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Abstract
Facial landmark localization plays a critical role in many

face analysis tasks. In this paper, we present a coarse-to-fine
cascaded convolutional neural network system for robust facial
landmark localization of faces in the wild. The system consists
of two cascaded convolutional neural network levels. The first
level network generates an initial prediction of all facial land-
marks. The second level networks are cascaded to implement fa-
cial component-wise local refinement of the landmark points. We
also present a novel data augmentation method for facial land-
mark localization networks training. The experiment result shows
our method outperforms state-of-the-art methods on 300W [18]
common dataset.

1. Introduction
Facial landmark localization has numerous applications in

face alignment, face recognition, facial emotion recognition, fa-
cial motion capture and 3D face reconstruction. In the past few
years, facial landmark localization in unconstrained conditions
has received a lot of attention. Many well-known facial landmark
localization algorithms from early researches are mostly based
on model-based approaches such as Active Appearance Models
(AAMs) [1, 2], Constrained Local Models (CLMs) [3, 4], Ac-
tive Shape Models (ASMs) [5, 6]. These algorithms work well
in particular constrained conditions, but their performance may
deteriorate in unconstrained scenarios.

With the development of descriptive features, regression-
based algorithms such as cascaded regression becomes the main-
stream in landmark localization. Recently, due to increasingly
large amount of available training data and the breakthrough in
deep learning, the current trend in landmark localization is to in-
volve deep learning architectures into the solution [7, 8, 9, 10, 11,
12]. Sun et al. [7] first applied cascaded deep convolutional neu-
ral networks (DCNNs) to the regression framework. After that,
a lot of works have been done to further exploit cascaded DC-
NNs framework [9, 12, 22] and achieved state-of-the-art perfor-
mances. All these algorithms share the same strategy of level-
wise coarse-to-fine refinement. At each level, the networks are
trained to locally refine a subset of facial landmarks generated by
networks from previous level. It has been demonstrated that by
utilizing deep learning methodologies such as deep convolutional
neural network cascade, superior robustness and accuracy have
been achieved compared to the previous methods.
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However, facial landmark localization still remains a very
challenging problem. One challenge comes from the large varia-
tions of face appearance caused by different illuminations, differ-
ent facial expressions, different yaw, pitch and roll angles of heads
and different image qualities. In addition to more powerful net-
works, some other techniques are also used. Small image transla-
tions and rotations for training data augmentation are presented in
[7]. Moreover, pre-alignments of face or facial component images
by rotating them to a canonical direction are used ahead of some
network levels by [9, 12, 22].

Another challenge is that the performance of the landmark
localization algorithms highly relies on the consistency and ac-
curacy of the detected face bounding boxes for the input images
generated by a face detector. [9] claims that a large portion of its
error can be attributed to the poor face detector it uses. To solve
this problem, a bounding box aggregation technique is introduced
in [27] in order to generate stable and accurate face bounding
boxes. Multiple face detectors are used simultaneously in this
method to provide input to a bounding box aggregation algorithm
to generate an accurate final bounding box.

It is critical for a landmark localization method to be robust
to both variant input face images and variant face detectors or
detected face bounding boxes. Our works in this paper to address
the challenges can be summarized as follows:

1. We designed a coarse-to-fine two-level convolutional neural
network cascade for facial landmark localization. Different
from some previous works [7, 9, 12, 22], our method doesn’t
use point-wise refinement level or image pre-alignments but
still obtains higher accuracy.

2. We proposed a novel data augmentation method for facial
landmark localization training. By using this method, our
system has great robustness to both input face images and
detected face bounding boxes. Very similar accuracy can be
obtained by using different face detectors.

3. Experimental evaluations show that our method demon-
strates both superior robustness and accuracy. It out-
performs state-of-the-art methods on 300W common test
dataset.

2. Related work
The early works in facial landmark localization mainly used

model-based methods such as ASMs [1, 2], AAMs [5, 6] and
CLMs [3, 4]. A prior generative shape model is generated and
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Figure 1. System overview. A face bounding box is generated by a face detector. The face image is cropped by the face bounding box and fed to the first

level network. An initial prediction of all facial landmark points are generated by the first level network. By using first level initial landmark prediction, regional

images containing facial components are cropped and fed to the corresponding second level networks. Further component-wise landmark refinements are done

by second level networks to generate final output.

used. However these methods didn’t work well for faces in the
wild and the trend moved to regression based method as well as
deep learning.

Regression based methods predict facial landmarks directly
from appearance. Most regression based methods utilize a cas-
caded regression framework and coarse-to-fine manner, in which
the landmark predictions are continually improved, for example
Stochastic Descent Method (SDM) [19], LBF [20] and Coarse-
to-Fine Shape Searching (CFSS) [21].

With the development of deep learning, this technique has
recently be used in landmark localization. Sun et al. [7] first
used a three-level cascaded convolutional neural network for ro-
bust facial landmark localization. By using the similar method
of convolutional neural network cascade, more works have been
done by cascading more levels [9, 23, 12]. Besides, Zhang et al.
[22] developed a multi-task network to tackle both facial land-
mark localization and facial attribute classification. Trigeorgis et
al. [26] first applied recurrent neural networks to facial landmark
localization.

3. The Proposed method
3.1 Overview

Fig. 1 briefly illustrates the coarse-to-fine two-level cascaded
facial landmark localization system. A CNN based face detector
is trained and used in the system to generate face bounding boxes.
The input to the first level network is the face region returned by
the face bounding boxes. The first level of the network is used for
generating robust initial prediction for all facial landmarks. The
initial landmark prediction is robust and usually very close to the
landmark true position. This is because the first level network
takes the full face as its input to better use global information,
context and structure of faces, avoiding the problem of local min-
imum and corrupted or ambiguous local features which may result
in inaccurate predictions.

However, the capacity of a single network is limited by its
size. Even though first level network is powerful enough to han-
dle great variations of input face images, there is still room for
growth of landmark localization accuracy, especially for some
deformable facial components such as mouth and eyes. Since
these components deform a lot with different expressions, mak-
ing precise prediction for these components is difficult for a sin-
gle network targeting at making an overall prediction. To tackle
the problem, second level networks are trained and cascaded fol-

lowing the first level network. Second level networks can take
a closer look at the details of each facial component and imple-
ment component-wise landmark local refinement. By doing so,
the prediction burden is distributed across the networks in differ-
ent levels, and good performance can be achieved by the cascaded
networks of moderate size.

In order to make the landmark localization system more ro-
bust, we developed powerful data augmentation techniques for
training the cascaded networks. This makes the landmark local-
ization system robust to large variance of input face images as
well as variant initial face bounding boxes given by different face
detectors. The details of building and training the network are
described in the following subsections.

3.2 Coarse-to-fine Convolutional Neural Network
cascade

As shown in Fig. 1, the neural networks work in a coarse-
to-fine manner. The input image is cropped according to the face
bounding box generated by a face detector and then fed to the first
level network. A VGG [13] style network is designed and serves
as the first level convolutional network. The output layer of the
network generates the predicted landmark coordinates relative to
the input face region. Because input face images might be locally
corrupted or partially occluded, the highest priority for the first
level network is to generate robust prediction of all facial land-
marks. By learning global features and structures, the first level
network is capable to give reasonable predictions even if some
landmark points are invisible.

With a robust initial prediction of all facial landmark points
from first level, second level networks are mainly in charge of fur-
ther refining predicted landmark positions. The input face image
is segmented to smaller regions containing different facial compo-
nents using landmark predictions from first level, e.g. eye, mouth,
nose. These components’ regional images are fed to the corre-
sponding second level networks. Second level networks are sim-
ilar VGG style networks as first level network but with a smaller
size since second level networks only need to process regional
information. The second level networks extract regional features
and generate regional refined landmark predictions. These refined
landmark points are combined with other landmark points from
first stage to generate final landmark points prediction. And since
both first level and second level networks are trained to be robust
to variant input images, in our work face/facial component align-
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ment such as canonical orientation transformation is not used. In
Section 4 it is shown that we still obtained state-of-the-art perfor-
mance without applying these input image alignments. It should
be noted that there is no networks for point-wise landmark re-
finement involved in the system. This is because we believe that
landmarks for facial components are the smallest landmark sub-
sets that can be studied and processed separately since landmarks
belonging to the same facial component have strong correlations
with each other. If they are refined individually, the lack of global
or regional information may cause severe failure.

(a) Sample original raw train-
ing image.

(b) Sample augmented training images with ground truth landmark points
annotated. Bounding box random expansion, random rotation and random
blurring are applied.

Figure 2. Example output images of proposed training data augmen-
tation method.

3.3 Training data augmentation for facial landmark
localization

In order to train the networks to be robust and avoid over-
fitting, a set of data augmentation techniques are developed and
used for the training of both first and second level networks. For
the first stage network, to decouple network performance with
particular face detector, no face detector is involved in generat-
ing face bounding boxes for training data. A novel bounding
box random expansion data augmentation method is developed
for training the networks. Firstly, a tightest bounding box con-
taining all ground truth landmarks is generated as the initial face
bounding box for one training image. Then the four boundary
sides are randomly shifted towards left, right, top and bottom re-

spectively. In this work the maximum shift for left/right sides and
top/bottom sides is 0.3 of the width and height of the initial face
bounding box. Finally the augmented training image sample is
obtained by cropping with the expanded face bounding box and
resizing to fit the network input dimension. By using bounding
box expansion method, the same augmentation performance can
be obtained comparing with the combination of conventional data
augmentation methods, i.e. random cropping, random translation,
random scaling and random stretching. However, bounding box
expansion method is much simpler and easier to apply on land-
mark localization and similar problems than the conventional data
augmentation methods set. This is because for landmark localiza-
tion problems, data augmentation should be applied on image and
landmarks consistently and simultaneously and need to be guar-
anteed that all the ground truth landmarks are always inside the
augmented image.

Besides, for each training image, random rotation and ran-
dom Gaussian blurring are applied before bounding box expan-
sion for different augmentation purposes. At last, a horizontally
flipped image is generated for each augmented training sample
and added to the training dataset. The same data augmentation
methods are used for the training of second level networks, the
only difference is that the augmentation for second level is based
on each facial component region instead of whole face. Fig. 2
shows the example augmented training images using the proposed
method. Superior robustness of networks can be obtained by us-
ing this method for training data augmentation. Fig. 3 shows
the comparison of networks trained using the proposed data aug-
mentation method and trained using ground truth face bounding
boxes. It can be seen that the networks trained with the proposed
data augmentation method have great robustness to different de-
tected face bounding boxes. It demonstrates that our networks
can be easily cascaded with any reasonable face detector without
being retrained but still obtain very similar performance.

(a) Example landmark predictions from network trained using ground truth
bounding box (the left most one).

(b) Example landmark predictions from network trained using proposed data
augmentation method.

Figure 3. Example landmark predictions with different detected face
bounding boxes.

Since these data augmentation methods are independent and
applied with random values, theoretically infinite number of dif-
ferent training images can be generated from one training sample.
In this work, we manually divide the whole training dataset into
two subsets: normal augmentation set and strong augmentation
set. Normal augmentation set contains common training sam-
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Figure 4. Examples from test dataset. The data set contains great variations in pose, expressions and lighting conditions and our system is still able to give

good facial landmark prediction.

ples and strong augmentation set contains rarer and challenging
training samples such as rare and challenging head poses, facial
expressions and illuminations. Larger number of training samples
are generated from each sample belonging to strong augmentation
set than normal augmentation set. By doing so the networks can
better learn the structure of facial landmarks, avoid over-fitting
and have accurate predictions for uncommon faces.

4. Experiments
For training of the proposed networks, LFPW[14],

HELEN[15], AFW[16] and Menpo benchmark[17] datasets with
68-point facial landmark annotation are used. To evaluate the
performance of our cascaded networks, 300W[18] common test
dataset (test set of LFPW, HELEN) is used. We also compare our
methods with recent state-of-the-arts on 300W common dataset
in Table. 1. It shows that our method has the highest accuracy
among these methods. Fig. 4 gives some examples from test
dataset. It can be seen that our system is very robust and can
generate good landmark prediction for variant input face images.

5. Conclusion
In this paper we present a convolutional neural networks sys-

tem for facial landmark localization. In our method, two CNN
levels are carefully designed to form coarse-to-fine cascaded net-
works. Besides, a novel data augmentation method for facial
landmark localization is presented. The experiment result shows
the state-of-the-art performance of the proposed method which
demonstrates its superiority.
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