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Abstract
Unmanned Aerial Vehicles (UAVs) gain popularity in a wide

range of civilian and military applications. Such emerging in-
terest is pushing the development of effective collision avoidance
systems which are especially crucial in a crowded airspace set-
ting. Because of cost and weight limitations associated with
UAVs’ payload, the optical sensors, simply digital cameras, are
widely used for collision avoidance systems in UAVs. This re-
quires moving object detection and tracking algorithms from a
video, which can be run on board efficiently. In this paper, we
present a new approach to detect and track UAVs from a sin-
gle camera mounted on a different UAV. Initially, we estimate
background motions via a perspective transformation model and
then identify moving object candidates in the background sub-
tracted image through deep learning classifier trained on man-
ually labeled datasets. For each moving object candidates, we
find spatio-temporal traits through optical flow matching and then
prune them based on their motion patterns compared with the
background. Kalman filter is applied on pruned moving objects
to improve temporal consistency among the candidate detections.
The algorithm was validated on video datasets taken from a UAV.
Results demonstrate that our algorithm can effectively detect and
track small UAVs with limited computing resources.

Introduction
Thanks to recent development in drone technology, un-

manned aerial vehicles (UAVs) will be pervasive in the sky for
commercial and individual needs [1, 2, 3]. One of the most impor-
tant issues facing UAV’s use is collision avoidance capability [4].
Since the size and the energy consumption of the UAV are lim-
ited, a optical sensor based avoidance system (e.g., Go-Pro color
cameras) has the potential to provide cost and weight advantages
against the traffic collision avoidance system (TCAS) currently in
use on larger aircraft equipped with LIDAR sensors.

Optical sensor based collision avoidance systems then re-
quire the detection and tracking of other UAVs from video
feeds [5, 6]. Once other UAVs are detected and tracked, strate-
gies involving a sequence of maneuvers for collision avoidance
are followed. For example, the spatio-temporal information ex-
tracted from other UAVs can be associated with friendly or austere
behavior. These moving object detection and tracking operations
must be real-time to run on-board even if the connection between
the aircraft and the ground control station is lost, or sensors fail.

In this context, real-time moving object detection and track-
ing has been investigated in large by the computer vision commu-
nity [7, 8]. For example, in Viola and Jones al. [9], the authors

extract the simple Haar features and apply cascading supervised
classifiers to detect and track face in a video real-time. In addi-
tion, many pedestrian and car detection algorithms [10, 11, 12] are
developed for surveillance monitoring and even used in the com-
mercial products. However, it is not appropriate to extend these
computer vision algorithms directly to UAV applications due to
unique challenges. First, a video is recorded by a moving camera
for UAV, on the contrary to a static camera for many computer vi-
sion applications. Therefore, for UAV applications, it is difficult
to stabilize the rapidly changing background which are non-planar
and complex. Second, given the speed of UAVs, the moving ob-
jects need to be detected in a far distance for collision avoidance.
Then, our targets appear very small in a video often occluded by
clutter (e.g. clouds, trees, and specular light).

There are a few attempts to detect and track moving objects
using camera-based systems in UAVs [13]. These approaches ex-
tract motion information for moving object detection and track-
ing. Motion-based approaches can then be divided into two main
categories: (1) Background Subtraction and (2) Optical Flow.
Background subtraction methods identify groups of pixels which
are not changing over time and then subtract those pixels from
the image to detect moving objects [7, 12]. These background
subtraction methods work best when background motion can be
easily compensated, which is not the case for fast moving cam-
era. Optical flow methods find the corresponding image regions
between frames and depend on the local motion vectors to detect
moving objects [14, 15]. However, it is computationally expen-
sive to extract local motion vectors of all pixels in the video frame
for real-time operation.

In our previous publication [16], we combine background
subtraction and optical flow methods to have synergistic effects.
Even though background motion estimation for a moving camera
is approximate, we can subtract most of homogeneous regions in
the image to isolate the target objects. Then, our target objects
are salient in the background subtracted image enabling to iden-
tify good points for optical flow matching. More importantly, by
comparing background motion and flow vector, we can extract
spatio-temporal features which are useful for moving object de-
tection and tracking. Then, the quality of motion vector is critical
for accurate detection, which can be low for the blurred image. To
tackle these challenges, we use shape and appearance information
to detect and track other small UAVs from a video. These ap-
proaches extract the features in each individual frames and apply
supervised learning techniques to classify the target objects in the
training dataset [17]. The trained classifiers based on deep learn-
ing (e.g., Convolutional Neural Networks or CNN) can improve
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Figure 1. An overview of our proposed method: We first estimate the

background motion between two sequential frames via perspective transfor-

mation model. From resulting background-subtracted image, we detect the

moving objects by applying deep learning classifier on distinctive patches.

Among detected moving object candidates, we prune actual UAVs from spu-

rious noise using the estimated local motion and incorporate the temporal

consistency through Kalman filter tracking.

detection performance even in challenging environments with il-
lumination variations and background clutters. We further apply
Kalman filter tracking [18] on our detection to reduce the inter-
mittent miss-detection and false alarms. We tested our proposed
algorithm on real videos from UAVs and successfully identify tar-
get objects.

Moving Object Detection and Tracking
As illustrated in Fig. 1, we propose an efficient moving ob-

ject detection and tracking algorithm for UAVs. We first parse the
video into a sequence of frames and estimate the background mo-
tion between frames. Our assumption is that other UAVs and the
background have very different motion model and thus by com-
pensating the motion of the background, the moving object can
be extracted. We estimate the background motion via perspec-
tive transform model [19] taking account into globally smooth
motion with camera projection. Given background subtracted im-
age, we highlight distinctive patches and then detect the moving
object candidates among them by applying deep learning classi-
fier. For each moving object candidates, we find the local motion
by applying Lucas-Kanade optical flow algorithm [14] and use
spatio-temporal characteristics to identify actual UAVs. We fur-
ther apply Kalman filter tracking [18] on our detection to reduce
the intermittent miss-detection. In following, we describe each
component of our algorithm in details.

Background Motion Stabilization
The video is acquired from a moving camera on the UAV,

and thus we need to stabilize the rapidly changing background
which is often non-planar geometry.

Estimate Background Motion
For background motion stabilization, we first estimate the

background motion via a perspective transformation model [19].
Unlike other global transformation model such as rigid or affine
transformation models, the perspective transformation model can
take account into projection based on the distance from the cam-
era, which is beneficial to compensate the background motion in
a far distance from a camera. To estimate the background motion
via a perspective model, we find the correspondence between two
consecutive frames on a small set of points and fit them into the
perspective transformation model. This is mainly because back-
ground motion estimation procedure can be computationally ex-
pensive if it is optimized over all pixels in the field of view. We
choose the small set of points for correspondence matching based

on saliency with appropriately uniform distribution.
We now define the selected point pt−1 ∈ R2 in the previous

frame Xt−1. We then find the corresponding points pt ∈ R2 in
the current frame Xt through simple and efficient block match-
ing [20]. We then estimate the perspective transformation Ht−1 ∈
R3×3 from Xt−1 to Xt , which regularizes local correspondence
matching to be smooth in the entire image.

Ht−1 = argmin
H ∑

pt∈Pt ,pt−1∈Pt−1

||pt −H ◦ pt−1||22, (1)

H =

h11 h12 h13
h21 h22 h23
h31 h32 1

 , (2)

where Pt and Pt−1 represent a set of corresponding points in
Xt and Xt−1, respectively, and ◦ is the warping operation. It is
worth noting the perspective transformation model is described
by only 8 parameters to be optimized very efficiently. Here,
{h11,h12,h13,h21,h22,h23} represent affine transformation ma-
trix (e.g., scale, rotation, sheer and translation). Additional pa-
rameters {h31,h32} allow a perspective projection to the vanish-
ing point.

Compute Background Subtracted Image
We then subtract the background by using the estimated per-

spective transformation Ht−1. Specifically, we take difference be-
tween current frame and background motion compensated previ-
ous frame. We define the background subtracted image Et for Xt
as following.

Et = |Xt −Ht−1 ◦Xt−1|. (3)

It is worth noting that applying Ht−1 to the entire image may be
time-consuming and therefore we only compute the background
subtracted image for a certain interval of frames (e.g., every 10
frames).

Moving Object Detection
Given the estimated background subtracted image, we detect

the moving object candidates. I first identify salient points in the
background subtracted image and extract patch appearance fea-
tures on those points. We then feed the appearance features to
deep neural networks for supervised classification.

Identify Salient Points
We identify salient points in a background subtracted image

Et using Shi-Tomasi corner detector [21]. We choose Shi-Tomasi
corner detector due to efficiency. Shi-Tomasi corner detector finds
corners associated with the high local autocorrelation.

Given an image Et , we define the local autocorrelation Ct at
the pixel s with a first-order Taylor expansion as following:

Ct(s) = ∑
W
[Et(s+δ s)−Et(s)]2,

≈ δ sT
∑
W
[∇Et(s)T

∇Et(s)]δ s,

≈ δ sT
Λt(s)δ s,

(4)
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Figure 2. Example of training patches: [Left] True Moving Objects, [Right] False Alarms: We note that true moving objects have different appearance in the

background subtracted images compared with false alarms. True moving objects tend to be distinctly highlighted while false alarms contain blurred edges.

where δ s represents a shift, W is a window around s, ∇ is the first
order derivative, and Λt is the precision matrix.

We then compute a saliency Qt for any point in Et according
to eigenvalues of Λt .

Qt(s) = min{λ 1
t (s),λ

2
t (s)}, (5)

where λ 1
t and λ 2

t are two eigenvalues of Λt . After thresholding
on Qt , we find a set of salient points {q(1)t , · · · ,q(N)

t }. To ensure
sparse distribution, we discard points for which there is a stronger
salient points in the neighborhood.

Classify Moving Objects
Given the salient points on the background subtracted im-

age, we perform classification to reject outliers from true mov-
ing objects. Toward classification, we extract 40× 40 patch on
each salient point q(n)t in the background subtracted image. Fig.2
shows the example of extracted patches on manually labeled train-
ing dataset. It is worth noting that patches of true moving objects
look very different from those of false alarms. In the patches, true
moving objects tend to have high contrast V-shape while false
alarms show the blurred edge. Therefore, appearance information
from background subtracted images is powerful to differentiate
moving objects from false alarms.

We then train the classifier which separates moving objects
from false alarms through deep learning. In deep learning al-
gorithms, the weights of a neural network are trained on large
datasets, and then the trained neural network is applied to deter-
mine whether the unseen testing object is moving target or not.
The network architecture is described in Fig.3. First, we apply
16 filters of 3×3 convolution kernel to generate feature maps and
then utilize rectified linear units (ReLU) [22] for neuron activa-
tion. The batch normalization unit is added between convolu-
tion and ReLU to avoid internal covariate shift during mini-batch
optimization [23]. Next, we apply max-pooling (spatial down-
sampling) operation to reduce the size of feature map and increase
the number of filters for the following layer. Then, we repeat the
convolution (plus batch normalization and neuron activation) with
max pooling operation for 2 layers with 32 filters of 3×3×16 ker-
nel and 64 filters of 3×3×32, respectively. Finally, we find the

binary classification label by applying fully connected neural net-
work with soft-max function.

By feeding the appearance patches in the unseen testing
video frame into the trained neural network, we can find the
salient points on the moving object candidates.

Target Pruning and Tracking
While we expect our moving object detection to be effective,

we still encounter intermittent miss-detections with false alarms.
These false alarms and missed detections can be corrected by ob-
serving the temporal characteristics of the detected moving ob-
jects. Toward this, we estimate the local motion fields of the de-
tected moving objects through optical-flow matching. Then, we
prune the moving objects based on the difference between back-
ground and local motion. In addition, we apply Kalman filter to
make detected objects correspond to coherent temporal signatures
as opposed to spurious intermittent noise.

Estimate Local Motion
Given the detected patch of the moving object at q(n)t in the

background subtracted image Et , we estimate the local motion
via optical flow matching. Toward this, we first extract M salient

Figure 3. Network architecture for deep learning: Given input patches,

3-layer convolutional neural networks are trained to identify moving objects.

Note that we use batch normalizaton (BN) and rectified linear unit (ReLU) for

efficient training of deep neural networks.
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points {r(n,1)t , · · · ,r(n,M)
t } in corresponding regions of the original

frame Xt using Shi-Tomasi corner detector. For each salient point
r(n,m)
t , we compute the optical flow vector to the corresponding

point in the next frame Xt+1 by applying Lucas-Kanade method.
In Lucas-Kanade method, we assume that all neighbor points

around the given pixel have the same motion. So, the local motion
can be computed by solving the least square problem.

u(n,m)
t = argmin

u ∑
s∈N (r(m,n)

t )

|Xt+1(s+u)−Xt(s)|2 , (6)

where N (r(m,n)
t ) is the neighborhood around r(m,n)

t . It is worth
noting that local motion estimation via Lucas-Kanade method is
efficient because we have a closed-form solution for eq. 6 and we
compute the optical flow vector only for small number of salient
points in the detected moving object patches.

Prune Target Objects
We prune the detected moving object at q(n)t based on the

difference between the estimated background and local motion.
This motion difference represents the actual speed of the moving
object relative to rapidly moving camera. So, we prune the target
objects if the actual speed of the moving object is too small (e.g.,
stand still) or too large (e.g., beyond the reasonable speed).

We now define the motion difference d(n)
t for the moving

object at q(n)t between the background and moving object as fol-
lowing:

d(n)
t =

1
M

M

∑
m=1

(h(n,m)
t −u(n,m)

t ), (7)

where h(n,m) is interpolated motion vector from the perspective
transform Ht between Xt and Xt+1 at the point r(m,n)

t .
We denote y(n)t as a binary label where the positive value

indicates that the moving object at q(n)t is the target. We then find
the pruned target object according to the magnitude of motion
difference.

y(n)t =

{
1, if TL < ||d(n)

t ||2 < TH

0, otherwise
(8)

where TL and TH are the empirical low and high threshold for
pruning. By applying connected component labeling [24] on the
set of salient points on the pruned target object, we generate the
bounding box which represents other UAV.

Track Target Objects
Even though our pruning based on motion difference reduces

the false alarms, we also need to deal with intermittent miss-
detections. To improve the temporal consistency of our target
detection, we apply object tracking techniques based on Kalman
filter [18].

Kalman filter predicts the current state bt from previously es-
timated states b̂t−1 with transition model and updates the current
measurement ct with the current state bt as below:

bt = Ab̂t−1 +ωt ,

ct = Mbt + εt ,
(9)

where A is state transition matrix, ωt controls the transition mod-
eling error, M is measurement matrix, and εt represents the mea-
surement error. The estimated output b̂t is then computed with
Kalman gain K:

b̂t = Ab̂t−1 +K(ct −Mbt),

K =Vω MT (MRω MT +Vε ),
(10)

where Vω and Vε are the covariance of ωt and εt , separately.
Specifically, we assign the size and location of bounding box

for the detected target object as state variable bt and use the con-
stant velocity model to set A and M.

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , (11)

M =

[
1 0 0 0
0 1 0 0

]
. (12)

.
To initialize the Kalman filter, we find the corresponding ob-

jects from optical flow matching in L previous frames and start
track if the classification labels y(n)t−1, · · · ,y

(n)
t−L are positive. Then,

we recover the miss-detection for the positive label track based on
the Kalman filter output at the current frame. We dismiss the track
if we do not have detected objects in the Kalman filter estimation
for L frames.

EXPERIMENTS
We evaluate our moving object detection and tracking

method using deep learning on a video data set 1 provided by
Naval Postgraduate School. For reference, we also perform our
previous moving object detection and tracking [16] which did not
incorporate the appearance information with deep learning.

Data Set
The videos are taken in outdoor environment including real-

world challenges such as illumination variation, background clut-
ter, and small target objects. The data set comprises 45 video
sequences with 30 fps frame rate. Each video is around one
minute. They are recorded by a GoPro 3 camera (HD resolution:
1920×1080 or 1280×960) mounted on a custom delta-wing air-
frame. As a preprocessing, we mask out the pitot tube region
which is not moving in the videos. For each video, there are mul-
tiple target UAVs (up to 8) which have various appearances and
shapes. We manually annotate the targets in the videos by using
VATIC software [25] to generate ground-truth dataset for training
and performance evaluation. We fix 40 videos as a training set for
deep learning and assign remaining 5 videos for testing.

Parameter Exploration
There are important parameters in our moving object detec-

tion and tracking algorithm. To begin with, we extract Shi-Tomasi
corner points in background subtracted image Et (for moving ob-
ject detection) and original image Xt (for local motion estimation),

1https://engineering.purdue.edu/˜bouman/UAV_
Dataset/
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Figure 4. Results of moving object detection and tracking algorithms for 3 testing videos: [Top-Row] Ground-truth annotation (Green), [Middle-Row] Moving

object detection and tracking algorithm purely based on motion difference pruning [16] (Blue), [Bottom-Row] Our deep learning based method toward moving

object detection and tracking (Red). Previous method using only motion difference pruning fails to detect some moving objects with false alarms on the complex

background (e.g., horizon). By using deep learning based method, we pick the missed detection and reject false alarm by taking advantage of the appearance

information. Images are zoomed for better display. See full images in supplementary files.

respectively. We set higher saliency threshold (QE = 0.01) than
(QX = 0.001) as we find the sparse set of points in the regions
of interest when only moving object should be identified. In ad-
dition, we use 15× 15 block size for Lucas-Kanade optical flow
matching. Next, we set the threshold TL = 1.0 and TH = 10.0 to
prune the moving object with small and large motion difference.
Finally, we use L = 6 for Kalman filter where we start the track if
we detect the object in six previous frames.

Quantitative Evaluation
The overall goal of this experiment is to measure the detec-

tion accuracy of identifying targets in videos. To measure detec-
tion accuracy, we report F-score which is the harmonic mean of
recall and precision rates computed as following:

Recall =
Number of Detected Targets in all Frames

Number of Ground-Truth Targets in all Frames
.

Precision =
Number of Detected Targets in all Frames
Number of Detected Objects in all Frames

.

F =
2 ·Recall ·Precision
Recall + Precision

.

Here, we define the detected target if our detection has overlap
with ground truth.

Table 1 summarizes the accuracy scores. By using deep
learning method, we achieve higher precision, recall and F-score
than purely motion based detection. This indicates that appear-
ance information can complement the miss-detection due to the
error in motion estimation. In addition, deep learning method
can fully take advantage of manually labeled training dataset with
over 95% classification accuracy.

Detection Accuracy
Only
Motion Difference

Deep Learning
with Appearance

Precision 0.630±0.11 0.819±0.09
Recall 0.766±0.15 0.798±0.10

F-Score 0.684±0.10 0.806±0.08

Visual Inspection
For qualitative evaluation, we perform visual inspection. Fig.

4 shows exemplar results on 3 different testing videos. First row
illustrates the manually labeled ground-truth. Second and third
row represent detection results from our previous method [16]
only based on motion and proposed deep learning method with
appearance information, respectively. We notice that our previ-
ous method generates false alarms on the complex backgrounds
such as edges. Furthermore, errors in the motion estimation lead
to missed detection of moving objects. Our deep learning based
method not only removes false alarm by using the appearance
patch in the background subtracted image but also preserves mov-
ing objects which have relatively small motion difference.

In Fig. 5, we display the dense Shi-Tomasi corner points ex-
tracted from detected moving objects and their motion difference
vectors. We use different colors for preserved (red) and deleted
(green) points by applying thresholding on the magnitude of mo-
tion difference. We observe that preserved and deleted points are
mostly located around the target UAV and cloud/edges, respec-
tively. This reflects that we supplement appearance based deep
learning classifier by pruning the points based on motion differ-
ence, improving the detection accuracy.
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Figure 5. Motion difference vectors (black) on detected salient points: Red

and green dots represent pruned and deleted points based on the magnitude

of motion difference vector, respectively. We preserve the points around tar-

get UAV (red), while deleting the points located at background (green). This

indicates that the magnitude of difference vector between estimated back-

ground and local motion is effective to separate the points in the targets from

complex backgrounds. Images are cropped for better display.

Conclusions
In this paper, we present a deep learning based method for

moving objects detection and tracking algorithm. Our method
first estimates the background motion from a fast moving cam-
era via perspective transformation model. We then find sparse set
of salient points from background subtracted image and use deep
learning to classify the patches around the moving objects. After-
wards, dense salients points are extracted only on the positively
classified patches and difference between local and background
motion is used to prune the actual UAV targets. Kalman Filter
is utilized to increase temporal consistency of moving object de-
tection. Experimental results on actual video dataset showed that
deep learning method can improve detection accuracy with a help
of appearance information.
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