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Abstract
Most digital cameras today employ Bayer Color Filter

Arrays in front of the camera sensor. In order to create
a true-color image, a demosaicing step is required intro-
ducing image blur and artifacts. Special sensors like the
Foveon X3 circumvent the demosaicing challenge by using
pixels lying on top of each other. However, they are not
commonly used due to high production cost and low flex-
ibility. In this work, a multi-color multi-view approach is
presented in order to create true-color images. Therefore,
the red-filtered left view and the blue-filtered right view are
registered and projected onto the green-filtered center view.
Due to the camera offset and slightly different viewing an-
gles of the scene, object occlusions might occur for the side
channels, hence requiring the reconstruction of missing in-
formation. For that, a novel local linear regression method
is proposed, based on disparity and color similarity. Sim-
ulation results show that the proposed method outperforms
existing reconstruction techniques by on average 5 dB.

Introduction
Humans are used to perceive the world in color. Con-

sequently, they expect digital images to be recorded and
displayed in color, as well. Typically, Color Filter Ar-
rays (CFAs) are employed in front of the camera sensor to
allow for colored images. Bayer CFAs [1] in particular, de-
scribe a characteristic pattern of red, green, and blue filter
elements. As each filter element is assigned to one pixel,
for each pixel only one color channel is available. Thus,
the missing color channels have to be estimated in order to
obtain a true-color RGB image. This process is called de-
mosaicing and introduces image blur and artifacts [2]. Ex-
tensive research has been conducted in order to find demo-
saicing techniques that minimize the quality degredation
to fulfill the increasing requirements for image quality [3],
[4]. Alternatively, special sensors like the Foveon X3 have
been developed, circumventing the demosaicing step [3].
But, those sensors are expensive and not widely spread in
the consumer market. Regardless of using standard Bayer
patterns or special sensors, the spectral sensitivity is fixed,
limiting the number of potential applications.

In contrast, in multi-spectral imaging, the required
spectral sensitivity highly depends on the chosen applica-
tion [5], [6]. For that, filter wheel based systems [7] could
increase flexibility but are restricted to static scenes.

Recently, the authors in [8] proposed to use a multi-
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Figure 1: System overview.

view system in the context of polarization imaging for in-
dustrial inspection. By using multiple off-the-shelf compo-
nents equipped with different polarization filters, a supe-
rior image quality has been demonstrated while maintainig
flexibility and avoiding special purpose cameras.

In this work, a novel and flexible framework for multi-
color multi-view image acquisition is proposed. For that,
an array with three standard digital grayscale cameras is
used. In front of each camera, either a red, green, or a blue
color filter is located. The proposed setup provides various
benefits. Compared to Bayer filtering, no demosaicing step
is required and the full spatial resolution is preserved. In
addition, the system is flexible and by far not limited to
RGB color imaging. Replacing the color filters in front of
the cameras allows to easily adapt to other applications,
e.g. in the area of multi-spectral imaging.

In a first step, the side views are projected onto the
center view. Then, for image regions where not all three
color channels are available after the projection, the miss-
ing color information is reconstructed exploiting the local
neighborhood and color channel correlations.

The rest of the paper is structured as follows. After
explaining the overall system in the next section, the paper
focuses on the registration and the proposed color channel
reconstruction method. Then, simulation results are given.
The paper finally concludes with the last section.

System Overview
The proposed setup can be seen in Figure 1. Three

cameras are positioned next to each other and in front of
each camera a different filter, corresponding to one of the
three primary colors, is mounted. As a result, three images
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Ir, Ig, and Ib can be obtained, each containing all pixels
for the corresponding red, green, and blue color channel,
respectively. The main objective is to project the left image
containing the red channel and the right image containing
the blue channel onto the center view in order to create the
RGB image Ĩ. The green channel is chosen as the center
view, as it contains the most luminance information and
because green wavelengths are between blue and red wave-
lengths. As the cameras cannot be placed in exactly the
same position, each camera has a slightly different view-
point entailing two challenges. First, image registration is
necessary to find corresponding pixels in the different views
before projecting them. This task is challenging because it
does not resemble a global transformation problem but a
local one, as objects closer to the camera are subject to big-
ger translation than background objects. After performing
the projection step, the resulting image Ĩ comprises pixels
with either one, two, or three color channels. The center
view, corresponding to the green channel, is always avail-
able. However, depending on the scene geometry, projected
pixels from the side views might be occluded in the cen-
ter view. Thus, secondly, in order to obtain the true-color
RGB image Î, the occluded areas have to be reconstructed
using a proper color channel reconstruction technique.

Image registration
In general, image registration is the task of aligning

different images of the same scene. For rectified multi-view
images, the registration can be achieved in terms of dis-
parity estimation. In case of rotations or two-dimensional
translations, image rectification has to be applied first. Ac-
cording to [9], the disparity estimation chain consists of
the sub-tasks matching cost computation, cost aggrega-
tion, disparity computation, and disparity refinement.

For cost computation, different matching metrics can
be applied. On the one hand, there are intensity-based
metrics, such as the sum-of-absolute differences or the sum-
of-squared differences. However, since this work deals with
the registration of different color components, intensity-
based metrics cannot be used. On the other hand, there
are structure-based metrics, trying to search for point cor-
respondences by comparing the structure of their surround-
ing blocks. In this work, the zero-mean normalized cross
corelation (ZNCC) is used for cost computation. In the fol-
lowing, the calculation is described for matching between
the red and the green channel. Note that the calculation
for the blue and the green channel is equivalent. For a
pixel position p and a disparity level d, the ZNCC value
ZNCC(p,d) is defined according to

ZNCC(p,d) =∑
q∈Np

(
Ir(q)− Īr(p)

)(
Ig(q− (d,0))− Īg(p− (d,0))

)
√ ∑

q∈Np

(
Ir(q)− Īr(p)

)2 ∑
q∈Np

(
Ig(q− (d,0))− Īg(p− (d,0))

)2

(1)

where Īr and Īg denote the mean values of the current
neighborhood Np and q is a pixel position within this
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Figure 2: Illustration of the pixel sets I1, I2, and I3.

neighborhood. The result of the cost computation is a ma-
trix comprising the costs for all possible disparities within
a pre-defined search range for every pixel. Now, the cost
aggregation step aims at getting more reliable and robust
costs by smoothing the cost matrix while not aggregating
across object boundaries. In this work, a cross-based ag-
gregation method as discussed in [10], [11] is used. In the
disparity computation step, simply the best match is cho-
sen from the aggregated cost matrix. Finally, a cross-check
and median filtering is used in order to further refine the
disparity map.

Color Channel Reconstruction
After applying the disparity map for image projection,

three different kinds of pixels exist in the image Ĩ. First,
there are pixels where all three color channels are present
after the projection. This set of pixels does not require any
kind of reconstruction thereafter and is called I3. Second,
for pixels with two existing color channels I2, the remain-
ing third one has to be reconstructed. Lastly, for pixels
I1 where only one color channel, i.e., the green channel,
is present, the missing two color channels have to be re-
constructed. For a sample projection result, Figure 2 illus-
trates the pixel sets I1, I2, and I3. In order to use the
maximum amount of information, the set I2 is considered
first. Subsequently, those results can be used to improve
the reconstruction results for I1.

In literature, various approaches have been already
developed. In general, interpolation or image inpainting
approaches can be used in order to reconstruct the missing
information. The Frequency Selective Extrapolation (FSE)
is a block-based iterative method for reconstructing lost
areas in images [12]. It has been successfully applied in
a wide range of applications, ranging from difference im-
age extrapolation [13], over image resampling [14], to the
reconstruction of synthesized high-frequency content [15].
The basic assumption is that image signals can be repre-
sented sparsely in the frequency domain. For the unknown
pixels within each block, FSE generates a model based on
the available pixels in the support area as superposition of
2-D Fourier basis functions.

Alternatively, averaging was employed in the Mars Or-
biter Camera (MOC) which comprised two narrow-band
sensors in red and blue wavelengths for color vision [16].
The approach assumes a linear dependency between the
color channels. Thus, for the scenario considered in this
work, the red or blue color channel can be reconstructed
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using a linear extrapolation of the given information. How-
ever, averaging is a pixel-based approach, independent of
the remaining image. Contrarily, linear regression [16] tries
to find a global transformation matrix based on the I3
pixels where all three color channels exist in the regarded
image. This is done by minimizing the residual squared
error for the given data. As an example, the goal is to find
a transformation matrix Mb for reconstructing the blue
channel, such that

bbb∼= [rrr ggg] ·Mb, (2)

where rrr, ggg, and bbb denote the column values of the cor-
responding red, green, and blue pixels, respectively. The
resulting 2× 1 transformation matrix can be obtained by
resolving to Mb using the pseudo-inverse denoted by + as

Mb = [rrr ggg]+ · bbb. (3)

The transformation matrix for the red channel can be ob-
tained analogously.

In summary, various reconstruction methods already
exist. While FSE is capable of fully reconstructing im-
ages for I1 and I2 regions, the correlation between differ-
ent channels is neglected. Averaging and linear regression
do account for channel correlation but are only capable
of reconstructing I2 pixels. Furthermore, the results are
inaccurate due to estimates over the entire image.

Proposed: Disparity and Color Similarity-based Lo-
cal Linear Regression

Both, linear regression and averaging are based on a
global rule set or global parameters that do not change
for different locations and neighborhoods. In order to
account for that locality and improve the accuracy of
the reconstruction, a novel approach called Disparity and
Color Similarity-based Local Linear Regression (DCSLLR)
is proposed. Initially, the reconstruction of I2 regions is
regarded before adjusting the algorithm to account for I1
regions as well.

The method extends linear regression by three rules,
namely local proximity, color similarity, and disparity simi-
larity. Each of the rules creates a logical mask. Combining
the resulting masks using logical conjunction results in a
restricted number of pixels that can be used for linear re-
gression. In the following, the three rules are described in
detail.

Local proximity
As mentioned before, linear regression uses the pixel

values containing valid information for all three color chan-
nels over the entire image. Local proximity restricts the
area by

max(|px− qx|, |py− qy|)≤ lsr, (4)

where lsr denotes the maximum search range. px and py
represent x and y coordinates of the point ppp, respectively.
The same logic applies to the arbitrary image point qqq. For
a given point ppp, the resulting mask can be seen in Figure 3a,
forming a quadratic search area around the currently pro-
cessed pixel.

Color similarity
Linear regression can only be used sensibly when only

one color channel is missing. As a result, color information
of the two remaining channels is still prevalent and can
further be used to refine the selection of pixels for linear
regression. Therefore, only those points comprising three
color channels that satisfy

|Ir(ppp)− Ir(qqq)| ≤ csr and
|Ig(ppp)− Ig(qqq)| ≤ csr

(5)

are selected in case of a missing blue channel or

|Ib(ppp)− Ib(qqq)| ≤ csr and
|Ig(ppp)− Ig(qqq)| ≤ csr

(6)

in case of a missing red channel. Here, Ir(ppp), Ig(ppp), and
Ib(ppp) denote the values of the red, green, and blue chan-
nel for the currently processed pixel ppp, respectively. The
maximum color difference that a point qqq within the image
can have is denoted by csr, thus only validating pixels with
similar values for the given color channels. The resulting
color similarity mask can be seen in Figure 3b.

Disparity similarity
Given the camera setup presented in Figure 1 and re-

calling the image projection using disparity maps, when-
ever a point in the resulting image has all three color chan-
nels both red and blue channel were mapped there using
the corresponding disparity maps. Ideally, the disparity
values for the red and blue channel are identical in that
case, given that the center view is located exactly half way
between left and right view. Therefore, if only two color
channels exist for a given point, it is assumed that the dis-
parity d of the missing channel is equal to the disparity of
the existent projected channel. Once the disparity is deter-
mined, the valid disparity mask can be obtained. Initially,
the right-center disparity is warped to the center view as

D̃R(ppp+DR(ppp)) =DR(ppp), (7)

where D̃R denotes the warped result. The left-center dis-
parity DL can be mapped analogously. Thereafter, the dis-
parity map is split into dsr slices resulting in aM×N×dsr
matrix where each slice contains a mask of the pixels corre-
sponding to the respective disparity. For a given disparity
d, all slices within the disparity range ddr are combined
using a logical disjunction, ultimately resulting in two dis-
parity masks corresponding to valid values for left-center
and right-center mapping, respectively. Combining the two
maps by logical conjunction finally yields the disparity sim-
ilarity mask. Note that all values covered by that mask will
comprise three color channels in the projected image, as
both left-to-center and right-to-center mapped values are
existent. The resulting mask is shown in Figure 3c together
with the final mask in Figure 3d that can be obtained by
combining the local proximity mask, the color similarity
mask, and the disparity similarity mask using logical con-
junction. As the number of entries in the final mask can
vary, a lower threshold of τm is defined and set to 20. If
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(a) Local proximity mask. (b) Color similarity mask.

(c) Disparity similarity mask. (d) Final mask for DCSLLR.

Figure 3: Visualization of the DCSLLR masks for linear
regression.

the number of pixels is below τm the disparity similarity
mask is removed. If the resulting disparity mask is still too
restrictive, linear regression considering the entire image is
applied for the processed pixel. Besides choosing τm = 20,
extensive parameter exploration yielded ddr = 6, lsr = 90,
and csr = 15 showing the best results, which is why these
parameters are applied in the evaluation.

Proposed: Color Similarity-based Local Median Fil-
tering

So far, using DCSLLR, only pixels containing values
for two color channels could be reconstructed. As men-
tioned before, however, there might also be pixels where
only the green channel exists. Therefore, a technique for
reconstructing the missing two color channels called Color
Similarity-based Local Median Filtering (CSLMF) is pro-
posed.

Mainly, there are two differences that need to be ad-
dressed. First, disparity information cannot be used, as
none of the side views is projected onto the regarded pixel.
Second, only one channel, namely the green channel, can
be used for color similarity comparison as

|Ig(ppp)− Ig(qqq)| ≤ csr2 (8)

where csr2 denotes a more restricted color threshold that
is set to 5. If no pixels are found for that threshold it is
incrementally extended by a step size of 5. For estimating
the local proximity mask, no changes are applied compared
to DCSLLR. Combining the one channel color similarity
mask with the local proximity mask via logical conjunction
yields the resulting mask. Then, the median red and blue
values of the marked pixels are chosen and assigned to the
pixel to be reconstructed.

Simulation Results
For simulation, the multi-view datasets Art, Books,

Dolls, Laundry, Moebius, and Reindeer have been taken
[17]. Each dataset consists of 7 views denoted by the
range (0...6) taken under three different illuminations and
with three different exposures. For the evaluation, only
standard illumination and an exposure time of 1000 ms
is considered. In addition, two distance scenarios are dis-
tinguished. Small camera distance denotes the usage of
view 2, 3, and 4 respectively, whereas large camera distance
refers to view 1, 3, and 5. In both cases view 3 denotes the
green filtered center view onto which the outer views are
projected. In order to compare different projection and
reconstruction techniques, the image quality is measured
objectively using the peak signal-to-noise ratio (PSNR).

After conducting the projection step, both I2 and I1
regions have to be reconstructed. For region I2, the eval-
uated algorithms include FSE, averaging (AVG), linear re-
gression (LR), and the proposed DCSLLR. For region I1,
no results can be given for AVG and LR, since these ap-
proaches require two available color channels. Thus, for
region I1, results are only given for FSE and the proposed
CSLMF.

First, the discussed color channel reconstruction meth-
ods are evaluated for the projection results obtained
by ground truth disparity maps, which are part of the
database. By doing so, the reconstruction quality can be
judged without considering any influence from the used
disparity estimation method. Both, for I1 and I2 pix-
els, Table 1 and Table 2 summarize the PSNR values for
all datasets and both considered multi-view setups. For
the small camera distance and I2 pixels, the proposed
DCSLLR achieves an average PSNR value of 30.1 dB and
a mean gain of 5 dB over basic LR. For the I1 pixels, the
proposed CSLMF outperforms FSE by 0.8 dB, on average.
For the large camera distance, the reconstruction results
get worse due to larger connected loss areas. However,
reaching an average PSNR value of 28.4 dB, the proposed
DCSLLR still outperforms all competitive approaches. For
the I1 pixels, a clear performance loss can be observed
for FSE. In contrast, the reconstruction quality of CSLMF
keeps constant, leading to an average gain of 3.9 dB over
FSE.

Figure 4 compares the I2 reconstruction quality of
FSE, AVG, LR, and the proposed DCSLLR for a detail
of the Art dataset and the small camera distance. For
further comparison, the figure shows the projected image,
prior to reconstruction and the original image on the outer
left and right side, respectively. While FSE partially re-
constructs the missing channels decently, artifacts remain
around the object borders. For averaging, the reconstruc-
tion results show clearly different colors compared to the
original as the linearity assumption between color chan-
nels does not hold. Also for LR, artifacts are still visible,
resulting from globally estimating the color channel cor-
relations. In contrast, the proposed DCSLLR leads to a
clear rise in visual quality, hardly distinguishable from the
original image. The I1 reconstruction quality is illustrated
in Figure 5, again for a detail of the Art dataset and the
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Table 1: Color channel reconstruction PSNR results
in dB for image regions I2 and I1 for the small camera
distance and ground truth disparity maps.

I2 PSNR I1 PSNR
FSE AVG LR DCSLLR FSE CSLMF

Art 23.0 23.9 26.3 30.6 20.3 27.2
Books 25.1 27.8 28.2 30.9 25.6 25.0
Dolls 22.2 21.6 22.7 27.4 23.3 22.6
Laundry 24.9 20.9 22.1 28.8 24.1 24.0
Moebius 25.9 20.2 23.0 29.0 25.8 22.5
Reindeer 26.1 24.3 28.3 33.7 21.5 23.8
Average 24.5 23.1 25.1 30.1 23.4 24.2

Table 2: Color channel reconstruction PSNR results
in dB for image regions I2 and I1 for the large camera
distance and ground truth disparity maps.

I2 PSNR I1 PSNR
FSE AVG LR DCSLLR FSE CSLMF

Art 21.0 23.7 26.1 29.9 17.5 27.4
Books 22.7 26.8 27.2 27.7 22.0 24.7
Dolls 20.5 20.8 21.4 26.1 18.2 22.5
Laundry 21.6 20.9 22.0 26.7 21.2 22.9
Moebius 24.9 19.6 21.8 26.5 22.5 22.0
Reindeer 25.3 24.0 27.6 32.5 20.6 25.8
Average 22.7 22.6 24.3 28.4 20.3 24.2

small camera distance. The figure compares the results of
FSE and the proposed CSLMF. Again, FSE has difficul-
ties with reconstructing large connected loss areas, while
CSLMF leads to a convincing rise in visual quality.

As a second evaluation, Table 3 gives the achieved re-
construction quality for the proposed method in case of
estimated disparity maps. For estimation, the above dis-
cussed image registration chain has been used. On average,
a PSNR value of 32.2 dB, calculated over the whole images,
has been achieved. Thus, compared to the projection with
ground truth disparities, the estimated disparity informa-
tion leads to an average performance loss of 1.9 dB. For
that, a visual comparison is given in Figure 6. For two im-
age details, the figure shows the reconstruction quality in
case of ground truth and estimated disparity maps. In the
top row, the reconstructed images are very similar showing
that the proposed method can be also applied in case of
estimated disparity information. However, as shown in the
bottom image row, in case of inaccurate disparity informa-
tion, projection errors directly influence the color channel
reconstruction performance.

Conclusion
In this paper, a novel color channel reconstruction

method has been proposed in the context of multi-color
multi-view images. For that, a scene is recorded from mul-
tiple perspectives using off-the-shelf grayscale cameras. For
color vision, different color filters are located in front of the
cameras, providing a higher flexibility compared to com-
mon Color Filter Arrays. In order to map the side views
onto the target perspective, a disparity estimation method
has been discussed, being robust against different spectral
ranges. After projection, some image parts are still un-

Table 3: Color channel reconstruction PSNR results
in dB in case of ground truth (GT) and estimated (ZNCC)
disparity maps and the small camera distance.

GT ZNCC
Art 34.5 30.3
Books 33.3 33.1
Dolls 33.8 33.1
Laundry 33.2 30.8
Moebius 34.9 33.5
Reindeer 35.1 32.4
Average 34.1 32.2

known due to object occlusions. For the required color
channel reconstruction, a local linear regression method
has been developed, based on disparity and color similarity.
Simulation results have shown that the proposed method
leads to a clear rise in visual as well as objective quality.
Compared to basic linear regression, an average gain of
5 dB has been achieved.
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