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Abstract 
Among the various techniques that allow the acquisition of the 

depth of the scene, Depth from Focus (DfF) technique is a good 

candidate for low-resources real-time embedded systems. Indeed it 

relies on low complexity processing and requires one single camera. 

On the other hand, the large data dependency imposed by the size 

of a focus-cube must be tackled in order to ensure the embeddability 

of the algorithm. This paper presents algorithm improvement and 

an architecture optimized for both processing complexity and 

memory footprint. For full-HD images, this architecture can 

produce depth and confidence maps in real time using roughly 1.4p 

arithmetic operations per pixel, where p is the number of depth 

planes, without the need of a multiplier, while the needed memory 

footprint is equivalent to 6% of one frame. All in focus images can 

also be processed on-the-fly to the price of an additional 2 frames 

memory buffer. 

Introduction 
With the development of new autonomous systems, smart 

image sensors are being designed, and algorithms simplified, in 

order to provide more relevant information about the near 

environment. The depth of the scene is a crucial information for 

environment sensing, and many works provide solutions to capture 

it. Indeed, for an autonomous vehicle, knowing the distance to 

surrounding objects is of primary importance to preserve its safety 

and its integrity. 

Most techniques that have been considered to measure the 

depth of the scene, require extra hardware e.g. light sources in active 

Time of Flight imaging [1] or more than a single camera for 

stereovision [2-5, 12]. Democratization of autonomous systems 

leads scientists to find more compact and affordable ways to get 

object distances from images. Retrieving the depth of the scene with 

a low cost system requires the combination of low cost optics and a 

compact image sensor.  When cutting down the costs of a system is 

the main stake, embedding depth extraction processing as close to 

the pixel array within a single chip is the only viable alternative. 

Although at the top of the integration and power, phase-detection 

pixels [6] and Depth from Defocus [7] techniques offer new 

hardware and software solutions for depth evaluation. Yet such 

techniques require considerable post processing involving a lot of 

computational cost. Other techniques deduce depth maps from the 

sharpness variations of images captured during a focus sweep (depth 

from focus: DfF) [8-11]. These techniques have the advantages of 

requiring limited computational power and a single standard camera 

with a variable focus lens. However it often needs more memory 

than stereoscopic solution. Also the output depth map is most of the 

time filtered with a threshold and only a sparse depth map of the 

scene is available [11]. In fact, with the emerging data fusion 

systems, it becomes more interesting to provide a full depth map and 

associated relevance coefficients [12]. Meaningful relevance 

coefficients help to reduce false alarm rates and thus increase the 

safety of the system. Our previous work presented in [8] aimed to 

provide a full depth map along with relevance coefficients, referred 

to in this paper as confidence map. This confidence map results from 

the self-evaluation of the depth measurement quality for each depth 

pixel. A high confidence index indicates a more trustable depth 

estimation. This work presents an implementation architecture of 

the DfF method proposed in [8] in order to provide RGB-D-C pixels 

where RGB is an all in focus colored pixel, D its depth and C the 

confidence value used to weight the depth value.  

In the following, the next section presents a brief description of 

the algorithm presented in [8] with some improvements designed to 

limit the memory footprint. Then a hardware architecture for low-

complexity and low memory footprint implementation of this depth 

estimation algorithm is proposed. Finally some results of simulation 

are shown. 

Depth extraction algorithm and all in focus 
imaging  

As previously stated, in near-pixel embedded algorithms, the 

processing must be kept compact in order to limit silicon area for 

the image sensor, hence keeping its cost low. In this paper, we 

briefly review the algorithm presented in [8], and propose 

improvements and a hardware architecture for low-memory-

footprint and low-complexity implementation. 

 
Figure 1. Schematic representation of the algorithm principle 

Figure 1 presents the algorithm proposed in [8]. It is based on 

a bidirectional contrast analysis. Two depth and two confidence 

maps are extracted and then combined in order to provide two 

unified depth and confidence maps. As stated before, the purpose of 

the confidence map is to weight the depth map with confidence 
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values in order to predict for every depth pixel how good its 

evaluation is. 

DfF relies on images with shallow depth of field to improve the 

depth extraction sensibility. This in turn strengthens the blur of out 

of focus zones which reduces their usability for image analyses. So 

an additional all in focus (AiF) image of the scene is computed. 

The aforementioned reasons of silicon cost impose the limiting 

of the memory footprint to its lowest end. DfF requires a cube of 

images taken at several foci. The greater the depth resolution, the 

larger the focus cube and its impact on the memory budget.  The 

architecture presented in the next section was designed to keep the 

memory footprint as low as possible while maintaining sufficient 

quality. For this, the algorithm proposed in [8] is adapted to use 

adjacent nonoverlapping windows processing instead of 

overlapping (sliding) window. It reduces the quantity of data which 

must be buffered during the process.  RAW images with varying 

focus are captured to form a cube of images. Since monochrome 

images are more suitable for contrast analyses, the Bayer pattern is 

first removed using 2×2 binning. The local sharpness within each 

resulting image is then evaluated by computing the sharpness 

criterion given in (1). 
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 where Hh/v represents the horizontal and vertical 2D Haar wavelet 

coefficients of the image with focus index z in the multi-focus cube. 

(X, Y) are the coordinates of coefficients included in the window of 

size ww∙wh centered on (x,y).  In the following, depth map refers to 

the matrix of focus indexes. Actual distance can easily be computed 

from the focus index using the classic geometrical optic equations 

as described in [11].  

From the two sharpness criterion arrays Sh/v, two depth and two 

confidence maps, respectively DMh, DMv, Ch and Cv are extracted 

using (2) and (3) respectively.  
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Both the depth and the confidence maps are then combined to 

form a unified depth map DM and its associated confidence map C 

using respectively (4) and (5).  
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Finally, an AiF image is computed according to (6). 
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where I represents the multi-focus cube of source images and uDM 

the up-sampled depth map with the same resolution as the source 

images. Each AiF pixel value corresponds to the pixel value of the 

image in the focus cube indexed by the depth map.   

As it can be seen from the equations (1-6), the algorithm 

proposed in [8] relies on simple arithmetic operators such as adders 

and comparators. The nonoverlapping windows implementation 

proposed in this paper further reduces the computation power 

needed to implement it at the expense of an acceptable loss of 

quality as it will be shown later in this paper. To guarantee the 

success of depth estimation, the scene must not change during the 

acquisition of the focus cube. Hence a fast acquisition is required. 

According to human cinematic experiments, a minimum depth 

frame rate of 16fps is required to perceive continuous motion. With 

this frame rate, an application with 10 depth levels needs to acquire 

RAW images as fast as 160fps. For image processing faster frame 

rate might be useful and the pipelined architecture proposed here 

gracefully handles scalability thanks to its low processing 

requirements. Additionally, as mentioned above, the required 

memory must be drastically kept low in order to maintain an 

acceptable cost. The architecture presented below was designed 

with both constraints in mind. 

In the following, the width and the height of a RAW image are 

referred to as Iw and Ih. ww and wh correspond to the width and the 

height of the nonoverlapping windows, nbx and nby are the number 

of windows along the two directions as defined by (7).  
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The numbers 2 in the denominator denote the scale reduction 

due to the binning and 2D Haar coefficient computing. 

Hardware Architecture 
The proposed architecture overview is shown on Figure 2.  

 
Figure 2. Architecture for depth map, confidence map and all in focus image 
generation. Gray rectangles represent required memory blocks whose sizes 
are indicated with italic style. 

It is composed of three main processing stages marked with 

circled numbers on Figure 2. These processing stages are data 

dependent but run in parallel. The first stage prepares the sharpness 

criterion extraction as described by (1). The second corresponds to 

the computing of the criterion along the two main directions. It also 

extracts the depth evaluations and updates the AiF images as 

described by (2) and (6). The final outputs, described by (4) and (5), 

are computed in the third and last processing stage. Required 

memory is represented with gray blocks along with its required size 

in words. 
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A timing representation of the processing flow is proposed 

Figure 3. 

 
Figure 3. Functional processing timing diagram. 

Pre-processing for the sharpness criterion 
In a first stage  on Figure 2, Bayer pixels are converted into 

a lower resolution monochrome image. For this, 2×2 binning is 

performed on Bayer pixels, thus subsampling the image with a 4 

times factor and saving memory. The monochrome conversion 

occurs for each four rows acquisition of the source RAW image. It 

begins while the fourth line starts to be saved in the row buffer. 

Then the horizontal and vertical Haar wavelet coefficients are 

computed. For each 2×2 monochrome pixel block, it requires 3 

adders and one 2 bits right shifts to compute a Haar coefficient. The 

process therefore requires 2 rows of monochrome image, hence 4 

RAW rows of an original image. For these two operations, the 

minimum size of the input line buffer must hence be of 4∙Iw words. 

However, because of the AiF image generation, the input line buffer 

must have a size of at least 4∙Iw∙wh words. Indeed, the AiF image 

cannot be updated until a full ww∙wh window is entirely processed. 

Corresponding pixels must hence be kept in memory until that time. 

For each window, the two extrema of the Haar coefficients along the 

horizontal and vertical directions are recorded in order to be used 

for the sharpness criterion computation later in the process. This 

requires four additional buffers of nbx words each. Each new Hx, Hy 

coefficient is compared to the previously stored extrema of the same 

window and saved if it is respectively bigger or smaller than the 

previous recorded maximum or minimum as shown on Figure 4.  

 
Figure 4. Architecture for the pre-processing of the sharpness criterion: 
memorization of Haar coefficient extremums. Gray rectangles represent 
required memory blocks whose sizes are indicated with italic style. 

Ones can notice that if colored images are not needed, a 

monochrome sensor might be used. It would reduce the processing 

cost by avoiding the binning operation. Also the input buffer might 

have a size of 2∙Iw∙wh words. 

Sharpness criterion computing and temporary all 
in focus images and depth maps generation 

The computing of the criterion described by (1) occurs each 

time a window has been processed ( on Figure 2). Since the 

confidence map is calculated as the dynamic range of the criterion, 

the criterion extrema must be saved for each window, in the two 

directions in four memory blocks of nbx∙nby words each. They will 

be used to generate the confidence map (3) during the final stage. 

Every time the criterion maxima matrices are updated, the 

corresponding temporary depth map is updated with the focus index 

of the currently processed image. To save these depth maps, two 

additional memory blocks of nbx∙nby words are used. 

To limit the memory footprint, the focus cube is never entirely 

recorded as it was the case in [8]. However, since the AiF image can 

be a combination of any image of the focus cube, some part of it are 

saved during the process into two AiF image buffers, one for each 

direction. Each is updated when the maximum of the criterion along 

the corresponding direction increases. Two full frame memories are 

required to save these two AiF images. The whole processing is 

shown Figure 5. 

 
Figure 5. Architecture for the sharpness criterion computing and the AiF image 
and depth map memory updates. Gray rectangles represent required memory 
blocks whose sizes are indicated with italic style. 

Unified depth map, all in focus image and 
confidence map extraction 

At every end of a focus sweep cycle, the confidence values of 

the two directions are computed in parallel as the dynamic range of 

the sharpness criterion and then compared ( on Figure 2). The 

unified confidence map is composed of the highest confidence 

indexes in each directions. AiF blocks and depth estimations that 

correspond to the direction with the highest confidence are selected 

at the same time to form the unified depth map and the AiF image. 

For each pixel, the AiF RAW data, the depth estimation and the 

confidence index are then transmitted on the fly to the host system 

on 3 distinct output channels. The whole process is represented on 

Figure 6.  
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Figure 6. Architecture for unified depth map, AiF image and unified confidence 
map generation. Gray rectangles represent the memory blocks. Gray 
rectangles represent required memory blocks whose sizes are indicated with 
italic style 

Results 
To compare the results of the sliding method and the 

nonoverlapping one, the experimental dataset of [8] acquired with a 

Nikon D300S with a Nikkor AF-S DX 16-85 mm f/3.5-5.6G ED VR 

camera lens. It is composed of three scenes forming three multi-

focus cubes of 14 images. The Figure 7 shows these scenes and their 

corresponding manually designed ground-truth depth map. In the 

following, the first scene is referred to as ‘sun’, the second as 

‘panda’ and the third as ‘chair’. 

 
Figure 7. Experimental scenes (left) and the corresponding ground-truth depth 
maps with their depth index scale (right). The darker, the nearer. 

Some results from this algorithm are compared on Figure 8, 

Figure 9 and Figure 10 using both sliding window [8] (left) and 

nonoverlapping windows (this work, right).  

 
Figure 8. Comparison of depth maps generated using the sliding window 
version [8] (left) and nonoverlapping windows version (this work, right) for 15 
depth levels. The darker, the nearer. wx=wy =16. 

 
Figure 9. Comparison of confidence maps generated using the sliding window 
version [8] (left) and nonoverlapping windows version (this work, right) for 15 
depth levels. The lighter the better the estimation. wx=wy =16.  

The depth maps on Figure 8 and confidence maps on Figure 9 

show that besides the loss of resolution, most of the depth 

information remains with the distinct windows approach. Table 1 

shows the correct-estimation-count ratio introduced in [8]. It 

represents the ratio of correct depth estimations with an index error 

tolerance of 1 depth plane in comparison with the ground truth over 

the pixel total count.  
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Table 1. Comparison of the two depth extraction methods with 

the ground truth using correct-estimation-count ratio given in 

% (the higher, the better). 

Image Sun Panda Chair 

Sliding [8] 80.56 61.93 93.30 

Nonoverlapping 79.60 60.38 92.77 

 

As it can be seen, the correct estimated ratios of the proposed 

methods are really close to the ones evaluated in the case of the more 

computationally-intensive sliding window approach [8]. 

Qualitative results are presented on Figure 10, we notice that 

the AiF images from the two methods provide quite similar results 

even if those generated with the nonoverlapping windows 

processing exhibit a few more artifacts (see, e.g., the red rectangle 

on Figure 10). Yet, some elements in these images look sharper with 

the non-overlapping processing (see, e.g., the orange rectangle on 

Figure 10). 

We find that this method is of sufficient quality for fast, 

computing-efficient depth estimation and all-in-focus image 

rendering for a great number of applications. 

 
Figure 10. Comparison of AiF images generated using the sliding windows 
version [8] (left) and nonoverlapping windows version (this work, right) for 15 
depth levels. wx=wy =16. 

Memory footprint 
The total needed memory M for the process with the 

nonoverlapping windows can be estimated by equation (8). It should 

be noted that the memory size does not depend on the depth 

resolution. This allows this architecture to dynamically adjust the 

depth resolution at run time to adapt to the requirements of various 

applications. 
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Also, if the AiF image is not necessary, the last term 2IwIh of 

the equation is no more useful. It reduces drastically the memory 

footprint.  

As example, we considered a cube of 14 images with a 

resolution of 1080×1920 and 16 by 16 pixels windows. 

Comparisons of memory footprints between four architectures are 

presented Table 2. The two window processing methods (sliding 

and nonoverlapping) were compared, with and without the AiF 

image generation. 

As it can be seen, the nonoverlapping architecture allows to 

save up to 96% of the memory compared to the sliding window 

architecture and up to 98.5% of the memory with the solution 

proposed in [11] when AiF images are not computed.  

 

Table 2. Comparison of four architectures (wh=ww=16) 

 Memory (frames) 

Sliding window with AiF 
generation [8] 

3.45 

Nonoverlapping with AiF 
generation (this work) 

2.06 

Method from [11] with AiF 
generation 

5.00 

Nonoverlapping without AiF 
generation (this work) 

0.06 

Method from [11] without AiF 
generation 

4.00 

Sliding window without AiF 
generation [8] 

1.45 

 

Processing complexity 
The number of 2 input comparators and adders needed to 

compute a full resolution RGB-D-C pixel was evaluated. It is shown 

in Table 3 where p represents the number of wanted depth planes.  

Table 3. Number of operations per pixel needed for each output 

pixel-depth-confidence 

Architecture Adders Comparators 
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Since comparisons are generally designed using the sign bit of 

a substractor, the total number of operation can be summed up as a 

number of additions per pixel. This is summarized in Table 4 when 

wh=ww=w. 

Table 4. Total number of additions per pixel needed for each 

output pixel-depth-confidence 

Architecture Number of operations (wh=ww=w) 

Sliding )6(
416

3
)6(

4
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Nonoverlapping 
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As it can be seen, roughly 1.4p arithmetic operations per pixel 

are needed with the proposed method whatever the image resolution.  

In the same conditions as in the example of the previous section 

(w=16 and p = 14), the cumulated number of additions per pixel for 

the sliding architecture would be 917.19 with respect to a mere 19.27 

for the nonoverlapping architecture.  

In terms of computational cost, the presented architecture is 

about fifty times less complex than a solution with sliding window, 

regardless of the computation of AiF images.  

Another advantage of the proposed architecture is that 

contrarily to most depth extraction methods, it does not rely on 

multipliers but on adders only which can drasticaly improve silicon 

footprint and achievable data throughput. 

Conclusion 
In this paper, a hardware architecture for a Depth from Focus 

algorithm is presented. The algorithm, originally presented in [8] 

was improved in order to reduce the complexity and memory 

footprint with a comparable qualitative and quantitative quality. The 

architecture was designed to operate on a stream of pixel in order to 

produce All-in-Focus images, depth and confidence information as 

soon as possible, thus reducing the memory requirements and 

processing complexity to a minimum. Required complexity for full-

HD images amounts to roughly 1.4p arithmetic operations per depth 

pixel, with p, the number of depth planes, while memory 

requirements range from 0.06 to 2.06 memory-frames depending on 

if AiF images are needed. More than 90% reduction of the memory 

footprint and improvements of two orders of magnitude of the 

processing power were achieved using a nonoverlapping windows 

architecture to the price of a limited quality loss.  
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