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Abstract
Most  of  the  snapshot  HDR  (High  Dynamic  Range)

image sensors have a non-linear, programmable, response
curve  that  requires  multiple  register  settings.  The
complexity  of  the  settings  is  such  that  most  algorithms
reduce the number of parameters to only two or three and
calculate a smooth response curve that approaches a log
response.  The  information  available  in  the  final  image
depends on the compression rate of the response curve and
the quantization step of the device.

In  this  early  stage  proposal,  we  make  use  of  scene
information and discrete information transfer to calculate
the response curve shape that maximizes the information in
the final image. The image may look different to a human
but  contains  more  useful  information  for  machine  vision
processing.

One  important  field  of  use  of  such  sensors  with
programmable  dynamic  range  is  automotive  on-board
machine vision and more specifically autonomous vehicles.

Introduction

Non-linear sensors response
The most common approach to increase the dynamic range of

an  image  sensor  is  to  respond  non-linearly  to  light  intensity.
Logarithmic sensors have been used since the 90s but were not
programmable  and  their  SNR performance  was  not  as  good  as
expected in today's  standards.  Piecewise  linear  response sensors
provide  a  response  curve  that  approaches  that  of  a  logarithmic
sensor using multiple linear segments. Moreover, the segments can
be individually controlled so that the response curve can be shaped
as desired. Sensors with up to six segments and dynamic ranges
exceeding  150dB have  been reported [1]  but  the most  common
implementations of this type of sensor has three segments.

Most  of  the  sensors  are  designed  in  usual  CMOS  image
sensor technology and control the pixels with additional signals. A
common approach is to use a regular 3T pixel and add additional
transitions  to  the  reset  gate  signal  during exposure  to  clamp or
reset  the  pixel  to  intermediate  levels  if  the  voltage  in  the
photodiode  varies  too  fast,  i.e.  if  the  light  intensity  (or
photocurrent) is too high.  Each level will  correspond to a linear
segment  of  the  sensor's  response  [2].  There  are  also  similar
solutions for global shutter pixels with 4, 5, 6 or more transistors.

As each segment  is  programmable  in  terms of  responsivity
(the slope) and reset level (related to the height of the kneepoint
between each segment), it offers two degrees of freedom. This is
similar to a linear image sensor offering exposure time (or gain)
and offset  (black level) control. If  the sensor has N segments,  it

will have 2*N degrees of freedom. For example, a sensor with two
segments will have the following four degrees of freedom: offset
(black level), total exposure time, ratio of exposure time between
the  first  and  the  second  segment  and  height  of  the  kneepoint
between the first and the second segment. If  gain is available, it
can also be considered as an additional degree of freedom, making
the total 2*N+1.

Dynamic Range Gaps
In some conditions, i.e. slope configurations, such a piecewise

linear response can generate artifacts called Dynamic Range Gaps
[4] or SNR holes as named by Dirk Hertel in his original paper [3].
At  that  time,  we  were  working  on  HDR  image  sensors  for
automotive  and  the  control  of  the  dynamic  range  was  such  a
problem that customers were using a limited set of fixed settings
only  based  on  lab  experiments  and  switched  from  one  set  of
parameters to another based on deterministic histogram decisions.

At  the  kneepoint,  the  signal-to-noise  ratio  (SNR)  can  drop
below 1 (0dB) and therefore the details within the image are no
longer noticeable (we can extend this limit to any acceptable SNR
limit like for example 5). A very good example of the situation is
provided in [3] and in [4] and reproduced below at figure 1, 2 and
3. In the top image (figure 1), a 100dB scene is captured with a
linear sensor with limited dynamic range and saturation is obvious
in the brightest areas of the scene. No information can be retrieved
from the saturated areas. Most of the image is properly acquired
but of course the performance is limited to the available SNR and
therefore the information is limited in the darkest area due to the
lower SNR.

Figure 1. Dynamic Range Gap artifact – linear image with saturation

In figure 2, the same scene is captured with a 100dB sensor
with strong compression (one barrier or kneepoint, meaning two
segments). The image is no longer saturated, as can be seen by the
readable  text  on the reflective  road  sign,  but  large  parts  of  the
image fail to provide any information. The parts of the image that
are all of the same gray level correspond to that specific irradiance
range  for  which  the  dynamic  range  gap  occurs.  Therefore  no
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information can be retrieved from these parts of the image. We can
see that even though the dynamic range has been increased, the
image may be less useful.

In figure 3, the same scene is again captured with the sane
100dB sensor but this time using five barriers or kneepoints, i.e.
six segments. As the compression is not as strong and the response
curve is smoother, there are no dynamic range gap artifacts.

Figure 2. Dynamic Range Gap artifact – two segments image without 
saturation but with details lost in the dynamic range gap

Figure 3. Dynamic Range Gap artifact – correct image with six segments

Figure 4. Dynamic Range Gap presence function (black) vs SNR plot (gray) of
a three segments response HDR sensor

In previous work and in [4], I have defined the dynamic range
gap  presence function  that  is  0  for  the sensor  irradiance ranges
where  SNR<1 and 1 outside of  these ranges.  It  is  explained  in
figure 4. Again the value of 1 can be changed depending on the
application's requirements

For  a  two-segment  response  with  a  kneepoint  at
qk=qmaxθ electrons, 0<θ<1 ,  an  exposure  time

t int and a  slope change time t 1 ,  the  sensor's  response is

given by

where id is  the  dark  current  and i ph is  the  photocurrent.

The sensor design is such that each slope has less response than the
previous one and therefore it is not possible to generate any form
of curve.

The SNR curve and the dynamic range (DR) can be obtained
by calculations  of  the  signal  and  the noise  of  this  simple  pixel
model, as made in [4], [5] and in [6]. The dynamic range is

and the SNR is

These formulae can be extended to more that two segments.
Multiple  exposure  approaches,  either  with  several  sets  of

pixels  (based on [2]),  several  samples  of  the same pixel  during
exposure  or  several  independent images  can suffer  from similar
difficulties  and  similar  artifacts.  Sensors  with  multiple  readout
channels,  commonly  called  scientific  CMOS  sensors,  can  also
suffer from similar difficulties and similar artifacts but offer less
degrees of freedom because the gains of the readout channels are
usually fixed by design. 

Managing the degrees of freedom
As we have seen, large dynamic range can only be properly

acquired if the curve has limited compression and therefore if the
dynamic range of the sensor is not too much extended or if a large
number  of  kneepoints  is  used  so  that  the  ratio  between  each
consecutive slopes is small. Using a large number of segments also
means using a large number of control parameters (2*N+1) and
therefore a large number of measured values.

A  large  number  of  control  parameters  can't  easily  be
managed.

With only one slope (linear device), the black level is adjusted
based on some reference black pixels  so that  the signal  is  dark
enough but not fully clipped for image processing reasons. Then
the brightness of the image or some other statistical parameters of
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the image are used to control the exposure time or the gain to find
the best possible response for a given scene. Image average and
image median are usually used to control exposure time, each has
its pros and cons.

If there are more controls then more statistical values from the
images are required in order to control the additional parameters. If
these statistical values are somewhat linked to each other or if the
change  of  one parameter  affects  more  than one statistical  value
then it is extremely difficult to develop a stable multi-dimensional
controller.  Moreover,  if  the  number  of  parameters  to  control  is
large, then we lack a number of statistical parameters to link the
effect of a control on the captured image.

As a possible solution, the number of degrees of freedom is
reduced to only 3: the offset controlling the black level, the total
exposure  time  controlling  the  brightness  and  the  compression
controlling the dynamic range. It is reduced by forcing additional
constrains to the system, for  example a fixed ratio between two
consecutive slopes and the same height between each kneepoint.
This  constrain  yields  a  response  curve  similar  to  a  logarithmic
response sensor.

In  our  software  IP,  we  are  using  median  instead  of  mean
because the median is not affected by changes of image saturation.
Therefore we can use the median to control the total exposure time
and  the  number  of  saturated  pixels  to  control  the  compression
ratio.  As  the  parameters  become  uncorrelated,  two  independent
closed loop (feedback) controllers with only one dimension work
in parallel to control the sensor's response. A third controller acts
on the black level based on reference black pixels. Additional rules
related  to  the  maximum  acceptable  exposure  time  balance
exposure  and  gain.  The  exposure  time  may  be  limited  to  a
maximum value in order to avoid excessive motion blur or dark
current.

Going further, our dynamic range regulation also reduces the
number of kneepoints to a minimum, based on a prediction of the
possible presence of dynamic range gaps. Usually a response with
more kneepoints  is more noisy due to additional noise injection
due to the change in control signals at each of the kneepoints.

Information transfer

If  f (I , P⃗)  is  the  sensor's  response  (i.e.  the  analog
output  (or  the  pixel  charge  in  electrons)  for  a  pixel  irradiance

I and  an  a  set  of  control  parameters  and  environment

parameters P⃗ ), then a variation of luminance Δ L  in the

scene   produces  a  variation  of  the  pixel  irradiance Δ I ,  a

variation of photocurrent Δ i ph and a variation of the sensor's

analog  level  at  the  input  of  the  ADC  given  by

Δ D= f ( I +Δ I , P⃗)− f ( I , P⃗ ) .  Strictly  speaking,
we should also consider the spectral  response of the sensor and
consider as input the integral over all wavelengths of the product
of the pixel's irradiance and the sensor's spectral response. We will

neglect this as well as the relationships between I , i ph and

L .  f (I , P⃗) becomes  a  constant  when  the  pixel  is
saturated.

We will no longer mention P⃗ in the next developments.
Going  to  small  variations,  the  incremental  gain,  i.e.  the

variation of the pixel charge for a given variation in the scene is
given by

g ( I )=
df
dI

. (1)

If we consider that the information of a scene is related to the
variations that can be seen, of any intensity and at any scale, then
the incremental gain represents the information that is transferred
from the scene into the image.

The following condition shall also be fulfilled in order avoid
dynamic range gaps [3]:

SNR=
I
σ I

=
g ( I ) . I

σD
≥1 . (2)

Again  another  value  than  1  can  be  used  as  the  minimum
acceptable SNR criteria.

As  no  information  can  be  transferred  in  the  presence  of  a
dynamic range gap, the information transferred is proportional to

H ( I )=γ(I ) . g ( I ) , (3)

where γ( I ) is  the  dynamic  range  gap  presence  function  as
previously defined.

When the derivative is high, there is a large variation in the
image for a small variation in the scene and details remain highly
visible. When the derivative is low, it is the opposite. If the image
is saturated, or the irradiance on the sensor is below the sensitivity
level  or  if  the  irradiance  falls  within  an  irradiance  range  that
corresponds  to  a  dynamic  range  gap,  there  is  no  information
transferred.

Quantization
The image  data is  not the analog value at  the input  of the

ADC but the digital value at the output of the ADC. The step in-
between is called quantization. It is a rounding process in which an
interval of analog values is represented by a single digital value.
The quantization step should be small enough so that this process
does not significantly affect the image data. It is usually such that
the  quantization  noise  (i.e.  the  rounding  error)  is  less  than  the
analog sensor  noise.  The worst  case is  close to  dark where  the
sensor's noise is the smallest (noise increases with light intensity
due to photon shot noise).

Advanced  ADC  approaches  use  variable  step  sizes  for
quantization, as described in [2], [4] and more recently in [7].

This  rounding  error  introduces  an  additional  loss  of
information and must be managed such that this loss is negligible.
The process is well explained in [7].

Figures 5 and 6 show how the information retrieved from a
given scene can vary depending on quantization step (figure 5) and
response slope (figure 6).

Motivation for this work
If we use a mathematical function to represent the information

contained in a scene and the information contained in the captured
image, we can measure the loss of information. We can therefore
define  an  information  transfer  ratio  (or  information  gathering
ratio), G, as the ratio between the image information and the scene
information.
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Figure 5. Information loss due to quantization – effect of quantization step

Figure 6. Information loss due to quantization – effect of response slope

For image processing applications, it would be interesting to
tune the sensor's response for optimum information transfer in total
so  that  the  information  contained  in  the  resulting  image  is
maximum. In this case, the ratios between the consecutive slopes
and the distance between the kneepoints are no longer  constant,
like  in  most  current  implementations,  and full  freedom is  used.
Dynamic range gaps can even become acceptable if the gap causes
a loss of information that is more than compensated by the gain in
information somewhere else, for example if the gap occurs at gray
levels that are almost not present in the scene but compensates by
the enhancement of the details of a road sign, another vehicle or a
pedestrian.

Status of this work
Electronic Imaging is a great place to come with new ideas, to

explore the possibilities and to discuss the ideas with peers. This is
why this new idea has been proposed as a poster for  the image
sensors and imaging systems session but is also of interest for the
autonomous vehicles session.

This  research  is  only  at  its  beginning  and  i'm  looking  for
interested  students,  partners  or  researchers  to  help  develop  it
further.

The information transfer ratio
We  will  define  the  scene's  information  as  the  Shannon

entropy and the probabilities are estimated based on the histogram.
The scene's information is then

H S=−∫0

∞

p(I ) log p ( I )dI . (4)

with p ( I ) the probability that the irradiance is I .
Similarly, the image information is calculated as

H I=−∑i=0

Q−1
γ[ I i] p [ f ( I i)] log p[ f ( I i)] (5)

with

p [ f ( I i)]=
hist [ f ( I i)]

∑k=0

Q−1
hist [ f (I k )]

(6)

the proportion of pixels with the value f (I i) . f (I i)  is

the central  pixel  value  in  each of  the Q classes  defined  by the

quantization of  the sensor's  ADC and  f (.)  is  the transfer
function  (or  response)  of  the  sensor.  There  is  of  course  zero
probability after  sensor saturation and therefore  the sum can be
limited  at  the  saturation.  “hist”  is  a  function  representing  the
histogram values.

Brackets  mean  that  we  are  in  the  discrete  domain  and
parentheses mean the continuous domain.

For simplicity, we consider that γ[ I i]  is the most likely

value of  γ( I )  in the interval  centered around  I i  and

that the quantization step is small enough so that using the center
of each class does not affect the results. The more general solution
is not different but only mathematically more complex.

Figure 7 illustrates the principle. Depending on the response
curve of the sensor, some parts of the histogram are more or less
compressed.  In  some  cases  the  sensor  saturates  and  the
corresponding part  of the scene's  histogram degenerates into the
saturation peak.

Figure 7. Transfer of a scene histogram into an image histogram for three 
image sensor responses – loss of information and compression ratios
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The  incremental  gain  of  the  OECF  and  the  effect  of
quantization  are  hidden  in  the  way  the  analog  scene  histogram
becomes the discrete image histogram.

Then the information transfer ratio (or information gathering
ratio) is defined as

G=
H I

H S

. (7)

Optimizing the sensor's response
The 2*N or 2*N+1 sensor parameters can then be selected to

reach  the  highest  possible  value  for G and  therefore  the
information  within  each  image  data  will  be  maximized.  The

optimization problem is to find the controllable values of P⃗
that maximize G for a given scene.

The maximum possible value of G is of course 1.

Future work
This paper sets the grounds of a new approach to optimize the

use of HDR CMOS image sensors for machine vision applications.
There  are  significant  mathematical  developments  still

required  in  order  to  formalize  the  concept.  Among  these
mathematical  requirements,  it  needs to be demonstrated that the
optimization problem has a solution (problem complexity analysis)
and the mathematical expression of the optimization problem has
to be derived.

Another  challenge  is  to  use  the  SNR curve  as  part  of  the
information reduction problem as 1/SNR represents some form of
probability  that  the  information  will  be  degraded  through  the
imaging  process.  One  possibility  to  be  investigated  is  to  to

optimize  for  a  combination  of G and SNR with  a  weighting
factor for each item.

The technique will only be useful if it is possible to estimate
the scene's histogram, most likely based on previous images and
detected scene changes or some form of modeling. Indeed if the
scene  remains  an unknown  (i.e.  the  irradiance  on  each  pixel  is
unknown) then it is not possible to estimate the scene's histogram
or information and therefore it is impossible to compute the set of
parameters  that  maximizes  the  information  transfer  ratio.  One
possible direction towards this is to use multiple linear response
images to estimate the scene's histogram and then define the best
merging and compression approach and to repeat this process each
time the scene seems to change significantly. This is not a real time
solution  that  can  be  used  to  control  a  sensor  but  a  possible
intermediate solution for multiple exposure and multiple sampling
systems.

At first, the problem should be mathematically formalized for
an  arbitrary  scene  histogram,  a  flat  scene  histogram  and  a
trapezoidal scene histogram.

It  should  also  be  investigated  how  this  can  be  related  to
minimum distinguishable contrast.
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