
A Visual Technique to Analyze Flow of Information in a Machine
Learning System
Abon Chaudhuri, Walmart Labs, Sunnyvale, CA, USA

Abstract
Machine learning (ML) algorithms and machine learning

based software systems implicitly or explicitly involve complex
flow of information between various entities such as training data,
feature space, validation set and results. Understanding the sta-
tistical distribution of such information and how they flow from
one entity to another influence the operation and correctness of
such systems, especially in large-scale applications that perform
classification or prediction in real time. In this paper, we pro-
pose a visual approach to understand and analyze flow of infor-
mation during model training and serving phases. We build the
visualizations using a technique called Sankey Diagram - con-
ventionally used to understand data flow among sets - to address
various use cases of in a machine learning system. We demon-
strate how the proposed technique, tweaked and twisted to suit
a classification problem, can play a critical role in better under-
standing of the training data, the features, and the classifier per-
formance. We also discuss how this technique enables diagnostic
analysis of model predictions and comparative analysis of pre-
dictions from multiple classifiers. The proposed concept is illus-
trated with the example of categorization of millions of products
in the e-commerce domain - a multi-class hierarchical classifica-
tion problem.

Introduction
Machine learning (ML) algorithms and machine learning

based software systems implicitly or explicitly involve complex
flow of information between various entities such as training data,
feature space, validation set and results. Each of them contains
valuable information. The quality, quantity, and distribution of
such information across different containers, and their flow from
one to another influence the operation and the correctness of ma-
chine learning based systems. Certain algorithms such as proba-
bilistic graphical models or deep neural networks explicitly rely
on the flow of information. Employing statistical and visual meth-
ods to understand the distributions and the flow of information is
critical to the success of large-scale data science applications.

Let us consider a real application - product categorization -
a large-scale classification task commonly encountered in the e-
commerce domain (for classifying commodities into thousands of
categories) for example. The problem is to assign every prod-
uct a category from a multi-level hierarchy of categories such as
“home→kitchen→appliances→microwave”. To develop an accu-
rate model (a classifier) for such a task, it is crucial to answer a
number of key questions at every step - starting from data collec-
tion to feature engineering, training, and finally, evaluation. A few
examples are: is every class well represented in the training data?
Are there redundant features or collinearity among features? Does
the evaluation strategy cover examples from all the classes? In ad-

dition to statistical analysis, the use of visual analytics to answer
these questions effectively is becoming increasingly popular.

Going one step deeper, we observe that the flow of infor-
mation across various entities can often be formulated as joint or
conditional probability distributions. A few examples are: dis-
tribution of class labels in the training data, conditional distribu-
tion feature values given a label, comparison between distribution
of classes in test and training data. Statistical measures such as
mean and variance have well-known limitations in understand-
ing distributions. On the other hand, visualization based tech-
niques allow a human expert to analyze information at different
levels of granularity. To give a simple example, a histogram can
be used to examine different sub-ranges of a probability distribu-
tion. In this paper, we present how Sankey diagrams 1 can rep-
resent probability distributions at various levels of detail. While
this is not a new technique, we reinvent it as a visual encoding
for joint and conditional distributions. Use of this particular tech-
nique along with supporting visualization techniques can lead to
effective visualization-enhanced machine learning systems.

We also discuss the use of this technique in model compar-
ison and diagnostics. For a given task, multiple models with dif-
ferent features and parameters are usually trained at the same time
or over a period of time. When it comes to select the best one for
large-scale use, the proposed technique allows a human expert to
study relevant questions such as if they were trained on near iden-
tical data, if their performance varied significantly across certain
categories - as opposed to relying only on the overall accuracy
number.

Related Work
Visualization in Machine Learning: Recently, both machine
learning and visualization research communities have started to
adopt techniques from each other, leading to publications and
open source software systems for visually exploring different
stages of a machine learning pipeline.

Alsallakh et al. [2] propose to use multiple box plots to visu-
alize the feature distribution of training samples and the ability of
a feature to separate data into different classes. FeatureInsight [6]
is a system that combines human and machine intelligence to ex-
amine classification errors to identify and build potentially useful
features. Infuse [11] is another visual analytic system that allows
the human analyst to visually compare and rank different features
based on their usefulness in model building.

Another area of active research is understanding of machine
learning and deep learning algorithms. Visual methods have been
proposed to construct and understand classifiers using traditional
machine learning algorithms such as Bayesian modeling [4], De-

1https://developers.google.com/chart/interactive/docs/gallery/sankey
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cision Tree [3] and Support Vector Machine [7]. Of late, visual-
ization has turned out to be a candidate approach to understand
deep learning models which are inherently harder to explain. A
growing body of work [9, 12, 10] explore different ways to under-
stand the evolution of feature maps, activations, and gradients in
deep neural nets. t-SNE [13] a powerful technique for visual ex-
ploration of high-dimensional embeddings of data often produced
by deep learning algorithms.

A number of recent works explore visual techniques to in-
terpret the results of a machine learning algorithm. Augmented
confusion matrices and confusion wheels [2] can effectively high-
light instances or classes that a classifier is more likely to classify
incorrectly. Modeltracker [1] presents an enhanced visual error
analysis tool that complements and enhances the traditional mea-
sures for model performance.

Chen et al. [8] conducts a design study of the usefulness
of a number of visual techniques used in machine learning and
presents a system called VizML that allows diagnostic analysis of
machine learning models.

Besides academic research articles, resources such as tutori-
als and blogs [5] summarizing the visualization techniques com-
monly used in machine learning are widely available.

Visualization of Data Distributions: Understanding the data
distribution often holds the key to statistical modeling. Visual-
ization is often more descriptive compared to summary statistics
such as central and higher order moments. Histograms and box
plots continue to be the most popular techniques to visualize dis-
cretized probability distributions. Violin plots have been used in
certain cases. They are the popular choices when building more
complex visualization software involving distribution data. Potter
et al. [14] presents a comprehensive summary of the techniques
used to visualize probability density functions and cumulative dis-
tribution functions.

Proposed Visualization Methodology
A machine learning algorithm tries to learn the parameters

of a mathematical model from known examples of a dataset, and
uses the same model to predict information about unknown exam-
ples of that dataset. Hence, maximizing the use of the information
present in the known examples is critical for successful modeling.
In this paper, we propose to consider the input data, the interme-
diate transformations of the data, and the output (the predictions)
as sets containing information.

The training data contains a set of instances X and a set of
labels Y . Usually, all or some of the instances have labels. In a
standard supervised classification task, many instances map to a
label.

The training instances are often converted to features using
some mathematical function. We denote the features obtained by
applying a function f on X by F = f (x). Usually, a large number
of features is computed from the data. In the presence of m fea-
tures, Fk = fk(x) denotes the kth feature dimension where k varies
from 1 to m.

After training an algorithm, it is usually evaluated on a held-
out set or evaluation set of instances. We denote that set as R. The
true labels of these instances (denoted by Yg) are already known,
the predictions or the actual labels produced by the algorithm (de-
noted by Yp) is compared against these ground truth information.

Common Notations to Represent Information Containers in a
Machine Learning System

Set Notation Size
Training Set X t Nt

Training Set Labels Y t Nt

kth Feature Ft
k Nt

Evaluation Set Rt Nt
E

Evaluation Set Labels Y t
g Nt

R
Evaluation Set Predictions Y t

p Nt
E

Figure 1. Sankey diagram as a visual expression of a conditional proba-

bility distribution. In this example, the purple lines highlight P(T = y|S = a)

(value=0.2) and P(T = y|S = b) (value=1.0)

Table 1 lists the above mentioned entities or information con-
tainers. Technically speaking, we present them as multi-sets or
bags so that the duplicates (example: the training labels repeat
many times in a dataset). Also, given that the training and evalu-
ation is inherently an iterative process, we add the notion of time
or instance using a superscripted suffix t. Depending on the con-
text, this suffix may denote a particular date or simply the iteration
number.

In a machine learning system, the relationships between such
sets or multi-sets are often captured by conditional or joint prob-
ability distributions. We propose to visually capture these rela-
tionships using a technique called Sankey diagrams 2 that was
traditionally used to visualize flow from one set to another. We
re-purpose this technique to meaningfully visualize flow of infor-
mation some of which can be formulated as joint and conditional
probability distributions.

Let us consider an example with two multi-sets, each con-
taining 100 elements - S = {a : 90,b : 10} and T = {x : 40,y :
30,z : 40}. In other words, S is a bag of 90 instances of a and
10 instances of b and so on. Suppose, we are interested in the
conditional distribution P(T |S). More specifically, we would like
to compare P(T = y|S = a) (value=0.2) with P(T = y|S = b)
(value=1.0). The probability values hardly explain anything about
the data. On the contrary, the Sankey diagram in Figure 1 (follow
the two purple flows) reveals much more about the data than the
the probabilities. For example, it clearly shows that despite the
higher value of P(T = y|S = b), it includes only a narrow subset
of elements since P(S = b) is quite low. Rest of paper will present
examples of such insights using Sankey diagrams.

Application Scenario
The product catalog of an e-commerce company typi-

cally contains millions of products that need to be placed
into categories structured as multi-level hierarchies (such as
electronics→appliances→kitchen appliances→microwave). An

2http://www.sankey-diagrams.com
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Figure 2. A simplified illustration of a multi-level product category hierarchy.

oversimplified example is shown in Figure 2. Categorization en-
sures that the product is visible on the correct segment of the web-
site and searchable by the users.

From a machine learning point of view, this is a classic multi-
class multi-label hierarchical classification problem. Typically, a
training data of a few million products is used to train four to
five level hierarchy of categories containing a few thousand leaf
level categories. Product name, description, image and a num-
ber of other properties are leveraged to compute features for the
model [15]. The trained model is evaluated using a controlled and
sampled set of at least a few thousands products.

This application can benefit heavily from visual exploration
of data because the scale and complexity of the data is enormous,
the category hierarchy is deep and ever-changing. Finally, visual
exploration leads to data cleaning or filtering actions, causing in-
cremental yet quick improvements. The following sections uses
this as the primary case study.

Visual Analysis of Training Data
The training data consists of items and labels. In the context

of product categorization, each instance of the training data con-
tains product information such as title and other attributes, and
category name which serves as the class label. Understanding the
distribution of these labels in terms of quantity and quality is a
key to building an accurate classifier.

Distribution of Relative Label Quantity
The training dataset should have adequate examples from

each class for the algorithm to learn. Given a hierarchical train-
ing dataset, the quantity of data should be adequate at each level
of the hierarchy. Also, the distribution of labeled data among the
children (classes) of each class should be nearly uniform. Let us
assume a class Cl has three children C1

l+1, C2
l+1, and C3

l+1. Even
if Cl has enough training instances, if most of it comes from one
of the child classes, the model may become biased towards that
class and tend to mis-classify the other two classes to that one.

To give an example from our application, it is not enough to
have sufficient training examples for a category called ”Camera”.
If ”Camera” has two finer sub-categories ”DSLR” and ”Point-
n-shoot”, the total number of labels should be near equally dis-
tributed between these two. Otherwise, the classifier will tend to
classify most cameras to the dominant sub-category.

The absolute quantity of labels at each node can be visual-
ized in many ways. To capture the relative distribution among the
child classes, we propose to use Sankey diagrams. One possible
implementation is to determine the width of the Sankey diagram’s
ith right side node based on Ni

∑Nk
where k iterates over all the child

nodes in consideration. Figure 3(a) presents a near uniform label
distribution among the child classes under ”Baby”. On the con-

(a) Nearly uniform distribution
of labels among child classes of
”Baby”

(b) Disparity among the rela-
tive quantity of labels among the
child classes of ”Junior”

Figure 3. Use of Sankey diagram to visualize the relative distribution of

training labels among finer sub-categories

Figure 4. Use of multi-level Sankey diagram to show the distribution of

labels from top to level of the class hierarchy. ”Tripod” and ”Flash memory”

is sparsely populated categories compared to ”Camcorders” and ”Lenses”.

The prefix of the label indicates the level at which the category is located

in the hierarchy. For example, ”Cameras” is at the intermediate level where

”Lenses” is at the leaf level.

trary, Figure 3(b) shows an example where certain classes under
”Camping” do not have enough training examples.

We extend this idea to visually inspect an entire path of the
hierarchy using multi-level flow diagrams (Figure 4). This is re-
veal imbalance at inner levels. For example, even though ”DSLR”
and ”Point-n-shoot” both have sufficient training data, ”Cameras”
itself may have low relative quantity compared to other electron-
ics categories.

Distribution of Label Quality
Training instances in real applications are not curated. They

are often noisy and incorrect, demanding quality assessment and
control before they are used to train an algorithm. They of-
ten come from variety of sources marked with accuracy levels,
making the inspection of quality relatively easier. For example,
crowd-sourced labels are usually less trusted than labels anno-
tated by trained experts. Also, labels may become outdated over
time. In case of our e-commerce application, this happens be-
cause products are continuously incorporated into and taken off
the catalog.

It is common to have a training dataset with both positive
and negative examples. For our product categorization example,
the dataset often has labels that indicate that a product does not
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(a) A category called ”Win-
dows” with well-balanced distri-
bution of label quality.

(b) A category called ”Tradi-
tional Camcorders” with major-
ity of low quality labels and some
negative labels

Figure 5. Use of Sankey diagram to visualize the distribution of labelS

collected from different sources and the distribution of positive and negative

labels.

fall into a category. For example, ”this item is not a DSLR cam-
era”. These type of labels are usually generated by curating the
predictions of an existing model by human experts. If the train-
ing algorithm cannot leverage negative labels, then distribution
biased towards positive labels is welcome. Otherwise, a balanced
distribution is favorable.

We inspect the quality of training labels at least from two as-
pects: decision type (positive or negative) and source. For each
category, we use Sankey diagram to inspect the distribution of la-
bels from various sources and for each source, various decisions.
The goal here is two-fold:

• to identify the classes for which the distribution is well-
balanced: High accuracy is expected off these classes. If
not, further investigation is recommended post evaluation.
An example is shown in Figure 5(a).

• to identify the classes for which the distribution has high
proportion of less reliable source(s). These classes require
immediate attention. An example is shown in Figure 5(b).

Visual Analysis of Features
In a typical modeling problem, hundreds, if not thousands,

of features are extracted from the training dataset. To prevent
over-fitting of the model and to make the best use of computation
power and storage, it is important to train only on features that are
important. However, the notion of importance is not well-defined.
Some statistical measures such as Welch’s statistic can be used to
see if a feature has the ability to separate data into classes. We
propose that visual methods provide certain types of insight that
cannot be derived from statistical methods.

Feature Importance Estimation
Numeric Features: In general, a feature can help in clas-

sifying data if its presence is distinctive in different classes. For
example, if the range of a numeric feature over class A do not
overlap with the range of the same feature values for class B, this
feature can help differentiate the two classes. Hence, visualizing
the distributions of a numeric feature for different categories can
be immensely helpful. Our product categorization example relies
heavily on product titles. Length of product title is an important
numeric feature. We propose to examine the distribution of the
length of product titles for different categories using violin plots
(Figure 6).

Categorical Features: Categorical features assume a num-
ber of discrete values. Let us begin with the common scenario of
involving the feature and the label spaces in a two-class classifi-
cation problem. Let us denote the class labels by y1 and y2. f1

Figure 6. Comparative visualization of the distributions of lengths of product

titles from a few semantically close classes. For example, Notebook batteries

and Notebook cases have almost identical distributions. The title length is not

a good feature between these two classes.

and f2 are two possible values of a categorical feature F . How the
fis are related to c js for all i, j indicates if F will be an important
contributor to a classification model for this problem. For exam-
ple, If n( f1 → y1) ∼ n( f1 → y2) and n( f2 → y1) ∼ n( f2 → y2),
then we can infer that F does not contain a strong signal to dis-
tinguish between the two classes. Figure 7(a) shows how Sankey
diagram can be used to capture this. An example contrary to this
is shown in Figure 7(b) where the feature is potentially useful for
classification.

(a) Sankey diagram of a categor-
ical feature less relevant to a clas-
sification task

(b) Sankey diagram of a categor-
ical feature carrying strong signal
for a classification task

Figure 7. Use of Sankey diagram to explore feature-label relationship

We propose to use Sankey diagrams to study the distribution
of the labels for one or more values of a categorical feature. In
this particular section, we deviate from our running example of
product categorization dataset and use a publicly available dataset
related to the publicly available movie genre classification prob-
lem 3. We study two potential features: “Director” and “Color”
(takes two values: “Color” or “B&W”) are two features. Sankey
diagrams in Figures 8(a) and 8(b) clearly highlight that the distri-
bution of genre vary considerably from director to director, which
makes it a useful feature for classifying genre. On the other fea-
ture, Figures 8(c) and 8(d) show that the distribution of genre
remains largely unchanged regardless of the value of “Color”.

Text Features: Many classification problems, including our
product categorization use case, is largely driven by text data such
as product name and description. Text data is usually converted
into appropriate numeric or categorical features using suitable
methods such as tf-idf or word2vec. After that, the relevance dis-
tributions of prominent keywords across categories can be visu-
ally investigated.
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(a) Conditional label distri-
bution given director name
“James Cameron”

(b) Conditional label distri-
bution given director name
“Mira Nair””

(c) Conditional label distribution
for color movies

(d) Conditional label distribution
for B&W movies

Figure 8. Use of Sankey diagram to demonstrate relative feature impor-

tance for a movie genre classification problem using IMDB dataset. Top
Row: The distribution of genres (labels) vary significantly for different values

of “Director” - a categorical feature. Bottom Row: On the contrary, the label

distributions are very similar for color and B&W - two values of “Color”.

Visual Analysis of Results
Overview of Model Evaluation

Once trained, a model is evaluated on an evaluation set that
consists of a relatively small yet representative set of items with
known labels. The known labels that serve as ground truth in the
evaluation are collected using human experts or crowd-sourcing.
The model prediction for each item in the evaluation set is com-
pared against the ground truth. The cost of each mistake is ac-
cumulated based on a distribution of importance of the items in
the evaluation set. Details of the evaluation process is beyond the
scope of this paper and can be found here 4.

Typically, a model evaluation produces accuracy (or similar
metrics) and sample size per category (Table 2). A list of mis-
classified products per category is also generated, allowing fine-
grained analysis (Table 3).

A Segment of the Accuracy Report of a Model

Category Sample Size Accuracy
POP EASY LISTENING 5 0.82

POP LOUNGE 8 0.92
POP ADULT CONTEMPORARY 3 0.96

... ... ...

3https://www.kaggle.com/orgesleka/imdbmovies
4https://www.youtube.com/watch?v=wkky7k4scbQ

Figure 9. Visual model diagnostics: Visual comparison between the

predicted outcomes of the classifier and the actual true labels.

Visual Error Analysis
The class-level accuracy is relatively straightforward to visu-

alize. A node-link visualization color-coded with class accuracies
is used to represent the performance of the classifier on the differ-
ent classes.

In this paper, we emphasize on visualizing the misclassifica-
tion report because it has the potential to guide the human analyst
to the categories where the model consistently performs poorly.
Repeated mis-classifications of similar items often indicates ei-
ther a problem with the category definition or with the data.

We propose to draw flow diagrams between the bag of pre-
dicted labels and the bag of true labels for the mis-classified items
for each category. Figure 9 shows various interesting observa-
tions about the model performance. In may be noted that major-
ity the items in a category called ”Wall Decor” are consistently
misclassified to another called ”Art and Wall Decor” (region A1).
The diagram also reveals that the misclassification is happening in
both directions - a sizable portion of ”Art and Wall Decor” items
are being classified into ”Wall Decor” (region A2). The diagno-
sis for the problem is that the category definitions are too close.

IS&T International Symposium on Electronic Imaging 2018
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Figure 10. Visualization of trend of class-level accuracy over three models M0, M1, M2 trained sequentially. Blue denotes strictly increasing trend, red denotes

strictly decreasing trend. Light blue indicates an overall increasing or stable trend. Orange indicates overall decreasing or stable trend.

A Segment of the Misclassification Report of a Model
ID True Category Predicted Category
A1 Workwear Sleepwear

B23 Workwear Men’s Jumpsuit
C98 Movie TV Show
... ... ...

Another example is notable where items in various clothing cat-
egories are mis-classified into ”KnitTops”, indicating the ”Knit-
Tops” category is too broad (region B). Also, the classifier does
not have enough information to perform finer categorization. The
visualization reveals more obvious mistakes such as ”MensCasu-
alDress” being mis-categorized in ”LadiesCasuals” indicates that
the model is being trained on wrongly labeled data (region C).

Comparative Analysis of Multiple Models
Machine learning models are often improved incrementally.

It is a common practice to train multiple models simultaneously,
or over a period of time for the same problem by varying one or
more of the following: training data, features, hyper-parameters,
and algorithm. In the context of e-commerce, product data come
with two strong textual sources of information: product title and
product description. Product image is another rich source that
can be leveraged. Hence, it is worth experimenting if product
categorization improves if both title and description are used as
opposed to only title. Transitioning to a deep learning approach is
another step that requires extensive comparison with the current
model.

When comparing two or more models, the overall accuracy
number does not provide enough information for comparison, es-
pecially when the class structure is large. Models need to be an-
alyzed and compared at class level and at instance level. Visual
methods are ideal for such detailed analysis.

Our case study is based on three models M0, M1, and M2
where M0 and M1 differ in the feature set, M2 uses a deep neural
network as opposed to the first two that are logistic regression
based.

The first step is to compare class-level accuracies. We
choose to use line charts for each class to highlight the trend of ac-
curacy change (Figure ). Accuracy trends of multiple classes are
observed together by presenting these line charts together as small
multiple plots. The line charts are color coded based on the type
of the trend to immediately draw attention to classes that require
human attention. An example in Figure is ”HomeHardware” that
is shown in red because of its strictly decreasing accuracy.

The accuracy numbers at class level can be misleading. For
example, the accuracy of a class can stay more or less same while
the items misclassified by the model for that class can change
significantly. Hence, with a new model in hand, it is important to
study the major changes in predicted labels across various classes.
A model that brings forward drastic changes to large groups of
items often needs more scrutiny before deployment. However,
given that the evaluation set often contains hundreds of items per
category, it is impossible for a human analyst to go over each
individual mis-prediction or change of prediction. We propose to
use a visualization that aims to guide the analyst to the potentially
interesting subsets of the evaluation set.

Figure 11(a) and Figure 11(b) shows that Sankey diagrams
can be concatenated to capture if the predictions of a large bag of
items in the evaluation set change as we switch from one model
to another. Items from models M1, M2, and M3 are plotted from
left to right. If M2 is able to assign finer sub-categories for to cer-
tain items that were in a broader category in M0, the diagram is
able to highlight that as a splitting flow. The split of ”KnitTops”
in Figure 11(a) into three categories is one such example. On the
other hand, Figure 11(b) shows that a large group of items clas-
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(a) Items under KnitTops in M0 are distributed among three
different categories by M1, suggesting an improvement. A
part of PassengerTires are moved to a more generic class
called OtherReplacementParts by M2.

(b) A subset of GeneralCrafts items moved to ArtAnd-
WallDecor while a part of ArtAndWallDecor moved to
SportsMemorabilia. A clear split of MensBoots into two
classes is also visible between M0 and M1.

Figure 11. Visualization of potentially important prediction changes from one model to another.

Figure 12. Web-based visual interface for exploring the training dataset. The circles with the blue arrows highlight an example flow of exploration. The radial

node-link diagram (left) helps the user select a node. The distribution of label quantity of that node and its siblings is shown on top-right. The user can further

explore the quality of the labels in terms of source for each category using the bottom-right view.

sified as ”ArtAndWallDecor” by M1 joined a broader category in
M2. Such changes often demand further investigation of individ-
ual instances by a human expert.

Application in a Machine Learning System
This section outlines how the proposed techniques are cur-

rently in use in accordance with machine learning algorithms, and
how it can be extended further.

Implementation Details
At present, the visualization modules are implemented in

Javascript using Google Charts API5 (for Sankey diagrams),
d3.js6 (for circular node-link layout), and Plotly7 (for small mul-

5https://developers.google.com/chart/
6https://d3js.org/
7https://plot.ly/

tiple plots). The data scientists often use Python with Jupyter for
rapid prototyping. The JS-based visualization modules run based
on data produced by the Python experiments and present the vi-
sualizations on stand-alone web-based interfaces.

To enable the data scientists to iterate between model build-
ing and visualizing even faster, a Python version of Plotly, along
with a widget for Sankey diagrams 8, is used to integrate the vi-
sualizations directly within the Jupyter workflow.

Outline of Interactive System
The system currently has three modules: one for the explor-

ing the training data, one for exploring the classifier performance,
and one for comparing multiple classifiers.

The interface for training data exploration consists of three
views - a node-link style network visualization of the training data

8https://github.com/ricklupton/ipysankeywidget
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with radial layout, a Sankey diagram visualizer for a group of
nodes, and another Sankey diagram visualizer for the label dis-
tribution of a single node. Figure 12 shows an example flow of
exploration using these views. In this case, the user first explores
that there are relatively large number of labels for ”Camcorders”
as opposed to some other categories that have very few such as
”Batteries” and ”Drones”. However, further exploration with the
bottom right view reveals that most of the labels for ”Camcorders
Traditional” came from rules and none came from trained experts.
This is a clear signal for requesting more labels for this category.

This design suits our application where the product catalog
is a large hierarchy, and it should generalize well to most clas-
sification problems that are inherently tied to a hierarchical class
structure. The node-link visualization serves as the main overview
driving the system. Class-specific properties such as sample size
and classification accuracy can be encoded as node color, size etc
so that the user can make informed selection of nodes.

The interface for exploring the model results contains two
views: a node-link visualization for showing the class-wise ac-
curacies, and a Sankey diagram highlighting the relationship be-
tween predictions and ground truth labels.

The interface for exploring multiple models contains two
views: a collection of trend charts arranged in a grid layout where
each chart reflects the accuracy trend of a class. An accompanying
Sankey diagram presents the major prediction changes.

Conclusion and Future Work
In this paper, we present a set of techniques to enhance ma-

chine learning driven classification systems with visualization and
interactive data analysis. The visualizations are designed around
a central theme of understanding the flow of information across
different entities such as training set, features, and results. In par-
ticular, we explore the potential of using flow diagrams, namely
Sankey diagram, to capture the flow of information in a machine
learning system. Other types of flow diagrams such as chord di-
agram can be applied as well depending on the application. The
examples and datasets in the paper are derived from a real ap-
plication: large-scale product categorization in e-commerce. The
proposed technique can benefit similar hierarchical classification
systems in other domains as well. Also, the proposed technique
is not tied to any particular machine learning algorithm.

We are in the process of improving our system in many ways.
We plan to integrate the web-based visual interfaces into a cen-
tral system. At present, most of the data selection operations are
driven from the Python scripts running at the back end. We plan
to add more interactive capability to the front end. We also plan
to allow the user to trigger a data filtering task or a model training
task directly from the interface. We have received positive feed-
back about the system from various corners. However, we plan to
conduct more formal experiments and user studies to quantify the
benefit of such a system. We also plan to extend this system for
understanding other machine learning driven systems, especially
the deep learning based systems.
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