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Abstract
Semantic segmentation, classifying each pixel in an image

to a set of various objects, is an important and necessary prob-

lem to understand images. In recent years, convolutional neural

networks trained with public datasets enable to segment objects

and understand images. However, it is still challenging to seg-

ment objects with high accuracy on a simple and small network.

In this work, we describe convolutional neural networks with di-

lated convolutions to segment person accurately especially near

boundary using data augmentation technique. Additionally, we

develop a smaller network which can run each frame in webcam

video faster without degrading segmentation performance. Our

method both numerically and visually outperforms other segmen-

tation techniques.

Introduction
Semantic segmentation, a pixel-wise classification in an im-

age to a set of multiple objects, is a prerequisite step for under-

standing and analyzing images or videos. Especially, person seg-

mentation can be used in many applications such as video surveil-

lance or activity analysis. Additionally, person segmentation can

be used in video conferencing because bandwidth can be saved

by only sending pixels belonging to person. However, person seg-

mentation is a challenging task due to various poses and activities.

Several person segmentation techniques have been devel-

oped in the past years. An interactive foreground segmentation

method by iterative graph cuts, called GrabCut [1], is presented.

Although it may produce an accurate person segmentation mask,

a user is required to spend some time/effort for interaction. Due

to a large number of images, an automatic segmentation method

is desired. To automatically segment crowded people [2] intro-

duced a model-based segmentation method where a human shape

model is used to segment individual person. Similarly, person

segmentation by learning a set of posture clusters and a codebook

of local shape distributions in various posture is described in [3].

Alternatively, a level-set technique is used to segment person due

to its efficiency and flexibility [4]. Due to the complexity in im-

ages, these segmentation methods tend to have poor segmentation

performance.

In the recent years, deep learning is widely used to under-

stand images [5]. Training and running convolutional neural net-

works (CNNs) become possible due to advances in graphics pro-

cessing units (GPUs) and availability of multiple datasets. CNNs

are generally designed with a series of convolutional layers fol-

lowed by non-linear activation functions. In the first few layers,

simple features such as edges or corners in various orientations

⋆This work was performed while David Joon Ho was an intern at HP.

can be captured. In deeper layers, more sophisticated features can

be captured. Deep learning is actively used in image analysis such

as image classification [6, 7] and object detection [8, 9, 10].

Deep learning brings a big impact to image segmentation as

well. Fully convolutional network (FCN) is described in [11] for

semantic segmentation. Instead of classifying each pixel in an

image using a patch around it [12], FCN can efficiently segment

an arbitrary-sized image. However, FCN could not have an ac-

curate semantic segmentation because details can be lost during

a deconvolution layer with a large stride. To produce better seg-

mentation results, an encoder-decoder architecture with a series

of deconvolutional layers are introduced such as SegNet [13], De-

convNet [14], and U-Net [15]. Here, an encoder is composed of

convolutional layers with pooling layers and a decoder is com-

posed of deconvolutional layers with unpooling layers. Pooling

layers generally decrease image resolution so an encoder-decoder

architecture still has a limitation for fine segmentation.

An alternative approach uses dilated convolutions, or atrous

convolutions, originally introduced to compute wavelet transform

more efficiently [16]. Employing convolutional layers with di-

lated convolutions instead of pooling layers can generate segmen-

tation without losing resolution. A semantic segmentation tech-

nique using dilated convolutions, called DilatedNet, is described

in [17]. Using dilated convolutions can increase receptive fields

exponentially so DilatedNet can provide more fine segmentation.

However, dilated convolutions generally require expensive com-

putation.

More recently, other segmentation methods have been devel-

oped for accurate results. DeepLab [18] uses a combination of a

convolutional neural network with dilated convolutions and fully

connected conditional random fields (CRFs) [19] to have accurate

segmentation. [20] uses generative adversarial networks (GANs)

[21] as a post processing to improve segmentation results. Here,

GAN is used so that segmentation results cannot be distinguish-

able to groundtruth images. Alternatively, pyramid scene pars-

ing network (PSPNet) using pyramid pooling module to cooperate

both local and global information in an image is described in [22].

Similarly, a multi-path refinement network (RefineNet) [23] is de-

signed with short-range and long-range residual connections to

generate high-resolution feature maps. Alternatively, DeepMask

[24] and SharpMask [25] can segment and additionally generate

object proposals.

In this paper, we present a compact and accurate method for

segmenting person in images or webcam video. The main contri-

butions of our work are: (1) using data augmentation techniques

using various public datasets and an HP private dataset (2) fine-

tuning DilatedNet [17] with augmented training images for fine

segmentation performance (3) training a compact DilatedNet with
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augmented training images for faster segmentation performance

to be more practical in webcam video applications. Our methods

are evaluated by measuring the size of models and execution time.

Proposed Method

Figure 1. Block diagram of the proposed method for person segmentation

Figure 1 is a block diagram of our proposed method for

person segmentation. A set of training images, Sdata, is ac-

quired from various public datasets such as the Microsoft COCO

(MSCOCO) dataset [26], the ADE20K dataset [27, 28], and the

Cityscapes dataset [29]. We multiply training images using data

augmentation methods to improve segmentation performance. We

denote the augmented set of training images as Saug. Then Saug is

used to train a convolutional neural network model, M. Here, we

simplify DilatedNet [17] for faster performance. Once the train-

ing process is completed, a segmented image, Iseg, is generated

from an input image, Iinput .

Data Augmentation
Data augmentation is a well-known method to avoid overfit-

ting during a training process by increasing the number of training

images with simple transformations [6]. In this work, we devel-

oped our data augmentation methods to have more accurate seg-

mentation.

The first data augmentation method generates synthetic im-

ages by placing person masks on an image. In this data augmen-

tation method, we used an HP private dataset containing person

portrait with accurate groundtruth as person masks. We placed

a random number of person from nmin to nmax with a random

scaling factor from smin to smax at a random position on back-

ground images from the MSCOCO dataset [26]. Here, a back-

ground image is defined as an image without person presented.

We selected nmin = 3, nmax = 10, smin = 3, and smax = 30. In this

paper, augmented images generated from the first data augmenta-

tion method are called “augmented images using the HP private

dataset as foreground and the MSCOCO dataset as background”.

Using the first data augmentation method, we generated 56,479

images.

The second data augmentation method uses simple transfor-

mations to produce training images. The size of an original image

from the Cityscapes dataset [29] is 2048× 1024 which is larger

than other training images we have. To reduce the size of im-

ages, we performed the following data augmentation method: (1)

we cropped the upper left corner and the upper right corner of an

original image to create two 1024×512 images (2) we downsam-

pled the original image with a factor of 2 to create one 1024×512

image. Note that we did not crop the lower left corner and the

lower right corner of an original image because these regions

rarely contain person. Figure 2 shows an example of second data

augmentation method using the Cityscapes dataset. In this pa-

per, augmented images generated from the second data augmen-

tation method are called “augmented images using the Cityscapes

dataset”. Using the second data augmentation method, we gener-

ated 8,823 images.

(a)

(b) (c) (d)

Figure 2. An example of the second data augmentation method using the

Cityscapes dataset [29] (a) an original image with size of 2048× 1024, (b) a

cropped image from the upper left corner of the original image with size of

1024× 512, (c) a cropped image from the upper right corner of the original

image with size of 1024×512, (d) a downsampled image by a factor of 2 from

the original image with size of 1024×512

Dilated Convolutions
Before describing our convolutional neural network, let us

define dilated convolutions. First of all, a discrete convolution, ∗,

of a signal, f , and a filter, h, is:

( f ∗h)(x) = ∑
x1+x2=x

f (x1)h(x2) (1)

In this work, an l-dilated convolution, ∗l , is defined as:

( f ∗l h)(x) = ∑
x1+lx2=x

f (x1)h(x2) (2)

where l is defined as a dilation factor. Note that a discrete convo-

lution in Equation 1 is a 1-dilated convolution.

Using dilated convolutions in convolutional layers can gen-

erate accurate segmentation due to a large receptive field. Let f0
be an original 2D image and hi be a 3× 3 filter on the i-th con-

volutional layer where 1 ≤ i ≤ N. If there is a combination of

N convolutional layers with discrete convolutions, fi = fi−1 ∗ hi,

then the receptive field in the N-th layer is (2N + 3)× (2N + 3).
But if there is a combination of N convolutional layers with di-

lated convolutions, fi = fi−1 ∗2i hi, then the receptive field in the

N-th layer is (2N+2 − 1)× (2N+2 − 1). Here, the receptive field

is linearly increased if discrete convolutions are used in convo-

lutional layers but exponentially increased if dilated convolutions

are used. Figure 3 shows receptive fields when discrete convolu-

tions and dilated convolutions are used for N = 1,2,3.

Convolutional Neural Network with Dilated Convo-
lutions

In this work, we employ DilatedNet [17] to segment person

on images because DilatedNet produces segmentation results with
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(a) (b) (c)

(d) (e) (f)

Figure 3. Receptive fields using 2D discrete convolutions and 2D dilated

convolutions (a) a receptive field is 3× 3 using discrete convolutions when

N = 1 (b) a receptive field is 5× 5 using discrete convolutions when N = 2

(c) a receptive field is 7× 7 using discrete convolutions when N = 3 (d) a

receptive field is 3×3 using dilated convolutions when N = 1 (e) a receptive

field is 7× 7 using dilated convolutions when N = 2 (f) a receptive field is

15×15 using dilated convolutions when N = 3

high accuracy. DilatedNet is composed of a front-end module and

a context module which are described below.

Figure 4. Block diagram of our convolutional neural network

Figure 4 is a block diagram of our convolutional neural net-

work. First of all, an input image, Iinput , is reflection-padded by

m, where m is a thickness of a margin lost during convolutional

layers and pooling layers in the front-end module. Then a tile of

size n× n is slided on the padded input image by s = n− 2m to

both horizontal and vertical directions to generate a cropped im-

age which becomes an input to the front-end module. Here, if a

cropped image on the tile is smaller than n×n, the cropped image

is reflection-padded to be n×n. In this implementation, m = 186,

n = 900, and s = 528.

The original DilatedNet [17] architectures of the front-end

module and the context module are described in Table 1 and Table

2, respectively. Here, Convk− c− l is a convolutional layer with

a filter size of k×k, c channels, and a dilation factor of l, ReLU is

rectified linear unit activation function, Maxpoolp is max-pooling

layer with a filter size of p× p and a stride of p. C is the number

of channels in the output image. Here, C can be decided by the

number of objects classified by the CNN. The front-end module

is motivated from a VGG-16 network [7] with some changes by

using dilated convolutions and removing some pooling layers. In

the front-end module, no padding is done during convolutional

layers. The size of the input image to the front-end module is

n× n, a margin lost during the front-end module is m, and a to-

tal downsampling rate is d = 8, so the size of the output feature

map of the front-end module will be q×q where q = n−2m
d = 66.

The feature map then becomes an input to the context module

which enhances segmentation performance by a large receptive

field with a few coefficients. In the context module, padding is

done in all convolutional layers to keep feature maps the same

size. Note that the receptive field of the context module is 67×67

which is larger than the size of the feature map, q×q = 66×66.

The next step interpolates the feature map from the context

module by a factor of d to reconstruct the feature map to be the

same size of the input image. Here, bilinear interpolation is used

in each channel. The final step is a pixel-wise classification to

generate a final segmented image. Figure 5 shows an example of

our person segmentation method steps.

Table 1. Architecture of an original front-end module

Layer 1 Conv3-64-1 + ReLU

Layer 2 Conv3-64-1 + ReLU

Layer 3 Maxpool2

Layer 4 Conv3-128-1 + ReLU

Layer 5 Conv3-128-1 + ReLU

Layer 6 Maxpool2

Layer 7 Conv3-256-1 + ReLU

Layer 8 Conv3-256-1 + ReLU

Layer 9 Conv3-256-1 + ReLU

Layer 10 Maxpool2

Layer 11 Conv3-512-1 + ReLU

Layer 12 Conv3-512-1 + ReLU

Layer 13 Conv3-512-1 + ReLU

Layer 14 Conv3-512-2 + ReLU

Layer 15 Conv3-512-2 + ReLU

Layer 16 Conv3-512-2 + ReLU

Layer 17 Conv7-4096-4 + ReLU

Layer 18 Conv1-4096-1 + ReLU

Layer 19 Conv3-C-1

Table 2. Architecture of a context module
Layer 1 Conv3-C-1 + ReLU 3×3 receptive field

Layer 2 Conv3-C-1 + ReLU 5×5 receptive field

Layer 3 Conv3-C-2 + ReLU 9×9 receptive field

Layer 4 Conv3-C-4 + ReLU 17×17 receptive field

Layer 5 Conv3-C-8 + ReLU 33×33 receptive field

Layer 6 Conv3-C-16 + ReLU 65×65 receptive field

Layer 7 Conv3-C-1 + ReLU 67×67 receptive field

Layer 8 Conv1-C-1 + ReLU 67×67 receptive field

The original DilatedNet architecture was initially designed

for semantic segmentation on 21 classes (C = 21) [17]. Person

segmentation requires only 2 classes (person and background). In

order to reduce the size of a model and decrease execution time,

we designed a compact DilatedNet by reducing the number of

channels, c, in convolutional layers in a front-end module. Table

3 shows the architecture of our front-end module.

In this work, we designed two CNNs: Fine-tuned Dilated-

Net and Compact DilatedNet. Here, “Fine-tuned DilatedNet”
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(a) (b)
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Figure 5. An example of our person segmentation method steps using

dilatedNet [17] (a) an input image (b) a reflection-padded image (c) a cropped

image on a tile (d) a segmented image after interpolation

Table 3. Architecture of our front-end module
Layer 1 Conv3-64-1 + ReLU

Layer 2 Conv3-64-1 + ReLU

Layer 3 Maxpool2

Layer 4 Conv3-64-1 + ReLU

Layer 5 Conv3-64-1 + ReLU

Layer 6 Maxpool2

Layer 7 Conv3-64-1 + ReLU

Layer 8 Conv3-64-1 + ReLU

Layer 9 Conv3-64-1 + ReLU

Layer 10 Maxpool2

Layer 11 Conv3-64-1 + ReLU

Layer 12 Conv3-64-1 + ReLU

Layer 13 Conv3-64-1 + ReLU

Layer 14 Conv3-64-2 + ReLU

Layer 15 Conv3-64-2 + ReLU

Layer 16 Conv3-64-2 + ReLU

Layer 17 Conv7-4096-4 + ReLU

Layer 18 Conv1-4096-1 + ReLU

Layer 19 Conv3-C-1

refers to a model using the original DilatedNet architecture [17]

fine-tuned with our training images and “Compact DilatedNet”

refers to a model with reduced number of channels. Fine-tuned

DilatedNet and Compact DilatedNet are implemented in Caffe

[30]. To train Fine-tuned DilatedNet, we fine-tuned the pretrained

model [17] using 127,888 training images from 65,808 MSCOCO

images [26], 5,601 ADE20K images [27, 28], and 56,479 aug-

mented images using the HP private dataset as foreground and the

MSCOCO dataset as background generated during our data aug-

mentation process. We trained 100K iterations using stochastic

gradient descent (SGD) with a learning rate of 10−5 and a mo-

mentum of 0.9. To train Compact DilatedNet, we first initialized

all weights according to Xavier Initialization [31]. We trained

Compact DilatedNet using 136,711 training images from 65,808

MSCOCO images [26], 5,601 ADE20K images [27, 28], 56,479

augmented images using the HP private dataset as foreground and

the MSCOCO dataset as background, and 8,823 augmented im-

ages using the Cityscapes dataset generated during our data aug-

mentation process. We first trained 100K iterations with a learn-

ing rate of 10−3, and then trained 100K iterations with a learning

rate of 10−4, and then trained 100K iterations with a learning rate

of 10−5, with a momentum of 0.9, using SGD.

Experimental Results
Our methods were tested on 1,000 images from the

MSCOCO dataset [26] and 591 images from the Gallagher dataset

[32].

First of all, we compared segmentation performances of

Fine-tuned DilatedNet without and with 56,479 augmented im-

ages using the HP private dataset as foreground and the MSCOCO

dataset as background during training process, shown in Figure 6.

We visually confirmed that a CNN with our data augmentation

process can segment closer to person boundaries.

Also, we compared the segmentation performance of Fine-

tuned DilatedNet and Compact DilatedNet, shown in Figure 7.

We visually confirmed that the segmentation results from Com-

pact DilatedNet is similar to the segmentation results from Fine-

tuned DilatedNet.

Next, we compared the segmentation results to other known

segmentation results such as PSPNet [22] and SharpMask [25].

Both PSPNet and SharpMask are trained to segment person, and

we consider other objects as background. Here, we used pre-

trained networks for PSPNet and SharpMask. Figure 8 shows the

segmentation results on various methods. We observed that PSP-

Net segmented person in an image but other objects overlapping

with person were also segmented. Also, SharpMask failed to seg-

ment a portion of person and the segmentation boundary was not

accurate. Fine-tuned DilatedNet can accurately segment person

and remove background objects. Compact DilatedNet can also

successfully segment person from background.

Table 4 compares the size of models and execution time

(loading time and running time) of our methods and other seg-

mentation methods. Here, a loading time is the time for loading

the model and a running time is the time for running one image.

Fine-tuned DilatedNet and Compact DilatedNet segments an im-

age faster than PSPNet and SharpMask. Although Fine-tuned Di-

latedNet has a great performance, the size of the model is quite

big. We are able to develop a smaller model which can have a

similar performance to Fine-tuned DilatedNet.

Table 4. A comparison between our methods and other seg-

mentation methods
Segmentation Method Model

Size

Loading

Time

Running

Time

PSPNet [22] 197 MB 7 sec

SharpMask [25] 212 MB 10 sec

Fine-tuned DilatedNet 537 MB 3 sec 0.46 sec

Compact DilatedNet 120 MB 1 sec 0.23 sec
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(g) (h) (i)

Figure 6. A comparison between segmentation results without and with

augmented images using the HP private dataset as foreground and the

MSCOCO dataset as background during fine-tuning a pretrained DilatedNet

[17] (a) an original image (b) a segmented image without augmented im-

ages (c) a segmented image with augmented images (d) an original image

(e) a segmented image without augmented images (f) a segmented image

with augmented images (g) an original image (h) a segmented image without

augmented images (i) a segmented image with augmented images

Lastly, we tested Fine-tuned DilatedNet and Compact Dilat-

edNet on webcam video. Here, in each frame in a webcam video,

person is segmented using a CNN and background is replaced by

a user-specified image. The webcam video using Compact Dilat-

edNet has approximately 4 fps whereas the webcam video using

Fine-tuned DilatedNet has approximately 2 fps due to the size of

models. Figure 9 shows an example of the webcam frames using

Fine-tuned DilatedNet and Compact DilatedNet which visually

do not have a big difference.

Conclusions
In this paper, we presented a person segmentation method us-

ing convolutional neural networks with dilated convolutions. We

designed two data augmentation methods to improve segmenta-

tion performance. We included augmented images to our training

set to fine-tune the original DilatedNet [17]. Our Fine-tuned Di-

latedNet provides accurate segmentation especially near person

boundaries. The original DilatedNet architecture requires a heavy

computation so the usage in webcam application may not be prac-

tical. By reducing the channel number we were able to develop

and train our Compact DilatedNet to increase the speed without

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. A comparison between segmentation results using Fine-tuned

DilatedNet and Compact DilatedNet (a) an original image (b) a segmented

image using Fine-tuned DilatedNet (c) a segmented image using Compact

DilatedNet (d) an original image (e) a segmented image using Fine-tuned

DilatedNet (f) a segmented image using Compact DilatedNet (g) an original

image (h) a segmented image using Fine-tuned DilatedNet (i) a segmented

image using Compact DilatedNet

sacrificing segmentation performance. We expect that our pro-

posed method can save bandwidth during video conferencing by

only transmitting pixel information on a person mask and setting

background as a user-specified image. In the future, we plan to

reduce the size of the model more by using network pruning tech-

niques such as deep compression [33].
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