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Abstract
During recent years, deep learning methods have shown to

be effective for image classification, localization and detection.
Convolutional Neural Networks (CNN) are used to extract infor-
mation from images and are the main element of modern machine
learning and computer vision methods. CNNs can be used for
logo detection and recognition. Logo detection consist on locate
and recognize commercial brand logos within an image. These
methods are useful in the areas of online brand management or
ad placement. The performance of this methods is closely related
on the quantity and the quality of the data, typically image/label
pairs, used to train the CNNs. Collecting the pair of images and
labels, commonly referred as ground truth, can be expensive and
time consuming. Multiple techniques try to solve this problem by
either transforming the available data using data augmentation
methods or by creating new images from scratch or from other
images using image synthesis methods. In this paper, we investi-
gate the latter approach. We segment background images, extract
depth information and then blend logo images accordingly in or-
der to create new real looking images. This approach allows us
to create an indefinite number of images with a minimum manual
labeling effort. The synthetic images can later be used to train
CNNs for logo detection and recognition.

Introduction
Logo detection is an important part in validation of prod-

uct placement, online brand management and contextual ad place-
ment (placing relevant ads on webpages, images, and videos) [1].
The same techniques used for object detection and recognition
methods can be used for detecting logo within images. Several
API services are capable to detect commercial logos [2, 3, 4, 5].
Logo detection can be used as a tool for brand analysis in so-
cial media like presented in [6], where beer brand logos are de-
tected in images extracted from Twitter [7] and are combined with
male/female face detection to study the presence of the brands on
the internet and its relation with the gender of the consumers.

Available datasets containing logo images are usually limited
in number of logos (classes) and number of images [8, 9, 10]. This
can be a problem as methods based on deep learning typically
require large amounts of training images (around 5,000 training
samples per class [11]) to have a good performance. Also, real
world applications require to work with a large variety of logos
(classes) and the possibility of easily adding new ones. Data aug-
mentation and image synthesis methods can provide a useful and
scalable alternative to the tedious and expensive task of manually
labeling large amounts of images.

Data augmentation methods typically apply linear and non-
linear transformations on the training data to create new sam-

ples. Transformations can include color changes, spatial rotations,
warping and other deformations. This set of transformations do
not change the labels of the training samples.

Image synthesis methods consist on creating new images
from scratch or by combining other images. One or multiple la-
bels can be assigned to the generated images. Several methods
have been presented to synthesize images to train object detec-
tors [12, 13]. In this paper we present a method to automatically
create new images containing logos. Our method is based on the
technique used in SynthText [14]. SynthText is a dataset con-
taining images with text created by blending rendered text into
background images. In our work, images are created by apply-
ing transformations to images containing logos and then blending
them into background images using their depth information. Fig-
ure 1 presents an overview of the synthesis process. The pipeline
is described in more detail in the following sections.

Finally, we use the synthesized images to train the Faster
R-CNN (Region-based Convolutional Neural Network) [15] and
a variant named PVANet [16]. Both networks are composed of
three parts: a feature extractor, a region proposal network, and a
classifier. The networks are able to locate and classify multiple
logos in an image. A more detailed description is presented in the
following section.

The main contribution of this paper is to use image synthesis
techniques to generate an arbitrary number of images and then use
them to train CNN based methods for logo detection.

This paper is organized as follows, in Section 2, we present
an overview of related work in object and logo recognition, data
augmentation, image synthesis and common logo datasets. In
Section 3, we propose our method for image synthesis. In Sec-
tion 4, we present the experimental evaluation. We finish with
Section 5, by presenting conclusions and future improvements.

Overview Of Related Work
Typically, logo detection is performed by adapting object de-

tection methods in the domain of commercial logos [8, 1] (i.e.
treating each logo as a different object or class). Before the popu-
larization of deep learning, the main approach for object detection
and other image processing and computer vision tasks was the use
of hand crafted visual features like SIFT [17] and texture descrip-
tors [18], combined with statistical classifiers, such as Nearest
Neighbor (NN) [19] or Support Vector Machines (SVM) [20].

Recent advances in hardware and increasing availability of
large labeled datasets (e.g. ImageNet [21]) have made possible
an improvement on deep learning methods. This new methods
provide promising results in computer vision tasks such as ob-
ject recognition or image classification [15, 21, 22, 23, 24] and
in other domains such as speech recognition, economics, neuro-
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Figure 1. Image synthesis pipeline

science, chemistry or genomics [25, 26].
Convolutional Neural Networks (CNN) [25, 11, 24] are the

core element of deep learning methods. CNNs combine convo-
lutional filters with linear and non-linear operations to learn and
extract visual information from images. Methods using CNNs
are the leading approaches in image classification competitions
(i.e. ImageNet [21]) and object detection competitions (i.e. Pas-
cal VOC [27] and MS COCO [28]).

Convolutional Neural Networks are typically formed by a
feature extraction subnet with several convolutional filters and
a decision subnet with one or multiple fully connected layers
[29, 24]. The filters of the initial convolutional layer of the fea-
ture extraction subnet learn to detect simple features such as color
or edges, while the deeper layers learn to detect more complex
features (e.g. complex shapes, faces, or animals). Non-linear op-
erators can be included between convolutional layers. Some of
these operators include Rectified Linear Unit (ReLU), which are
layers that output the positive part of its input, or Max-pooling
layers, which perform a non-linear down-sampling by partition-
ing the input image into non-overlapping rectangles and selecting
the maximum value inside each rectangle. The fully connected
layers that form the decision subnet consist of a set of affine or lin-
ear transformations followed by non-linear operations (typically a
ReLU). Commonly, the last fully connected layer outputs a prob-
ability value or confidence score for each class.

The multiple layers that form a CNN have a set of weights
and parameters that are learned from training samples using Back-
propagation [25] and gradient-based optimization methods (e.g.
Stochastic Gradient Descent (SGD) [26]). First, initial values are
assigned to the weights and parameters of the network. The ini-
tial values can be randomly assigned, or fine-tuning can be used.
Fine-tuning is a common practice that consist on training a CNN
with a large generic dataset (e.g. ImageNet, MS COCO) and use
the weights as an initialization. Then, gradient propagation and
weight update stages are repeated over a fixed number of itera-
tions. At each iteration, one or multiple input images are propa-
gated through the network until they reach the output layer. The
output of the network is compared with the ground truth value us-

ing a distance or loss function. As closer the predicted output is to
the desired output, the smaller the error measure will be. The er-
ror value is backpropagated through the network and the weights
are updated using a gradient-based method.

In our work, we use a common network named VGG16 (Vi-
sual Geometry Group) [30]. VGG16 contains 5 sets of layers,
each formed by a pair of convolutional and ReLU layers followed
by a max pooling layer. The number of filters in the convolutional
layers are 65, 128, 256, 512 and 512 respectively. All the filters
have a size of 3 × 3. VGG16 have 3 fully connected layers after
the last convolutional layer.

Multiple methods for object detection using CNNs have been
presented this recent years. The Region-Based Convolutional
Neural Network (R-CNN) [31] is an architecture that locates and
classifies multiple objects by combining a CNN and an external
region proposal method. A region proposal method is an algo-
rithm that outputs a set of regions of interest, typically defined
with bounding boxes. A commonly used region proposal method
is Selective Search [32]. This algorithm proposes regions of in-
terest by using similarity measures based on color and visual fea-
tures. R-CNN method crops and resize each region of interest
and classifies them using a CNN. The original architecture uses a
CNN with five convolutional layers and two fully connected lay-
ers, although any CNN classifier can be used.

Some more complex methods for object detection include
Fast R-CNN [23] and, the method used in this work, Faster R-
CNN [15]. Fast R-CNN is a method based on R-CNN in which
the full image is processed by the convolutional layers and then,
regions of the output of the last convolutional layer are cropped
and classified. The network is formed by a set convolutional lay-
ers, fully-connected layers, an external region proposal method
(typically Selective Search) and a Region of Interest (RoI) pool-
ing layer. The RoI pooling layer applies max-pooling to each re-
gion of interest using a grid of a fixed size (typically 7 × 7). Fast
R-CNN also introduces a bounding box regressor, a layer that out-
puts a fine-tuned location of bounding boxes.

Faster R-CNN is based on Fast R-CNN but substitutes the
external region proposal methods by a Region Proposal Network

337-2
IS&T International Symposium on Electronic Imaging 2018

Imaging and Multimedia Analytics in a Web and Mobile World 2018



(RPN). RPN is a neural network that generates regions of inter-
est using the features of the output of the last convolutional layer.
RPN is formed by a 3 × 3 sliding window that outputs a set of
bounding boxes (typically 9) with different sizes and aspect ra-
tios and a fully connected layer that assigns a binary class (fore-
ground or background) to each bounding box. Faster R-CNN can
be trained end-to-end and is used in some 1st-place entries in Im-
ageNet and MS COCO competitions [15] and in commercial sys-
tems like Pinterest [33].

In our work we also use PVANet [16]. PVANet is a
lightweight version of Faster R-CNN. The model is smaller with
5 convolutional layers and 3 fully connected layers. While Faster
R-CNN only uses the features of the last convolutional layer to lo-
calize and classify, this network combines the features of the last
3 convolutional layers. This method is faster than Fast R-CNN
but can produce lower accuracy in some scenarios.

Many other object detection algorithms, including the previ-
ously ones described, output several overlapping bounding boxes.
In order to merge them, Non-Maximum Suppression (NMS) al-
gorithm [31] is used. NMS removes a bounding box if it largely
overlaps with another bounding box of the same class with higher
confidence score.

New methods for object detection based on deep learning are
constantly appearing. Some of them include: Single Shot Multi-
box Detector (SSD) [34] or You Only Look Once (YOLO) [35]
and YOLOv2 [36]. This methods typically provide a faster per-
formance than Faster R-CNN but obtain a lower accuracy [34].

Several previous works have been presented for logo detec-
tion and recognition using hand crafted visual features [8] and
based on deep learning [1, 37, 13]. The work presented in [1]
makes use of Fast R-CNN with VGG16 and selective search for
logo detection with and without localization obtaining a mean av-
erage precision of 74.4%. The work presented in [37] uses Faster
R-CNN obtaining an 81.1% of accuracy. The work presented in
[13] also uses Faster R-CNN with VGG16 and a smaller network
named ZF [38] combined with data augmentation techniques ob-
taining a mean average precision of 85.4% on logo recognition
with localization. The work presented in [39] uses an approach
similar to R-CNN trained with a large number of images obtain-
ing an accuracy of 96%.

Figure 2. Image samples from FlickrLogos-32.

There are several available labeled datasets with images con-
taining logos in the wild. FlickrLogos-32 [8] dataset is the most
used in recent works for training and testing. This dataset con-
tains 32 different brands (classes), each with various versions.
The dataset is composed by 8240 images mined from the Flickr
image search engine [40]. The dataset is divided into training
set, with 1280 images (40 per class) containing one or more lo-
gos and 3000 images with no logo content, and testing set, 960
images (30 per class) containing genuine logos and 3000 without

logo content. The images without logo content are also referred
as background images or distractors. The ground truth consists
on a label (class) and a binary segmentation mask assigned to
each image that contains a logo. A new version of the dataset,
FlickrLogos-47, is available. FlickrLogos-47 contains the same
images than FlickrLogos-32 but the labeling has been improved.
In FlickrLogos-32, the logos composed by a symbol and text, only
the symbol is treated as a logo, while in FlickrLogos-47 each part
is treated as a different class (e.g. adidas-text, adidas-symbol). In
our work, we use FlickrLogos-32 for evaluation purposes. Figure
2 presents some image examples of the dataset.

Other datasets include FlickrLogos-27 [41], which is com-
posed of 27 different logos with a total of 810 annotated images
(30 images per class) and 4207 distractor images. BelgaLogos [9]
is a dataset with 37 different logos composed by 10,000 images
with a binary label (1 if the logo is present and 0 otherwise) which
1,321 of them contain bounding boxes indicating the location of
the logos. MICC-Logos [42] contains a total of 720 images with
13 different logos. TopLogo-10 [10] is a dataset containing 700
labeled images of 10 different clothing brands. Logos-32plus [43]
is a dataset containing a total of 7,830 images with logos from the
same corpus of FickrLogos-32. Logos in the Wild Dataset [44] is
a new dataset containing the largest available number of training
samples with a total of 11,054 images with 871 different brands.
LOGO-Net [37] is a dataset with 160 different logos with a total
of 73,414 labeled image. LOGO-Net is not currently available to
the public. WebLogo-2M [45] is a dataset with 194 logos with
2,190,757 labeled images. This dataset does not contain bound-
ing boxes but only the label of the logos in the image. It has been
labeled in an unsupervised manner, so the labels might be incor-
rectly assigned.

Data augmentation techniques, such as random cropping,
flipping or color changes [21], have been used for computer vi-
sion task using both hand crafted visual features [8, 46] and deep
learning [12]. These techniques, usually help the network to avoid
overfitting and to generalize better obtaining a higher accuracy.
For example, the method presented in [46] obtains an increase of
accuracy of 3.5% in 2010 ImageNet after applying data augmen-
tation.

Image synthesis has been used to create new training samples
for deep learning methods. One common approach is to use image
compositing by adding foreground images (objects to be detected)
into background images. This approach is used in [14] for text lo-
calization. The work presented in [13, 10] uses this approach for
logo detection. FlickrBelgaLogos [47] is a public dataset synthet-
ically created using image compositing with the logos extracted
from BelgaLogos.

Synthesized images from 3D virtual simulations have been
used for training neural networks for self-driving vehicles [48]
or other tasks based on reinforced learning [49]. Methods such as
[50] use Recurrent Neural Networks (RNN) to generate new train-
ing samples using information extracted from a training dataset.
Generative Adversarial Networks (GANs) are networks able to
generate new images that resemble the images used in the train-
ing process. The work presented in [51] uses this approach to
create new training samples.
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Our Proposed Approach
In this section we present our method for synthesizing im-

ages. Because our approach is based on the synthesis pipeline
used in SynthText [14], we name our synthetic dataset as SynthL-
ogo. The image synthesis process consists on estimating the depth
and segmentation information of background images and blend
logo images accordingly. Each step is described in the following
sections.

Logo Images Acquisition
The image synthesis starts by obtaining multiple logo im-

ages. Our dataset contains a total of 604 different logos. The 604
logos include the ones that form FlickrLogos-32, FlickLogos-27,
BelgaLogos and MICC-Logos and some extra classes including
logos from popular brands of food, drinks, clothing, technology,
transportation, finance, etc. The images are obtained from Google
Search. We search for PNG images with alpha layer so we can
separate the part of the image that corresponds to the logo from
the background. Between 3 to 10 different images are obtained
for each logo. We manually check them to remove outliers or
undesired images. The same brand can have different versions
of logos and some can contain both text and symbols. We do not
make distinction between logo versions or text or symbol part and
we assign one unique class per brand.

Background Images
We use the same 8,000 background images as used in Synth-

Text. The images are obtained from Google Search and manually
checked so they not contain text and they do not contain any logo
from our corpus. Figure 3 shows some example of background
images used.

Then, depth information is estimated, and the background
image is segmented as explained in following sections. Pre-
computed values of depth estimation and background segmenta-
tion are available together with the original background images
and code [52]. We choose to use the pre-computed values.

Figure 3. Examples of background images.

Depth Estimation
Depth information is inferred using a CNN as described in

[53]. This method starts by dividing the image in superpixels. A
superpixel is a set of neighboring pixels whit similar RGB val-

ues. Then 244 × 244 patches are cropped for each superpixel and
processed by a CNN. The CNN contains 5 convolutional layers
and 2 fully connected layers. This CNN estimates the depth value
of the superpixel located in the center of the crop. A regulariza-
tion factor is added in the loss function to accomplish pair-wise
smoothness in the depth prediction between neighboring super-
pixels.

Background Segmentation
The background images are segmented by detecting the con-

tours of the elements forming the image as described in [54]. The
contours are locally computed using brightness, color and texture
gradients. Once the contours are detected, watershed is used to
segment the image. Watershed is a method that clusters all the
pixels located in a region defined by a contour. Then, small seg-
ments are merged using color similarities.

Image Blending
Next, a segment of a background image is selected. Small

segments or segments with extreme aspect ratios are discarded.
Then, a logo image is randomly selected and resized so the largest
size is 0.9 times the largest side of the segment. Then, the logo
image is randomly rotated with a probability of 0.3 with a degree
randomly selected between -90, 180 or 90 degrees. A small color
jittering is randomly applied with a probability of 0.5 in the HSV
color space. A total of 3 random values are selected uniformly
from -10 to 10 and added to the hue, saturation and value channels
respectively. Color jittering aims to add small color variations that
logos may present in the real world caused by different lighting
conditions.

Then the logo is geometrically transformed using Random
Sample Consensus (RANSAC) [55]. RANSAC is a method that
allows to match and project a planar surface using matching
points. A planar surface is estimated in the segment using the
depth information and a homographic projection is estimated so
the plane of the segment and the plane of the logo match.

Finally, the logo image is blended into the background. The
blending is done by combining the pixels of the background im-
age with the pixels of the transformed logo image. An alpha value,
α , is selected randomly between 0.5 and 1 and alpha blending is
performed as specified in equation 1. Isynthetic is the generated
image, Ilogo is the logo image and Ibackground is the background
image.

Isynthetic = αIlogo +(1−α)Ibackground (1)

The complete process is repeated 1 to 5 times per synthetic
image, therefore an image will include one or more logos. A bi-
nary mask is used to check that there is no collision between lo-
gos.

SynthLogo
Using the process previously described, we create a total of

280,000 images. Each of the 8,000 background images is used
several times. In Figure 4 some examples of synthetic images are
presented.

This process allows us to create an arbitrary number of im-
ages and new logos can be easily added to the corpus by simply
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obtaining images from any image search engine. In table 2 we
compare our dataset with other existing datasets. One important
aspect is how easy is to augment both the number of images and
number of logos. In the table, we mark as ”Scalable” the datasets
that can add more logos and images with minor or none manual
labeling efforts.

Figure 4. Example of synthetic images.

Experiments
We train Faster R-CNN+VGG16 [30] and PVANet [16]

models, previously described, with the SynthLogo dataset. We
start the training process using pre-trained models with MS
COCO. FlickrLogos-32 is used as validation and testing set. We
compute the Mean Average Precision (mAP), described later in
this section, using the Pascal VOC 2010 [27] method. In this eval-
uation method, each ground truth bounding box is compared with
all predicted bounding boxes. If predicted and true classes match,
and the Intersection over Union (IoU) (Equation 2) between the
predicted bounding box Bp and the ground truth bounding box
Bgt is larger than 50%, the prediction is a True Positive (TP), oth-
erwise is a False Positive (FP).

IoUOverlap =
area(Bp∩Bgt)

area(Bp∪Bgt)
(2)

Precision (Equation 3) (i.e. ratio between TP and the sum of
TP) and Recall (Equation 4) (i.e. ratio between TP and total num-
ber of ground truth bounding boxes (Nbbox)) values are computed
to calculate the mAP.

Precision =
T P

T P+FP
(3)

Recall =
T P

Nbbox
(4)

The last layer of Faster R-CNN and PVANet provides a prob-
ability or confidence measure between 0 and 1. A prediction is
discarded (i.e. consider as a background) if its confidence score is
lower than a threshold and maintained otherwise. For each class,
a Precision/Recall curve is obtained by varying the threshold pa-
rameter from 0 to 1. The Average Precision (AP) is the area under

the curve. We average the AP value of each class obtaining the
Mean Average Precision (mAP).

We train a Faster R-CNN+VGG16 and PVANet for 200,000
iterations and evaluate the model every 10,000 iterations with
the training set of FlickrLogos-32. Then, we select the best set
of weights for each model and evaluate on the testing set of
FlickrLogos-32. Table 1 presents the best results for validation
and testing of both models. We can observe that the mAP is lower
than results reported in previous works where manually labeled
images have been used [13, 44, 43] but in our work the manual ef-
fort is minimum and the number of logos can be easily increased.
Some works presents similar results when using an open set of
logos (arbitrarily large number of logos) and suggests on using
Faster R-CNN as an initial stage of localization and then include
CNN for classification [44]. A similar approach as ours is pre-
sented in [10] where a synthetic dataset of 463 different logos is
created and then used to train Faster R-CNN obtaining a 25.0%
mAP when only using synthetic data.

Table 1 Mean Average Precision (mAP) of logo detection meth-
ods trained with SynthLogo and tested on FlickrLogos-32

Model train+val set testing set
Faster R-CNN+VGG16 49.46% 47.66%

PVANet 40.44% 38.56%

Conclusions
In this paper, we adapted the SynthText technique to create

a method for logo image generation. This technique allows us to
generate an arbitrary number of images and to easily extend the
number of logos in the dataset with minimum manual labeling.
This new dataset is useful to train logo detection networks such
as Faster R-CNN obtaining promising results.

In the future, we want to apply realistic color transformations
and to create images with context consistency (e.g. place ”Coca-
Cola” logos in top of cans, or ”Corona” logos in top of bottles)
and to include bootstrapping techniques.
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