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Abstract
Convolutional neural networks (CNNs) tend to look at meth-

ods to improve performance by adding more input data, making
modifications on existing data, or changing the design of the net-
work to better suit the variables. The goal of this work is to sup-
plement the small number of existing methods that do not use
one of the previously mentioned techniques. This research aims
to show that with a standard CNN, classification accuracy rates
have the potential to be improved without changes to the data or
major network design modifications, such as adding convolution
or pooling layers. A new layer is proposed that will be inserted
in a similar location as the non-linearity functions in standard
CNNs. This new layer creates a localized connectivity for each
perceptron to a polynomial of Nth degree. This can be performed
in both the convolutional portion and the fully connected portion
of the network. The proposed polynomial layer is added with the
idea that the higher dimensionality enables a better description of
the input space, which leads to a higher classification rate. Two
different datasets, MNIST and CIFAR10 are utilized for classi-
fication, each containing 10 distinct classes and having similar
training set sizes, 60,000 and 50,000 images, respectively. These
datasets differ in that the images are 28×28 grayscale and 32×32
RGB, respectively. It is shown that the added polynomial layers
enable the chosen CNN design to have a higher rate of accuracy
on the MNIST dataset. This effect was only similar at a lower
learning rate with the CIFAR10 dataset.

Introduction
The rise of the use of CNNs also brought with it a focus on

large networks and large amounts of data. Because of this, some
of the most popular networks are AlexNet [1], Oxford’s Visual
Geometry Group’s VGGNet [2], and Google’s GoogLeNet [3].
In order to use these large networks for other tasks, transfer learn-
ing gained traction. This has caused a focus on problems that
fit within this mold. Disregarding the large networks with large
datasets and transfer learning approaches, there is still much to
learn about CNNs and how to get the most out of a network de-
signed and trained from scratch. The research focuses seem to fall
into one of three categories: data augmentation, network design,
or network augmentation. Data augmentation comprises of tech-
niques that seek to get the most out of the training data, such as
rotation, flipping, and other geometric functions. Network design
focuses on the ordering of convolution, activation, and pooling
layers. This work will focus on network augmentation: functions
or layer modifications that can be inserted into any design.

Before discussing the proposed addition into the collection
of works of network augmentation, it is pertinent to look at the al-
ready proposed methods. Arguably the most famous and effective
is Dropout [4] and DropConnect [5]. These items seek to reduce

Figure 1. HAP-CNN Flow Diagram

over-fitting in training by dropping either the nodes or connec-
tions, respectively. This essentially tries to force the network to
learn more than one path for a feature. In this proposed work, a
dropout rate of 0.5 is used as it is fairly standard in most CNNs.

Other interesting methods in the field look at enhancing the
method of pooling. A work by Scherer, et al. [6] demonstrates
that max pooling performs equally or better than aggregate pool-
ing and overlapping pooling. Another work by Chen-Yu Lee [7]
showed that max pooling was in fact not the best method, though
methods that beat it were much more complex and had minimal
gains. For this reason, along with their widespread use, this re-
search will use max pooling.

Finally, there has been research into the different types of ac-
tivation functions to use. Within AlexNet’s research [1] the Rec-
tified Linear Unit (ReLU) was shown to reach a training error rate
six times faster than without. It also has a great appeal due to the
incredible simplicity. Other methods such as Leaky ReLU [8],
PReLU [9], and Maxout [10] are used. Many times these seem to
be fixes to issues that arise from the standard ReLU. When acti-
vation is used, this work will use ReLU.

There has been little research performed looking into the ef-
fect of polynomials on neural networks. It seems to be first in-
troduced by HAPNet [11], which inserts a region based concept
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with polynomials into a standard multilayer perceptron (MLP).
HAP-CNN sought to fully cross the polynomial aspect into CNNs
and losing the region concept as this will be inherently done with
CNNs. The only other related work was Convolutional Polyno-
mial Neural Network (CPNN) [12], also performed within the
same lab. This only took a very specific look at facial features.
This work also had disjoint polynomial layers, which is not the
case for HAP-CNN.

Hierarchical Auto-associative Polynomial Convolutional
Neural Network (HAP-CNN) seeks to add a new layer that is
as modular as possible, making it very easy to implement in any
CNN to a varying degree. This will be done in the convolutional
and fully connected portions of the network. In theory, adding
more non-linear weights will enable a chosen CNN to more accu-
rately predict the desired class. Out of the non-linear functions,
polynomials were chosen for two reasons. Firstly, previous work
in Hierarchical Auto-associative Polynomial Network (HAPNet)
[11] makes the results more comparable and demonstrated the
polynomial layer’s usefulness in a similar context. Secondly, their
simplicity makes the layer easy to implement.

This work demonstrates a new method that does not require
large datasets or a specific design. It also reveals the effectiveness
of a the proposed layer, a locally connected polynomial layer, that
is greatly effective at lower learning rates and with careful use can
also be effective at a higher learning rate. The new algorithm is a
modification of a standard Convolutional Neural Network (CNN),
focusing on the effect that the polynomial layer when compared
to the same network without the polynomial layers. The overall
design of the network can be seen in Figure 1.

The effectiveness of the polynomial layers will be analyzed
from two different perspectives. As previously mentioned, the
network will look at the differences compared to the same neural
network without the polynomial layer. Due to implementation,
this is a polynomial of order 1. Additionally, the results will be
compared to the work that was adapted for this purpose, HAPNet.

Theoretical Description of HAP-CNN
HAP-CNN Overview

Research in this realm comprises of many different elements.
These include but are not limited to network design, fine tuning,
polynomial type, and the many parameter settings of CNNs. Due
to this issue, the scope of this work is limited to a single network
design, shown in Figure 2, two datasets, two learning rates, and
most standard settings. In addition, only one polynomial is uti-
lized. Through use of the polynomial layer described in this sec-
tion, five different designs are created, simply labeled as designs
1 - 5.

Mathematical Modification of Forward Pass
In attempts to fully describe the network while keeping a

concise description, only equations that deal with the polynomial
layer will be discussed. Within the convolutional portion, the pro-
posed polynomial is applied after the input image or pooling layer
through the equation:

fρ1(x,y,z,n) = fρ0(x,y,z)n (1)

for n = 1,2, ...,N. This is implemented in practice through con-
catenation along the z dimension in a regular CNN. The for-
ward pass continues as normal for the rest of each iteration,

ρ = 1,2, ...,P. This will naturally mean that the weight dimen-
sion is now different as well.

The fully connected layers are done in a similar fashion:

gφ1(k,n) = gφ0(k)n (2)

Likewise, this is done for each iteration, φ = 1,2, ...,Φ.

Mathematical Modification of Backward Propaga-
tion

When analyzing the modifications in backward propagation,
the polynomial layer will be seen as if it is the previous layer it
modified. This is due to the fact that it has the same types of
connections that would exist if there were no polynomial. The
loss in the output layer is sent through the polynomial layer using
the formula:

eφ prepoly(k) =
N

∑
n=1

eφ post poly(k,n) (3)

where eφ prepoly(k) ∝ eφ−1post poly(k), as it is modified by activa-
tion and pooling functions. With this equation, the error is propa-
gated backward using the formula:

eφ (k,n) =
L

∑
l=1

eφ (l)wφ (l,k,n) (4)

Where eφ (k,n)= eφ+1(l). The weights for the layer preceding the
polynomial are found by summing the locally connected weights
that were modified in the polynomial layer.

wφ (l,k) =
N

∑
n=1

wφ (l,k,n) (5)

It is important to note that k will change size as n is being summed
into the k dimension. This will also modify the equation finding
the change in weight.

∆wφ (l,k,n) = ηeφ (l)gφ2(l)gφ1(k,n) (6)

The implementation of this equation is the same as any other
CNN, with the preceding layer merely having more elements due
to the polynomial that was added.

This process is continued for each polynomial and contin-
uing as normal otherwise. Continuing to the beginning of the
network, the convolutional layers are done in a similar fashion,
accounting for the local connectivity of convolution and the extra
dimension.

Results
Overview

In testing, two different datasets were used: MNIST and CI-
FAR10. MNIST [13] is a dataset comprising of handwritten dig-
its, 0 to 9. It contains 60,000 training and 10,000 testing images
of gray-scale 28 × 28 pixels. A sample of the data can be seen in
Figure 8. The CIFAR10 dataset [14] contains 50,000 training and
10,000 testing images of objects such as dog, frog, airplane, and
truck. Each image in this set is a 32 × 32 pixel RGB image. A
sample of the CIFAR10 dataset can be seen in Figure 9.

Within this section, there are many tables detailing the re-
sults. Each bold value is the highest accuracy when the differing
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Figure 2. Original CNN Design

Figure 3. HAP-CNN Design 1

Figure 4. HAP-CNN Design 2

Figure 5. HAP-CNN Design 3

Figure 6. HAP-CNN Design 4
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Figure 7. HAP-CNN Design 5

orders are compared, unless otherwise stated. It is important to re-
iterate that the first order is equivalent to a standard CNN design,
shown in Figure 2

Figure 8. MNIST Sample Images [13]

MNIST
The first five tables each show the results of the different de-

signs of HAP-CNN and how they each performed on the MNIST
dataset. The polynomials ranges from orders 1 to 4, with learn-
ing rates (LR) of 0.01 and 0.001. These were analyzed both with
and without a ReLU activation function. Other important param-
eters include dropout of 0.5, 3 × 3 weights of size 32 and 64, a
stride of 1, and zero padding. Additionally, no data augmentation
techniques were used.

Furthermore, no two trials used the same seeding. This cre-
ates a small amount of randomness in the results, but ensures that
the overall results were not due to a specific seeding. As the first
order will be identical for each HAP-CNN design, the amount
of variability can be seen. For the MNIST dataset, in testing the
random seeding caused the accuracy to vary between 96.16 and
96.31 percent.

Design 1 of HAP-CNN did not have an order that performed
better overall. It is noticeable that any order greater than one
caused an improvement.

Table 1: MNIST Results, Design 1

HAP-CNN 1 LR0.001 LR0.001 LR0.01 LR0.01
None ReLU None ReLU

O1 96.16 96.46 99.03 98.76
O2 97.81 97.99 99.10 98.86
O3 98.30 98.25 99.01 98.81
O4 98.14 98.26 98.93 98.87

Table 2: MNIST Results, Design 2

HAP-CNN 2 LR0.001 LR0.001 LR0.01 LR0.01
None ReLU None ReLU

O1 96.27 96.40 98.89 98.92
O2 98.20 98.68 99.22 99.16
O3 98.88 98.83 99.15 99.08
O4 98.86 98.98 99.20 99.12

Design 2, unsurprisingly has similar results to design 1. It
is notable that the results seem to be slightly better than design 1
overall, accounting for the small variability. This seems to sug-
gest that the extra polynomial lay was beneficial in the learning
process.

Design 3 only utilizes polynomials in the fully connected
portion. This makes it the most similar to HAPNet. It performed
similarly to design 1, which contained the same number of poly-
nomial layers in a different location.

Combining designs 1 and 3, design 4 outperformed the other
two individual designs at the higher learning rates and underper-
formed when at the lower learning rate.

Design 5 seems to be an average of the other results. This
seems to suggest that the effects of the polynomial layer are not
directly additive. A new item in the tables is the result: X. This
denotes that a test was not able to overcome divergence problems,
which tend to be an issue at higher orders of polynomials. One
method used to overcome this problem was running a few hun-
dred images through the network at a lower learning rate to better
initialize the weights before using the higher rate.

Table 3: MNIST Results, Design 3

HAP-CNN 3 LR0.001 LR0.001 LR0.01 LR0.01
None ReLU None ReLU

O1 96.25 96.31 98.81 98.82
O2 98.16 98.30 99.05 99.13
O3 98.32 97.81 99.07 99.06
O4 97.32 97.89 98.75 98.91
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Table 4: MNIST Results, Design 4

HAP-CNN 4 LR0.001 LR0.001 LR0.01 LR0.01
None ReLU None ReLU

O1 96.21 96.30 98.83 98.90
O2 98.05 98.10 99.12 99.20
O3 98.07 97.88 98.98 99.03
O4 94.25 96.56 98.52 98.53

Table 5: MNIST Results, Design 5

HAP-CNN 5 LR0.001 LR0.001 LR0.01 LR0.01
None ReLU None ReLU

O1 96.31 96.33 99.03 98.85
O2 98.55 98.65 99.16 99.20
O3 98.46 98.37 99.11 98.89
O4 97.97 97.47 X 98.15

Looking at the MNIST results as a whole, there are a few im-
portant trends. It should be apparent that there is an improvement
between the first order and second order. A closer analysis shows
that the second order performs better overall, winning 12 of the 20
tests and the first order, original CNN, never had the highest clas-
sification accuracy. Additionally, the accuracy and learning rate
were closely linked. It was demonstrated that even in the spread
of an order of magnitude, η = 0.001 and 0.01 the polynomial layer
improved results for the MNIST dataset.

When comparing to the state of the art networks, this de-
sign does not perform as well as the current record is 0.21 percent
error. However many of these networks utilize many different
methods not used here along with large networks and fine tun-
ing methods. Additionally, human performance in this test is not
considered to be at 100 percent, as some handwritten digits are
incredibly ambiguous.

CIFAR10
To gain a fuller understanding of the usefulness of the net-

work, a second dataset was used, CIFAR10, which yielded sur-
prising results. Overall, the polynomial layers aided in the lower
learning rates, but were still surpassed by the higher learning rates
where polynomials had a detrimental effect, which will be ana-
lyzed in more detail at each test.

Design 1 continued the expected trend at the lower learning
rates, with a jump in accuracy after the first order. One difference
is the lower accuracy due to the difficulty of the problem. In a
situation like this, a new network design would most likely aid
in getting a higher accuracy. However, the ability to keep consis-
tency is paramount and the design therefore remains the same.

Design 2 performs similarly, giving an even better accuracy.
However, the network already begins to struggle with divergence
at the higher learning rate.

In another surprising result, the polynomial layers in design
3 had a universal negative impact on accuracy, with the results
becoming worse as the order increases. This demonstrates the
partial usefulness within the convolutional portion and harm in
the fully connected portion.

Designs 4 and 5 combine the results of the convolutional por-
tion and fully connected portion. At the lower learning rates an
increase in accuracy is seen before causing a negative impact. At

Figure 9. CIFAR 10 Sample Images [14]

Table 6: CIFAR10 Results, Design 1

HAP-CNN 1 LR0.001 LR0.001 LR0.01 LR0.01
None ReLU None ReLU

O1 50.59 49.41 70.95 70.14
O2 54.61 54.20 70.28 69.95
O3 56.30 56.57 70.65 68.98
O4 56.44 57.13 69.69 68.04

Table 7: CIFAR10 Results, Design 2

HAP-CNN 2 LR0.001 LR0.001 LR0.01 LR0.01
None ReLU None ReLU

O1 50.72 49.05 70.51 69.75
O2 58.50 55.93 69.31 69.36
O3 61.58 59.93 61.11 68.23
O4 63.57 62.20 X 68.44

Table 8: CIFAR10 Results, Design 3

HAP-CNN 3 LR0.001 LR0.001 LR0.01 LR0.01
None ReLU None ReLU

O1 50.72 47.96 70.69 70.28
O2 49.57 47.92 68.22 69.40
O3 45.14 39.52 61.19 60.83
O4 39.69 33.06 53.55 55.30

Table 9: CIFAR10 Results, Design 4

HAP-CNN 4 LR0.001 LR0.001 LR0.01 LR0.01
None ReLU None ReLU

O1 50.41 48.99 71.51 69.75
O2 55.21 54.35 69.94 69.71
O3 51.13 51.02 X 65.44
O4 46.54 X X X

Table 10: CIFAR10 Results, Design 5

HAP-CNN 5 LR0.001 LR0.001 LR0.01 LR0.01
None ReLU None ReLU

O1 50.14 48.62 70.29 70.97
O2 58.95 56.91 70.63 69.19
O3 56.15 55.26 X 66.82
O4 X X X X
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Table 11: MNIST Results, HAP-CNN Design 3 (No Activation)
versus HAPNet

LR0.001 LR0.01 HAPNet
HAP-CNN HAP-CNN

O1 96.25 98.81 98.12
O2 98.16 99.05 98.47
O3 98.32 99.07 97.87
O4 97.32 98.75 96.33

the higher learning rates, the second order overall causes only a
very small loss in accuracy before massively hurting accuracy or
diverging.

Comparison with HAPNet
As the research and findings from HAPNet were a large fac-

tor in the design choices of HAP-CNN, it is of interest to compare
the results for the two designs. In comparing both networks at
their highest accuracy and similar depths, HAP-CNN’s error rate
was 0.78, compared to HAPNet’s 1.33 on the MNIST dataset. The
closest possible design match is design 3 of HAP-CNN where the
convolutional portion of the CNN acts replaces the region concept
of HAPNet and then both contain essentially a multilayer percep-
tron with polynomial layers in-between. A comparison of these
designs can be seen in Table 11. With the higher learning rate,
it is apparent that HAP-CNN outperforms HAPNet, regardless of
the polynomial order chosen.

Discussion
The networks, regardless of design seem to usually benefit

from a low order polynomial. This is almost universally true for
the MNIST dataset. When the CIFAR10 dataset was used, this
was the trend for only the lower learning rate. The testing does
not point to a singular polynomial order that should be used. This
should not be a surprise, as CNNs often do not have a specific
item that is universally beneficial. What can be demonstrated is
that the polynomial layers in some cases are of a benefit to CNN
designs.

Conclusions and Future Work
HAP-CNN adds to the varying tools that researchers can use

when designing their own networks. Requiring no data modifica-
tion techniques, or a specific design structure, this proposed layer
can be inserted into any feed forward neural network. While the
theory behind HAP-CNN enables any order polynomial, the sec-
ond order is considered the default value. Furthermore, one of the
most important aspects of this work is the ability to insert as many
or few layers as desired. The work presented does not universally
improve CNNs in every circumstance. However, in many situa-
tions provides better results. In future adaptations of this work,
there are many places of interest. An analysis using more datasets
should provide a fuller understanding of where polynomial layers
are most effective. Additionally, other network designs, including
transfer learning is of great interest.
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