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Abstract 
We propose a deep learning method to retrieve the most similar 

3D well-designed model that our system has seen before, given a 

rough 3D model or scanned 3D data. We can either use this 

retrieved model directly or use it as a reference to redesign it for 

various purposes. Our neural network consists of 3 different neural 

networks (sub-nets). The first neural network deals with object 

images (2D projection) and the other two deals with voxel 

representations of the 3D object. At the last stage, we combine the 

results of all 3 sub-nets to get the object classification. Furthermore, 

we use the second to last layer as a feature map to do the feature 

matching, and return a list of top N most similar well-designed 3D 

models. 

Introduction  

Background 
3D object classification and identification is a fundamental 

challenge of computer vision in 3D object creation, printing, and 

digital manufacturing. For example, for a target object, we can first 

scan it to get a 3D point cloud and then transfer to a CAD model. 

From the well-designed CAD models, we can find the most similar 

one for our particular application. 

 
Figure 1: An illustration of how 3D shape classification and retrieval may be 
used in manufactory. If we want to manufacture a toy robot, we can (a) start 
with rough sketches for different parts and then use the sketches to generate 
3D model, or (b) use scanned 3D data directly from some exiting object. Based 
on the achieved raw 3D model, it can apply the system to find the best fit model, 
then the individual parts of the toy robot are manufactured. Later on, cameras 

will be disposed as manufacturing facilities to track these individual parts 
through post-processing and enable automatic assembly by using this system. 

Meanwhile, we are living in a 3D world. Being able to correctly 

identify 3D content in the real world plays a key role in robotic 

navigation and 3D digital manufacturing.  

Typically, there are two effective ways for 3D object 

classification: manually crafted features and learned features. 

Manually crafted features, which are all called shape descriptors, are 

extracted by applying human defined rules. Typically, different 

types of shape descriptors have difference feature preferences, like 

different types of geometry essence.  But they are not robust enough 

for all data types. The complexity of computing 3D shape 

descriptors also varies, because it is mainly determined by the 

complexity of the 3D model.   

In the meantime, many methods are using computer learned 

features. Currently, 2D image classification algorithms based on 

Convolutional Neural Network (CNN) are quite mature, thus 

extending them into 3D object classification problem is natural. But 

it needs to be carefully considered what types of 3D representation 

should be used, as representation schemes will affect the system 

performance. To achieve better performance on CNN, we need to 

preserve sufficient 3D information while reducing the computation 

complexity. It is the major challenge and the reason why some 

researcher [1] proposed using multiple 2D views to train a CNN. 

Recently, plenty of 3D meshed surface models are available in 

various fields, like IKEA dataset [2], ShapeNet [3], Princeton Shape 

Benchmark (PSB) [4] and Princeton ModelNet [5]. As a result, more 

attention has been paid to dealing with either 2.5D information 

(RGB-D image) or the 3D model directly. Some researchers [6, 7] 

developed the idea of using volumetric representation for 3D object 

and fed it into a CNN acting as an automated feature learning 

method. 

Related work 

Shape descriptors 
There are several works that try to design shape descriptors for 

3D objects based on different 3D data representations. For the same 

target object, using point-cloud, meshes, or voxel representation will 

result in different shape descriptor. Also, the resolution and sparsity 

of the 3D representation will lead to quite different results. 

Generally, the shape descriptors will be classified into two 

types: global descriptors and local descriptors. In the past, the 

surface normal and curvature were used as a kind of shape 

descriptor. Recently, more types have been designed, like Light 

Field Descriptor [8], Fourier descriptor [9], Heat Kernel Signature 

(HKS) [10], Scale Invariant Heat Kernel Signature (SI-HKS) [11], 

etc. Then we can apply traditional machine learning method, like 

PCA, to perform 3D objects classification. But the handcrafted 

shape descriptors may not robust to all different type of 3D objects. 

Thus, we want to find a way to automatically learn 3D features, 

which leads to applying a neural network to the problem. For 
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example, the DeepSD method [10] first does some preprocess 

(HKS) on input shapes to get a rough shape feature, and then the 

shape features are fed into two deep neural networks to get the deep 

shape descriptor. 

 
Figure 2: The pipeline of learning 3D Deep Shape Descriptor (DeepSD) [10]. 

MV-CNN 
Multi-view Convolution Neural Network (MV-CNN) is the 

state-of-art 3D object classification method based on 2D 

projections. For each 3D object, multiple 2D projections are 

generated. Typically, it has 2 different camera set-ups. In the first 

camera setup, we assume all 3D objects are in the upright orientation 

along a consistent axis (e.g. z-axis). Under this assumption, it will 

generate 12 render views with 30 degrees from the horizontal line. 

For the 2nd camera setup, we do not assume the 3D objects are 

consistently upright. In this case, it will place 20 virtual cameras at 

the corners of an icosahedron and generate 4 render views for each 

camera. Thus, each 3D object will yield total 80 views. 

Each image for the multi-view representation is first passed to 

an image-based CNN (CNN1) separately, then aggregated at the 

view-pooling layer, and at last go through another image-based 

CNN (CNN2). All the parameters for the first part (CNN1) are shared 

among all views. 

 
Figure 3: Illustration of multi-view CNN architecture [1]. 

In this paper, we proposed a method that combine several sub 

neural networks together to achieve better results in 3D object 

classification and identification. The flowchart of our method is 

shown in Figure 4.  

Method 
The main contributions of this paper are summarized as 

follows: 

1. Data augmentation – how we rendered the 3D objects into 

images and voxels to ensure that the rich 3D information is 

Figure 4: The entire flowchart for the offline training and real-time classification and retrieval process. Three neural networks are designed to process 
the 2D projection and 3D voxelized data separately. Data generated from the same viewing angle are put through the neural networks at the same 
time. The class/model that gets receives the highest number of votes among all viewing angles is selected as the final output. 
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preserved through 2D projection images and low-resolution 

data (voxels). 

2. Provide flexibility on the number of views used during 

classification and retrieval. We pushed the technology one step 

further towards requirements for industry adoption.  

3. Majority vote – the method that helps to make final decision 

based on outputs from multiple views. 

Dataset 
We applied our method on Princeton ModelNet dataset [5] 

which contains 127,915 CAD Models within 662 object categories. 

It also has two widely used subset, ModelNet10 and ModelNet40. 

ModelNet10 contains 10 popular object categories with 3991 

training CAD models and 908 testing models. All these models have 

been manually aligned according to a certain predefined pose. 

ModelNet40 contains 40 distinct classes with a total of 9843 training 

models and 2468 testing models. We use the same train-test split 

provided by the authors and mainly test our method on the two 

subsets. The 3D CAD models in ModelNet dataset are in the form 

of polygon mesh, containing coordinates and all the vertices in the 

mesh and the IDs of the nodes forming a polygon. 

For both ModelNet10 and ModelNet40, we randomly selected 

100 training objects for each class to do the training section in our 

neural network. Also in our method, we do not require all the objects 

to be manually aligned. 

Data Representation 
Image representation: for a given view point, the 3D object is 

projected into a 2D image with a fixed light source. 

Volumetric representation: the 3D object is represented by 

binary voxels with specific resolution – 1 if the voxel is valid and 0 

otherwise. The volumetric representation is adapted to the size of 

the polygon mesh. 

 
Figure 5: (a) Image representation of 3D object, here we choose the image size 
to be 224 pix × 224 pix. (b) Volumetric representation of 3D object, here we 
choose the voxel size to be 30 unit × 30 unit × 30 unit. 

 
Figure 6: An example of how 360 random viewpoints distributed evenly on a 
unit sphere.  

Data augmentation 
In our method, we use two methods to represent the 3D object. 

For a 3D object, different viewpoints results in different 2D 

projection images, as shown in Figure 5 (a). And for the allotropic 

voxels, if the resolution of volumetric representation is high, they 

may look similar; but if the resolution is low, it may vary. In our 

method, the higher resolution of volumetric, the more time-

consuming the system is. Thus, we choose to use 30×30×30 voxels 

to represent the target objects as shown in Figure 5 (b). For the entire 

system we randomly generate 360 different viewpoints which are 

evenly distributed on a sphere and pointing toward the centroid of 

the mesh as shown in Figure 6. Furthermore, the number of 

viewpoints for our method is not fixed and can be whatever the 

number we choose. Typically, we choose 36, 60, 90, 120, and 360. 

Majority vote 
Our work is inspired by FusionNet [12], which uses similar 

data representation and neural network design. It also tries to 

combine three different neural networks to improve the 

classification accuracy. One shortcoming of FusionNet is that once 

the neural network has been trained, the number of views used for 

3D classification and retrieval is fixed. However, in practice the 

number of views that we can generate may be restricted; or under 

some circumstance, we need more views to help us better identify 

the objects of interest. Therefore, for the 3D digital manufacturing 

application, we cannot use FusionNet directly. In our approach, we 

use majority vote at the end of neural networks instead of view max-

pooling in sub neural networks. Imagine, for each view, we get an 

image and corresponding voxel data, then we feed them into the 

three CNNs.  At last, we fuse the outputs from all three sub-CNNs 

and make the final decision. The majority vote happens after the 

network fusion. For each view, we get a class ID. Then the majority 

vote counts how many votes each class gets from all views.  The one 

with highest number of votes is the final agreed output class. By 

using this method, the number of views required for 3D objects will 

be more flexible, and the number of training parameters will be 

much smaller (in the max-pooling layer, it involves massive 

calculation and is very time-consuming).  

In the training stage, we still generate images and voxels from 

multiple views for 3D objects to do the training. In the testing stage, 

we do a majority vote at the end of the softmax layer. In other words, 

in the classification step, the final class ID is the one that gets most 

of the votes. In the identification step, we treat the second to last 

layer as features and calculate its distance to the features from the 

training section within the decision class. Thus, for each view, we 

have a closet view of some object in the training set. Having done 

this for each view, we can find an object in the decision class, which 

gets most of the votes from all views. 

This step dramatically increases the accuracy of object 

classification and retrieval. For example, in 120 views/120 views of 

training/testing task, the classification accuracy without majority 

vote is 81.15%, and the classification accuracy with majority vote is 

93.03%. 

Image-based CNN 
In this image-based neural network, we apply a typical 2D 

image-based CNN to achieve our goal. In this work, we choose 

AlexNet as our basic neural network and perform some modification 

to make it more suitable for our dataset. We render multiple 2D 

projections of CAD models, which is represented in polygon mesh. 

Since the CAD model does not contain any color information, the 

projection is just a gray scale image. The direction of light source 
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for the 3D object when doing the projection is fixed compared to the 

viewpoint.  

Volumetric CNN 
We apply two well defined CNNs for volumetric data which 

form a large feature space in the off-line training stage. When we do 

the query part, we get a final result by using the majority vote 

method across multiple views. Similar to the image-based CNN, we 

still use 2D convolution to aggregate useful information across a 

direction of the object (this direction is fixed along the entire work). 

Network 1: VCNNI 
This volumetric CNN is trying to mimic the working principle 

of ‘X-ray scanning’, using a kernel with size, k x k x length, along a 

fixed direction. Here we call it ‘anisotropy’ convolution layer. The 
size, k, may be selected based on the input voxels size.  In some 

examples, k is 1, 3, or 5. It consists of three ‘anisotropy’ convolution 
layers and two fully connected layers. The final layer works as a 

classifier, the size should be the same as the number of classes in 

training dataset. 

Network 2: VCNNII 
This neural network is the same as the FusionNet VCNNII 

[12], which is inspired by the inception module in GoogleLeNet. It 

concatenates output from different kernel size, so the key feature 

across multiple scales will be maintained. The filters we use are of 

size 1x1, 3x3 and 5x5. The 1x1 kernel tries to abstract information 

in the receptive field and encode a higher representational power 

without much additional computation cost. Since our volumetric 

data is not that big, and we don’t need to reduce the computational 
complexity, this neural network contains 2 inception modules, 

followed by a convolution layer and 2 fully connected layers. 

 
Figure 7: the entire structure of meta-NN. (a) Image input CNN, learning the 
shape information; (b) Voxel input CNNI, mimicking the principle of x-ray, 
learning the density of 3D objects; (c) Voxel input CNNII, applying inception 
module, using different kernel size to learn the invariant feature of 3D objects. 

Result 
 In this paper, we run the classification task on ModelNet10. 

Each object in training and testing set is rendered from 120 viewing 

angles to generate the 2D images and corresponding voxel 

representations.  As the classification accuracy shown in Table 1, 

our proposed Meta-NN approach achieves the accuracy of 93.03%, 

outperforming the Panorama-NN [13] and 3DShapeNets [5]. The 

performance is very close to FusionNet [12] and yet offers more 

flexibility for industry applications. FusionNet uses 20 images and 

60 voxels as input with a priori that all the input 3D objects must be 

manually aligned according to certain predefined pose. Figure 8 

shows the confusion matrix of the classification task on 

ModelNet10. It seems that the classification accuracy of 

“table/desk” and “nightstand/dresser” classes is a bit lower than the 

other classes. When we examined the dataset, we found that some 

3D objects in “night stand” class is similar to the “dress” class, the 
same for “table” and “desk” classes. 

Table 1: Classification accuracy comparison among different 

methods. 

# of viewing 
points 

Algorithm 
ModelNet10 
classification 
(accuracy) 

120 
Meta-NN (proposed 

method) 
93.03% 

N/A Panorama-NN 91.1% 

N/A 3DShapeNets 83.5% 

20 images & 
60 voxels 

FusionNet 93.11% 

 

  
Figure 8: The confusion matrix for classification accuracy of Meta-NN (proposed 
method) running on ModelNet10 with 120 viewpoints. 
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Figure 9: Similar 3D object examples from night stand / dresser classes 
(upper row) and table / desk classes (lower row) that confused our algorithm. 

We also do the comparison between the different combination 

of the number of training viewpoints and testing viewpoints. From 

table 2, we find that the combination of the number of training and 

testing viewpoints can be very flexible. The best performance is 

achieved using 120 views for both training and testing. This gives 

us a hint that 120 views are adequate to acquire almost all useful 

information to discrete 3D object for ModelNet10. The number of 

views may increase when the 3D objects get subtler.  

Table 2: Classification accuracy of different combination of the 

viewpoints between training and testing stage. 

# of 
viewpoints 

Test 

36 120 360 

Train 

36 91.59% 87.61% 87.61% 

120 91.92% 93.03% 92.37% 

360 90.93% 91.92% 91.84% 

 

Furthermore, we evaluated the system’s performance on 3D 
object retrieval. In this case, the 360 viewpoints of the same 3D 

model are divided into training set and testing set.  In this manner, 

we will have ground truth for each testing sample. The retrieval 

accuracy of the method for the bathtub class is 87.13%, for example.  

Conclusions 
Since working with the direct 3D data has become more 

popular, we propose a way to do this task; and based on the results, 

it seems work well. Our method does not have restrictions on the 

number of viewpoints and does not require the 3D objects to be 

manually aligned. 

Also, we have several directions to explore in the future. One 

is to experiment with other types of sub neural networks dealing 

with either 2D image or 3D voxels. What if the input 3D object is 

just a partial object?  We want to improve the accuracy of each 

subnet, whatever the integrity of the 3D object. Another direction is 

to explore different resolutions for the voxels representation. The 

resolution will have a significant impact on the volumetric represent 

of the 3D object. If we choose a lower resolution, the outline of the 

object will be conserved but we will lose detail information. On the 

other hand, higher resolution will require higher computation 

complexity and memory consumption. 
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