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Abstract
The objective of human pose estimation is to estimate the

locations of keypoints on the human body using a single image.
Convolutional pose machines is one of the most popular pose es-
timation techniques that is based on deep learning with convolu-
tional features. In this paper, we propose semantic pose machines,
a pose estimation technique that enhances convolutional pose ma-
chines by utilizing a semantic segmentation heatmap in addition
to convolutional features. Semantic segmentation methods lever-
age the success of object class recog-nition networks for the seg-
mentation of important object classes, including people. We con-
sider the CRF as RNN semantic seg-mentation approach to obtain
a heatmap that is incorporated in the pose estimation process as
an additional channel. Our results on the LEEDS dataset indicate
improvements over the convolutional pose machines method.

Introduction
Deep convolutional neural networks (CNNs) and their vari-

ants have become the architecture of choice for many computer
vision applications. Deep networks have achieved state-of-the-art
results in object class recognition [6], [13], [5], [10] face recog-
nition [3], semantic segmentation [8], [11], pose estimation [12],
and other appications. Pose estimation in images deals with the
localization of body keypoints, such as head, neck, shoulders,
elbows, wrists, hips and ankles. Deep learning techniques for
pose estimation include DeepPose [16], Flowing ConvNets [15],
Convolutional Pose Machines [12] and Stacked Hourglass Net-
works [1]. Due to the complexity and variety of human poses,
human pose estimation stands to benefit from recent advances
in semantic segmentation, such as Fully Convolutional semantic
segmentation [8] and CRF as RNN [11]. The result of semantic
segmentation is an image map where pixels are labeled with their
corresponding class. The class that can be useful for human pose
estimation is naturally the human class. In our work, for each
stage of the Convolutional Pose Machine, the input is not just a
RGB image and a center map as in the original design, but also the
semantic segmentation feature heatmap from CRF as RNN [11].

Related Work
Pose Machine

The idea of pose machine was first introduced in [17] to deal
with the articulated human pose estimation problem. By incor-
porating rich spatial interactions among multiple parts and infor-
mation across parts of different scales, the pose machine was able
to achieve state-of-the-art performance on challenging datasets.
Conceptually, the pose machine is a sequential learning algorithm
that outputs a confidence map for each part of human body, it-
eratively improving its estimates in each stage. In each stage,
there are multiple classifiers trained to estimate the likelihood of
a pixel belonging in the classes of interest (human parts). The
output of all the classifiers becomes the input to the classifiers

in the next stage. Since every classifier takes into consideration
the estimation of all the classifiers in the previous stage, the spa-
tial correlations are included into the input features of each stage.
In terms of the classifier and image features used in this system,
the choice of classifier was random forest since it outperformed
other shallow methods on several datasets. The histogram of gra-
dients (HOG) features, Lab color features, gradient magnitude,
and context patch features were applied as the image features for
the classifier. The LEEDS Sports Pose (LSP) [14] dataset and
FLIC dataset were used for training and testing.

Convolutional Pose Machine
Based on the idea of the pose machine, the Convolutional

Pose Machine (CPM) was developed in [12] with improvement
on both accuracy and efficiency for the task. Inheriting the bene-
fits of the pose machine architecture, the Convolutional Pose Ma-
chine combines the advantages of convolutional neural networks
and pose machine. i.e. the implicit learning of long-range de-
pendencies between image and multi-part cues and convolutional
neural networks, and the ability to learn feature representations
for both image and spatial context directly from data. Similarly to
the pose machine, in each stage of a CPM, image features and the
confidence maps produced by the previous stage are used as in-
puts in the current stage. Described in [12], larger receptive fields
on belief maps help to learn long range spatial relationships and
yield better accuracy which can be achieved either by increasing
the size of the convolutional filters. Large filters come with the
cost of having a larger number of parameters to learn. An alter-
native is increasing the depth of the network but this introduces
the risk of encountering the vanishing gradient problem. A larger
number of convolutional layers was chosen over larger filters in
the CPM system because the sequential prediction framework of
the pose machine provides a natural approach to training the deep
network with intermediate supervision. This type of intermedi-
ate supervision between stages addresses the vanishing gradient
problem. An example of the CPM system is shown in Figure
1. The CPM system was tested on various datasets and achieved
state-of-the-art results.

Semantic Segmentation
As a type of pixel-level prediction task, semantic segmen-

tation plays an important role in image understanding. The sig-
nificant success of CNNs in solving high-level computer vision
problems such as image recognition and object detection, has in-
spired new approaches for adapting CNNs to pixel-level labelling
tasks such as semantic segmentation. In 2015, Fully Convolu-
tional Networks (FCNs) [8] were proposed to deal with the se-
mantic segmentation problem. FCNs adapted contemporary deep
classification networks such as AlexNet [6], VGGnet [13], and
GoogLeNet [2] to the segmentation task and achieved state-of-
the-art performance in several benchmarks.
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Figure 1: Convolutional Pose Machine architecture

However, one of the problems of using CNNs for low-
level tasks is that successive convolution and pooling leads to
non-sharp boundaries and blob-like shapes in the output feature
map due to the lack of smoothness constraints. In other word,
CNNs do not have a mechanism to encourage label agreement
between pixels and features. In order to cope with this prob-
lem, Conditional Random Fields (CRFs) are widely used as post-
processing procedures to smoothen and refine the final predic-
tions. DeepLab [7] and Deconvolution Network [4] are some of
the examples that attach CRFs at the end of CNNs to boost perfor-
mance. DeepLab uses deep convolutional neural networks with
their proposed atrous spatial pyramid pooling to robustly segment
objects at multiple scales while the second one applies incorpo-
rates their proposed deconvolution layers and unpooling layers
with the convolutional layers of VGG16 [13] and trained the net-
work end-to-end.

Conditional Random Fields as Recurrent Neural
Networks (CRF as RNN)

Unlike convolutional neural networks, recurrent neural net-
works (RNNs) have not gained as much popularity as CNNs
due to their main disadvantage, which is short-term memory
loss. However, the concept and framework of RNNs can be rep-
resented as mean-field iterations, an approximation for solving
CRFs. Therefore, this allows them to be trained end-to-end with
convolutional layers through backpropagation. The idea behind
the probabilistic model in CRFs is to try to estimate the likeli-
hood of a pixel being in a certain class given the surrounding pre-
dictions. the model takes the other predictions into consideration
and finds the agreement between the predictions. Usually CRFs
are used as a post-processing operation for fine-tuning the final
output. In CRFs, in order to make a prediction on a pixel, the
predictions of its neighborhood are needed. Likewise, recurrent
neural networks are fed with the previous predictions. This type
of similarity that is shared between CRF and RNN makes the tran-
sition possible from to the other. The main contribution of [11] is
proposing a representation of the mean-field approximation in the
convolutional neural network hierarchy. In [11], the convolutional
neural network architecture is used to derive unary energy com-
ponents for CRFs. The results show that the end-to-end trained
FCN [8] with CRF as RNN model is better than simply using

Figure 2: Groundtruth of every stage. (a) Input image, (b) Right
ankle, (c) Right knee, (d) Right hip, (e) Left hip, (f) Left knee, (g)
Left ankle, (h) Right wrist, (i) Right elbow, (j) Right shoulder, (k)
Left shoulder, (l) Left elbow, (m) Left wrist, (n) Neck, (o) Head
top, (p) Background.

CRFs as a post-processing operation.

Semantic Pose Machine
System Architecture

The architecture of the Semantic Pose Machine is based on
extending the Convolutional Pose Machine features with sematnic
segmentation maps. Figure 1 shows a 3-stage architecture of the
Convolutional Pose Machine. The input to the first stage is just an
RGB image followed by seven stacks of convolutional layers, max
pooling layers, ReLU nonlinearity. This stage outputs 15 confi-
dence maps of 46 x 46 in dimension, which correspond to 14 parts
of the human body and a background. The second stage is simi-
lar to the first one, although instead of just taking the RGB image
as input, it is also fed with the 15 confidence maps from the first
stage and the max-pooled center map. The third and following
stages have exactly the same structure. Each of these stages takes
32 feature maps extracted from the second stage, the max-pooled
center map, and the output of the previous stage as input, and then
outputs 15 confidence maps just like in the first and second stages.
At the end of each stage a Euclidean loss layer is used for inter-
mediate supervision to deal with the vanishing gradient problem.
The groundtruth for each stage is the same, as illustrated in Figure
2. Since the output of the Convolutional Pose Machine includes
15 confidence maps, the final predictions for each part of human
body are made by selecting the highest probability location in the
corresponding belief map.

The main difference between the Semantic Pose Machine
and the Convolutional Pose Machine is the input. Instead of feed-
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Figure 3: Semantic segmentation output of CRFasRNN.

ing the network the RGB image and a center map, the input of the
Semantic Pose Machine also includes the output from the seman-
tic segmentation heatmap based on CRFasRNN. The heatmap of
CRFasRNN is a pixel-wise prediction in which each pixel is as-
signed a class as shown in Figure 3. However, by taking one step
back and only focusing on the human class in the CRFasRNN
output, we can retrieve the human belief map of the input image
as shown in Figure 5. A human belief map shows the probability
distribution of every pixel being human class which is the extra
channel for the input of semantic pose machine. The design of
the Semantic Pose Machine is shown in Figure 6. The center map
is stacked on the input image as an extra channel, instead of send-
ing it directly to the pooling layer, and the human belief heatmap
is input as a separate channel, where the center map was placed
in the CPM architecture. In addition, the number of stages for
the Semantic Pose Machine is 3 because in the CMP paper [12],
it was shown that the improvement on accuracy is not significant
after the third stage and the additional system complexity would
not be justified. We decided to add an extra channel in the seman-
tic pose machine and not to simply replace the center map of the
input with the human belief heatmapmap, to avoid confusing the
classifier in case there are multiple people in the image.

Training Procedure

To assess the performance of the semantic pose machine in
comparisonw ith teh CPM, We trained the Semantic Pose Ma-
chine and the Convolutional Pose Machine from scratch using the
same data and without data augmentation or any fine tuning. Our
experiments were designed to determine whether using the extra
channel is helpful for estimating human pose. For training and
testing, the Leeds Sports Dataset was used [14] which contains
2000 annotated images. Among the dataset, 1500 were used for
training, 200 for validation and the last 300 for testing. The net-
work hyper-parameters were set the same as in the convolutional
pose machine. Both networks were trained for 36000 iterations
with a batch-size of 4 and then a validation set was used to find
the best model for final testing. As for the input center maps dur-
ing the training phase required by the Convolutional Pose Ma-
chine and the Semantic Pose Machine, they are derived from tak-
ing the average of the neck, right hips, and left hips locations of
the groundtruth. In terms of the input size, the network takes in
368x368 size of image and any images larger or smaller are re-
sized according to the ratio of the larger side of the image to 368
and the rest the image is zero padded as shown in Figure 2(a) so
as to preserve the ratio of the human shape.

Figure 4: Human confidence maps derived from the output of
CRFasRNN.

Figure 5: Human confidence maps derived from the output of
CRFasRNN.

Experimental Results
The architecture of the Convolutional Pose Machine, illus-

tated in Figure 1, shows that there are two inputs to the network,
a center map and an RGB image. In the semantic pose machine
architecture, the question arises of where the human confidence
map should be. The original idea was to simply stack the human
map with RGB image as the fourth channel, however, it could
also go with the center map and then combined with the feature
maps through concatenation. In order to find out which way of
incorporating the segmentation heatmap results in the best per-
formance, combinations of the placement of RGB image, center
map, and human confidence map are tested. The experimental in-
put variations are shown in Fig. 7. In the experiment, the two best
performing placements of the human belief map are (a) and (b)
in Figure 7 which are used to compare to the Convolutional Pose
Machine in the following sections.

Evaluation
When it comes to evaluating the performance of human pose

estimation, there are several different metrics, such as probability
of correct pose (PCP), average precision of keypoint (APK), prob-
ability of correct keypoint (PCK), and PCKh [9] [18]. Among
them, PCK is conventionally used for the Leeds Sports Dataset
used in this paper. In PCK metric, a prediction is considered cor-
rect if it is within a radius from the groundtruth. The radius dif-
fers from image to image since it is derived from formula 1 which
takes the size of the input image into account. The alpha from
formula 1 acts as a threshold, the larger the value, the lower the
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Figure 6: Semantic Pose Machine architecture.

Figure 7: (a) Validation using groundtruth center maps. (b) Vali-
dation using predicated center maps

threshold. The alpha parameter is set to 0.1 for our evaluation.

radius = α ×Max(width, height) (1)

Results and Comparison
The comparison between the Convolutional Pose Machine

and the Semantic Pose Machine was done in two ways. The first
one directly uses the groundtruth center map as part of the input,
while the second way uses a model provided by the Convolutional
Pose Machine to estimate the center of the human in an image.
During the training, we assume that the center maps are given. In
this paper, we decided to evaluate by using both the groundtruth
and the prediction from the pre-trained model as input respec-
tively.

The accuracies of the testing are shown in Tables 1 and
2. There is no surprise that the accuracies when using the
groundtruth center maps are overall higher than those using pre-
dictions from the pre-trained model, because during the training
the network is fed with the groundtruth center maps. As a result,
the network has learned the parameters for that pattern and natu-
rally has better performance if the input is consistent. Expectedly,
the predictions derived from the model are not always accurate
which will result in a lower accuracy. In either evaluation, the Se-
mantic Pose Machine has higher overall accuracy than the Convo-
lutional Pose Machine. The Semantic Pose Machine makes better
predictions in most parts of human body. Furthermore, it is worth
noticing that the Semantic Pose Machine does especially better at
estimating the location of extremities, such as ankles and wrists,
compared to the Convolutional Pose Machine. This is attributed to
incorporating the results of CRFasRNN, which are quite sophisti-
cated even at the limbs of human body. By including the human

heatmaps from CRFasRNN as input features, the information of
where to focus on the image is taken into account by the seman-
tic pose machine. Such spatial features in the human heatmaps
are extracted and learned through backpropagation and therefore
produce a better performance than simple postprocessing.

The difference between the accuracies of the two implemen-
tations of the Semantic Pose Machine is not significant, although
there are some differences. If the the groundtruth center maps
are used as input during testing, stacking the center map with the
RGB image while leaving the human confidence map for the pool-
ing results in higher accuracy. On the other hand, if the center
map inputs are derived from the pre-trained model, stacking the
human heatmap with the RGB image gives out a better result. In
the design of the Convolutional Pose Machine, the human center
maps are used as an aid, but because it is not always accurate, it
is placed separately from the RGB image to have no influence on
the first stage feature extraction of the RGB image. However, if
the input center map is guaranteed to be correct, it can be more
than just a support and therefore it is more beneficial to be stacked
on the RGB image, while using the human confidence heatmap as
an assistance. This is shown in the implementation (a) in Fig-
ure 7. On the contrary, if the correctness of the center map is in
doubt, then it should be used as an aid while stacking the human
belief map with the RGB image just like the (b) implementation
in Figure 7.

During the validation, it is observed that by including the
extra channel, the semantic pose machine is less affected by the
overfitting problem than it is in the Convolutional Pose Machine
as shown in Figure 7. After around 7000 thousand iterations,
the validation accuracy of the Convolutional Pose Machine starts
to ramp down while the validation performance of the Semantic
Pose Machine remains robust. Examples of final predictions on
the test set from the Semantic Pose Machine and the Convolu-
tional Pose Machine are shown in Figure 8. The performance im-
provements obtained by the semantic pose machine are illustrated
in several examples.

Conclusions
In this work, we have demonsrtated that we can obtain im-

proved pose estimation results by combining aspects of two state-
of-the-art systems based on deep CNNs, namely convolutional
pose machines and CRF as RNN semantic segmentation. Our
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Convolutional
Pose Machine

Semantic Pose
Machine (a)

Semantic Pose
Machine (b)

Right ankle 35.33% 39.33% 40.33%
Right knee 46.66% 47.33% 49.66%
Right hip 68.66% 70.66% 71.00%
Left hip 65.66% 63.66% 65.33%
Left knee 47.00% 47.66% 48.66%
Left ankle 31.33% 39.33% 36.00%
Right wrist 50.66% 57.00% 55.33%
Right elbow 55.66% 59.00% 61.33%
Right shoulder 75.00% 79.00% 78.33%
Left shoulder 68.66% 69.66% 70.00%
Left elbow 52.33% 54.66% 53.00%
Left wrist 46.33% 50.00% 41.33%
Neck 84.33% 85.00% 83.00%
Head top 82.33% 84.00% 85.66%
Overall 57.88% 60.45% 59.92%

Table 1: Accuracies of the Convolutional Pose Machine, im-
plementation (a) of Semantic Pose Machine, and implementa-
tion (b) of Semantic Pose Machine. Groundtruth center maps
as input.

Convolutional
Pose Machine

Semantic Pose
Machine (a)

Semantic Pose
Machine (b)

Right ankle 32.66% 40.66% 38.33%
Right knee 42.66% 43% 44.66%
Right hip 53.66% 51.33% 51%
Left hip 47.33% 49.66% 50%
Left knee 40% 38.66% 44.66%
Left ankle 29.66% 36% 35%
Right wrist 48.33% 44.66% 52.33%
Right elbow 51.33% 55.33% 56%
Right shoulder 68.33% 70% 73%
Left shoulder 63% 67.66% 65%
Left elbow 49.66% 50.66% 48%
Left wrist 42.33% 44.33% 39.33%
Neck 80.33% 79% 81%
Head top 81.33% 82.66% 84.66%
Overall 52.19% 53.83% 54.5%

Table 2: Accuracies of the Convolutional Pose Machine, im-
plementation (a) of Semantic Pose Machine, and implementa-
tion (b) of Semantic Pose Machine. Predicted center maps as
input.

architecture incorporates the human segmentation heatmap as an
extra channel for the pose estimation task. The human confidence
maps help to more accurately estimate the joints of human body,
especially at the extremities. Future work will further validate this
approach by using a larger datasets and provide comparisons with
other state-of-the-art systems in this field.
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Figure 8: (a) Groundtruth and predictions from the Convolutional Pose Machine and the Semantic Pose Machine.
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