic reproducible scene with the use of two light
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Figure 18. Subjective evaluation of HDR texture preservation for the four

devices. The plot presents the results of the forced choice evaluation of

texture preservation. The values represent the probability of an observer to

choose the result of a device over the others. We see that, according the

human observers, textures are better preserved by devices A and C.
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Figure 19. Subjective evaluation of HDR exposure preservation for the

four devices. The plot presents the results of the forced choice evaluation

of contrast preservation. The values represent the probability of an observer

to choose the result of a device over the others. We see that, according the

human observers, contrast is better preserved by devices B and A.

panels and printed transparent charts. The use of the two pro-
grammable light panels allows to measure and trace the gain in
contrast, texture, and color from the HDR technology for scenes
with a dynamic range getting higher through predefined stops.
Improved image quality measures [1] are also proposed, allow-
ing the automated analysis of the test scenes. In addition, the
measures obtained with the proposed laboratory setup are inde-
pendent of the content of the scene. Validation of the measures
along with a benchmark of different devices was also presented,
highlighting the key findings of the proposed HDR measures.
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