

Implementation and Evaluation of Distributed Graph Sampling
Methods with Spark

Fangyan Zhang, Song Zhang, Christopher Lightsey

Mississippi State University, Mississippi State, MS. USA

Abstract
The growth of graph size has created new problems in graph

visualization and graph analysis. To solve the problem, several
graph sampling techniques have been proposed dedicated to
obtaining a representative subgraph from a complex network. While
prior research indicates that sampling on a large-scale graph is not
an easy task, especially for topology-based sampling methods (e.g.
breadth first sampling). Topology-based sampling methods can
produce a more accurate subgraph than node sampling and edge
sampling in preserving statistical graph properties. In this paper,
we propose three types of distributed sampling algorithms and
develop a sampling package on Spark. To evaluate the effectiveness
of these distributed sampling techniques, we apply them to three
graph datasets and compare them with traditional/non-distributed
sampling approaches. The results show that (1) our distributed
sampling approaches are as reliable as the non-distributed
sampling techniques, and (2) they are a great improvement in
sampling efficiency, especially for topology-based sampling. In
addition, (3) the distributed architecture of these algorithms causes
them to have horizontal scalability.

Keywords: Graph sampling, Graph properties, Sampling Method,
Visualization, Visual analytics

Introduction
Graph, as a standard data model, is widely used in various

application domains to represent entities and their relationships,
such as social network [1], Internet network [2], citation network
[3], and biological network [4]. In the past few years, graphs have
been growing explosively in numerous research fields. It was
reported that Facebook had 1.6 billion active users during a month
in late 2015 [5]. There are 3 billion emails created every day
worldwide [6].

Effectively understanding huge graphs becomes more and
more difficult with the increase of graph size. It is often imperative
to sample a small subgraph from a large-scale graph. This is
necessary for several reasons. First, sometimes visualizing a large-
scale graph seems to be impossible because of limits of screen size.
A good small representative subgraph can help us understand the
topological structure of the original graph. The findings from the
subgraph allow us to make more accurate estimations about graph
features on the original graph. Second, graph property calculation is
an essential approach to analyze graph features, but the calculation
of graph properties on a large-scale graph can be costly or
unaffordable. If an accurate estimation graph properties can be made
from a representative of original graph, then substantial
computational cost may be avoided. Third, for some large-scale
graphs, it is not practical to obtain complete datasets because of
graph size or other various reasons. For example, total Facebook
graph has more than 250TB of HTML data [7]. It is impractical to
obtain complete data considering the time-cost. Graph sampling
techniques allow us to get a representative sample while preserving
features in original graph.

Given a graph G = (V, E), V and E represent vertices and edges
respectively. Sampling techniques try to get a subgraph Gs = (Vs,
Es), where Vs ⊂ V, Es ⊂ E. Prior sampling approaches explore
networks from two aspects [6]: making accurate estimations of the
original graph [8] [9]; selecting a representative sample whose
topology is similar to the original [10].

Many sampling techniques have been proposed aiming to
sample a representative subgraph from the original graph. Those
sampling methods can be classified in three categories: node
sampling [11] [12], edge sampling [12] [13] and topology-based
sampling [14] [15]. Unfortunately, many of these non-distributed
sampling methods, especially topology-based sampling, are not
practical for large-scale graphs (more than 1 million vertices)
because of efficiency issue or memory issue. For example, in our
previous research [16], we found that sampling on an Email graph
(vertices: 265, 214; edges: 420, 045) took more than 24 hours while
using topology-based sampling. Most prior sampling research only
worked on graphs with less than 1 million vertices [11] [6] [17].
With the increase of graph size, scalable sampling methods are in
urgent demand in graph research.

In this paper, we aim to design and develop a number of
scalable topology-based sampling methods based on a MapReduce
framework-Spark [18], and make comprehensive evaluations
between non-distributed sampling approaches and our new methods.
For completeness, scalable node sampling and scalable edge
sampling techniques are also included in our work. These scalable
sampling techniques can greatly improve sampling efficiency
without losing sampling accuracy. To improve the reliability of
these distributed sampling algorithms, we apply both non-
distributed sampling methods and new sampling methods to three
datasets, and make statistical and visual comparison between them.

The main contributions of our work are as follows:
 We designed and developed nine scalable graph sampling

methods based on Spark.
 We made visual and statistical comparison between non-

distributed sampling methods and distributed graph
sampling methods.

 We implemented a large-scale graph sampling package
which can be incorporated into GraphX for graph
research.

 We analyzed the nine distributed graph sampling methods
from visual and statistical perspectives, and summarized
their merits compared to non-distributed sampling
techniques.

Related Work
Graph sampling has been an interesting field within graph

research for many years. Many sampling techniques have been
proposed in last few decades. Existing graph sampling algorithms
can be classified into three categories [11] [6]: node sampling, edge
sampling, and topology-based sampling.

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 379-1

https://doi.org/10.2352/ISSN.2470-1173.2018.01.VDA-379
© 2018, Society for Imaging Science and Technology

Node sampling is a simple sampling method which creates
representative graph by sampling nodes independently and
uniformly. For example, in random node sampling [11], vertices are
sampled randomly and uniformly, creating a subgraph from the
original graph. The edges between the sampled vertices in the
original graph are included the sample graph as well. Sometimes,
node sampling also considers neighbors of the sampled vertices, for
instance, random node-edge sampling [19] and random node-
neighbor sampling [11]. In random node-edge sampling, when
vertices are uniformly sampled, edges that are incident to these
vertices are also uniformly sampled in the sample graph. In random
node-neighbor sampling, all the edges that are connected to these
vertices in the original graph are sampled into subgraphs. In some
cases, node sampling methods integrate topology-based sampling in
order to use graph topology information, such as random walk
sampling [20]. The metropolis algorithm [10] is a modified version
of node sampling. It replaces some sampled vertices with other
vertices, which often leads to sampled graph properties that are
consistent with the original.

Similarly, edge sampling builds a subgraph by randomly
sampling edges. Random edge sampling [13] is one typical edge
sampling in which edges are sampled randomly and uniformly, and
then a subgraph is created from those edges. Induced edge sampling
[12] is another edge sampling method, which includes totally
induced edge sampling and partially induced edge sampling. Totally
induced edge sampling has two steps. First, it conducts random edge
sampling and obtains adjacent vertices from these edges. Second, all
edges attached to those vertices are sampled in a subgraph. Partially
induced edge sampling performs edge sampling in a single pass in
which edges are selected with a probability. Incident vertices are
also added to the sampled graph if one edge is selected. In this paper,
we implement totally induced edge sampling.

Topology-based sampling is regarded as the state-of-art
sampling methods because they have good ability to preserve graph
properties [6]. Graph traversal algorithms are often used in these
sampling methods. For example, breadth-first sampling [17] creates
a subgraph by using breadth first search algorithm. It begins with a
random vertex and visits its neighbors iteratively. For each iteration,
the first visited vertex will enter the sample first. A subgraph is
created from visited vertices and those edges that are connected
between those sampled vertices in the original graph. Forest fire
sampling [6] [12] can be regarded as a probabilistic version of
breadth-first sampling. Neighbors are chosen to be added to the
subgraph with probability p. The number of vertices to be chosen is
a random number taken from a geometric distribution with mean
pf/(1−pf). Random walk sampling starts at a seed vertex, and then
chooses a vertex uniformly at random from the neighbors of the
current vertex. A subgraph is created from the walking paths.
Random walk with escape or jump [13] and multiple independent
random walkers [19] are proposed based on the classic random walk
sampling method. Random walk with escape or jump sampling is
more random than random walk sampling since the current walker
vertex jumps to another random vertex with probability p.

Spark [18] is an in-memory distributed computing framework
that manipulates datasets in memory across distributed machines,
which is different from Hadoop MapReduce [21] in that it keeps
intermediate data in memory instead of storing it on disk. This
strategy makes Spark run up to 100 times faster than Hadoop
MapReduce [18]. It allows us create iterative algorithms efficiently
because it offers us a MapReduce environment. GraphX [22], a
Spark library, takes the advantage of data-parallel and graph-parallel
systems in Spark framework. Within GraphX, several graph

property calculation algorithms are implemented, such as
PageRank, connected component, shortest paths, etc. In this paper,
we design distributed sampling methods and implement them on
Spark.

Distributed Graph Sampling Methods
In this section, we present three types of novel graph sampling

techniques: 1) distributed node sampling, 2) distributed edge
sampling, and 3) distributed topology-based sampling. We make
analytical comparisons between non-distributed sampling methods
vs. our distributed methods. The graph is partitioned by GraphX
using the strategy of Random Vertex Cut and distributed into
multiple machines. The node sampling includes random node
sampling (RN), random node edge sampling (RNE), and random
node neighbor sampling (RNN). The edge sampling includes
random edge sampling (RE), induced edge sampling (IE), and
random hybrid sampling (RH). The topology-based sampling
includes breadth first sampling (BF), snowball sampling (SB) and
forest fire sampling (FF).

Distributed Node Sampling
Node sampling constructs subgraphs based on sampling

vertices from the original graph. In random node sampling, vertices
are sampled randomly and uniformly.

Given a graph G = (V, E), where V and E are vertices and edges
of G. Let G’s degree sequence be {1, 2…i…k}, the number of degree
i is N (i). If node sampling rate is r, then the expected nodes in non-
distributed random node sampling can be represented as:

Enon-distributed(NS(r)) = N (1)*r + N (2)*r + … + N (k)*r = r*
∑ ܰሺ݅ሻ
ୀଵ (1)

For distributed node sampling algorithms, since graphs are
distributed into multiple machines, each machine contains one or
more partitions. In distributed node sampling, nodes are sampled
from each partition independently. If a graph is distributed into n
partitions, then the expected nodes in one partition can be
represented as:

Ep (NS(r)) = Np (1)*r + Np (2)*r + … + Np (t)*r, where t is
maximum degree in partition p, and t <= k. If the graph has n
partitions, then for overall partitions:

Edistributed (NS(r)) = E1 (NS(r)) + E2 (NS(r)) + …+ En (NS(r))
=∑ ሻሻݎሺܰܵሺ	௧ܧ

௧ୀଵ ,

Since N1 (i) +N2 (i) +…+ Nn (i) = N (i), then

Edistributed (NS(r)) = ∑ ሻሻݎሺܰܵሺ	௧ܧ

௧ୀଵ = N (1)*r + N (2)*r + … + N

(k)*r =	∑ ∑ ௧ܰሺ݅ሻ ∗ ݎ

௧ୀଵ

ୀଵ = r* ∑ ܰሺ݅ሻ

ୀଵ (2)

From equation (1) and (2), theoretically, both distributed node
sampling and non-distributed node sampling should have the similar
results.

Distributed Edge Sampling
Edge sampling builds a subgraph by randomly sampling edges.

If |E| is the number of edges, sampling rate is r, then there should
be r*|E| edges sampled in sampling results. Suppose the degree
original graph is {1, 2,…i… k}, the number of degrees i is N(i), the
probability of one node with certain degree falling into sample is

379-2
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

ሾ1 െ ሺ1 െ

|ா|
ሻሿ|ா|. Thus, the expected nodes in random edge

sampling can be described as:

E (ES(r)) = N (1) * ሾ1 െ ሺ1 െ
ଵ

|ா|
ሻሿ|ா| + N (2) *

ሾ1 െ ሺ1 െ
ଶ

|ா|
ሻሿ|ா|+…+ N (k) * ሾ1 െ ሺ1 െ

|ா|
ሻሿ|ா|

=	∑ ܰሺݐሻ ∗ ሾ1 െ ሺ1 െ
௧

|ா|
ሻሿ|ா|

௧ୀଵ (3)

Similarly, in distributed edge sampling algorithms, each
machine also contains one or more partitions. In each partition,
edges are sampled independently. If one graph is distributed into n
partitions, then the expected nodes in one partition can be
represented as:

Ep (ES(r)) = Np (1) * ሾ1 െ ሺ1 െ
ଵ

|ா|
ሻሿ|ா| + Np (2) *

ሾ1 െ ሺ1 െ
ଶ

|ா|
ሻሿ|ா|+…+ Np (t)*ሾ1 െ ሺ1 െ

௧

|ா|
ሻሿ|ா|, where t is

maximum degree in partition p, and t <= k. If graph has n partitions,
then for overall partitions:

Edistributed (ES(r)) = E1 (ES(r)) + E2 (ES(r)) + …+ En (ES(r)) =
∑ ሻሻݎሺܵܧሺ	௧ܧ

௧ୀଵ ,

Edistributed(ES(r)) = ∑ ሻሻݎሺܵܧሺ	௧ܧ

௧ୀଵ = N (1)*	ሾ1 െ ሺ1 െ

ଵ

|ா|
ሻሿ|ா| + N (2)*	ሾ1 െ ሺ1 െ

ଶ

|ா|
ሻሿ|ா| + … + N (k)*	ሾ1 െ ሺ1 െ

|ா|
ሻሿ|ா| =	∑ ∑ ௧ܰሺ݅ሻ ∗ ሾ1 െ ሺ1 െ

|ா|
ሻሿ|ா|	

௧ୀଵ

ୀଵ

= ∑ ܰሺ݅ሻ ∗ ሾ1 െ ሺ1 െ

|ா|
ሻሿ|ா|

ୀଵ (4)

From equation (3) and (4), theoretically, both distributed edge
sampling and non-distributed edge sampling should have the similar
results as well.

From the distributed random node sampling and distributed
random edge sampling, we can easily demonstrate that distributed
random node edge sampling, distributed random node neighbor
sampling, distributed induced edge sampling, and distributed
random hybrid sampling can produce the similar sampling results as
its corresponding non-distributed sampling method.

Distributed Topology-based Sampling
Since topology-based sampling creates subgraphs based on the

topological information of the original graph, instead of sampling
vertices or edges directly, which selects nodes or edges in sequential
order. The topological visited indices represents the order that one
node or edge enter sampling results. In distributed topology-based
sampling, there are two challenges in the sampling process. First,
the graph is distributed into multiple machines, it is not easy to
create visited index in such a graph because it involves frequent
communication between partitions, particularly while sampling on
multiple partitions at the same time. Second, it is important to take
into consideration that that one graph may have multiple
unconnected components. Those components might be partitioned
into multiple machines. Which component starts the sampling
process has a great influence in sampling results.

To solve the aforementioned challenges, we develop new
strategies to implement topology-based sampling on distributed
graphs. The topology-based sampling process is divided into two
stages: vertex labeling and sampling. Initially, a screening for the
quantity of unconnected components the graph contains will be

completed. All components have equal probability to act as the seed
node, and they are visited in sequential order. We keep a record of
the number of vertices for each component during labeling stage.
Each vertex has an index number that indicates how many vertices
were visited before reaching the current vertex. Thus, the sampling
process can be tracked with the label index in the sampling stage.
Because our distributed topology-based sampling uses the same
principle as non-distributed topology-based sampling, they should
produce similar sampling results. Forest fire sampling is a
randomized version of breadth first sampling [6], and snowball
sampling is similar to breadth first sampling [13]. Here we only
provide the pseudocode of distributed breadth first sampling
methods.

Distributed Breadth First Sampling

Input: Graph G = (V, E), sampling rate θ
Output: Sampled graph Gs = (Vs, Es)
Begin

// cache sampling rate on each machine
Broadcast (θ)
Gc ← add one vertex attribute (index ← MaxValue)
step ← 1
componentsList ← components in Gc
Repeat: each component c in Gc
 startNode ← choose a random node in c
 iteratively modify vertex attribute in c (index ← step)
 step ← step + 1
Until termination;
Repeat: s in 1 to step

check the number of vertices when index < s
Until the number of vertices is satisfied
Gsubgraph← Gc ((V, index < s), E)

End algorithm

Distributed Sampling Algorithms Implementation
The nine distributed sampling methods provided above are

implemented using GraphX in Spark [18]. GraphX provides two
special versions of resilient distributed datasets (RDD): a
VertexRDD and an EdgeRDD, which are used to represent vertex
information and edge information in memory or hard disk. The
distributed sampling algorithms are written in Scala language and
compiled into a JAR file for distribution. This package and source
code will be uploaded to GitHub for public access upon the
publication of this work.

In our experiments, the distributed graph sampling on large
scale graph is done on Shadow (a 322-teraflop Cray CS300-LC
cluster supercomputer with Intel® Xeon® E5-2600 v2 processors
and Intel® Xeon Phi™ coprocessors), each node has 500GB and 20
processors.

Experimental Evaluation
Here we present our experiments to evaluate distributed

sampling methods from visual and statistical perspectives by
making comparisons with non-distributed sampling methods on
three graph datasets ranging from 88234 edges to 1,806,067,135
edges (described in Table 1). Specifically, we will introduce some
graph properties, and statistical and visual comparison techniques
used in the evaluation.

Graph Datasets

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 379-3

Table 1: Three test datasets and their properties

Graph

Dataset

Graph

Type

Model # Vertices # Edges

Facebook Undirected Real 4,039 88,234

Amazon Undirected Real 334,863 925,872

Friendster Undirected Real 65,608,366 1,806,067,135

We apply our sampling algorithms on the three datasets:
Facebook graph, Amazon graph, and Friendster graph that are
collected from Stanford Network Analysis Platform (SNAP) [23].
Facebook, as an anonymized graph using an integer number as user
id, was collected from the Facebook app [24]. Amazon was created
from the Amazon website based on the relation between items that
are co-purchased [25]. Friendster is an on-line gaming network
created from a social networking site [25]. These graph datasets are
summarized in Table 1.

Graph Metrics
For evaluation of distributed sampling methods, several graph

metrics are used to assess the quality of sampling results in statistical
comparisons. The comparison between sampling results and
original graphs is realized by comparing their graph property
distributions in statistics. Here we focus on degree distribution
(DD), average neighbor degree distribution (ANDD), triangle
distribution (TD), PageRank distribution (PR), and local clustering
coefficient distribution (LCCD).

Statistical Comparison
To evaluate distributed sampling methods and non-distributed

sampling methods, we appraise their performance by how well the
sampled results preserve each of graph properties. A good sampling
method should produce a subgraph that approximates the original
graph. That is, the probability distributions of the properties of the
two graphs should have a short distance between them. Here we use
skew divergence (SD) to evaluate the difference between two
distributions [26]. Generally, skew divergence is used to measure
Kullback-Leibler (KL) divergence between two probability density
distributions that do not have continuous support over the range of
values. Because graph properties distributions are not continuous,
e.g. clustering coefficient, the two probability density distributions
should be smoothed before computing KL divergence. We use the
same strategy as Ahmed [6] and Lee [26] to smooth the
distributions:

,ሺܲܦܵ ܳ, ሻߙ ൌ ܲߙሾܮܭ ሺ1 െ ܳߙ||ሻܳߙ ሺ1 െ ሻܲሿߙ

To better compare the sampling results, we use the average SD
defined in the paper, and α is set to 0.99 as in the paper Ahmed [6]
and Lee [26]. Previous work [26] has proven that SD has better
performance approximating KL divergence on non-smoothed
distributions.

Visual Comparison
In addition to making comparisons between sampled subgraphs

and the original graph statistically, we also compare them visually
by using Gephi [27]. We first draw the original graph and export the
decorated graph into a file with vertex decorations preserved (e.g.
vertex color, label size, location). When sampling on the decorated
graph, vertex attributes are also sampled along with vertices. The
layout in the sampling results should have the same layout as in the

decorated graph—i.e., the same vertex in all sampled graphs will
occupy the same location as in the decorated graph. Also, the same
vertex in all sampled graphs has the same color and label size as the
original graph. We do not preserve the attributes of edges, such as
edge color, edge weight, etc. The vertex attributes, for example,
vertex position, color, are preserved in subgraph because we
consider that such vertex attributes are significant in visual
comparison. In this way, the similarity and difference within or
between sampling results can be easily identified.

Because of space limits, only the visual comparison of
Facebook graph is provided in this paper.

Results
In our experiment, both non-distributed and distributed

sampling methods are applied to Facebook and Amazon graph
datasets. For Friendster, since the Friendster graph is too large for
non-distributed sampling methods because of unaffordable
sampling time cost, we do not apply non-distributed graph sampling
to this graph data. We investigate the performance of distributed
sampling methods by comparing their abilities to preserve the
features of original graph. When sampling these graphs, we set the
sampling rate at 15% and 25% based on the number of vertices for
each graph. For each sampling rate, there are 5 different runs carried
out in this experiment. We take the average SD value as final value
for analyzing each graph-metric.

We first compare sampling results visually on Facebook data
in Figure 2 (For space limits, we only provide visual comparison at
15% sampling rate). The non-distributed sampling results and
distributed sampling results are visualized in two columns. Each row
in Figure 2 represents one sampling method. To allow for better
comparison, the original graph is also visualized in Figure 1.

We then compare sampling results in statistics on Facebook
(Figure 3) and Amazon (Figure 4) graph, and each comparison
includes two sampling rates: 15% and 25%. In each statistical
comparison, the line charts (in Figure 3 and 4) indicate the SD
between sampling results and original graphs for each sampling
method on each statistical property. The vertical axis in the line chart
is the SD value between the sampling result and the original graph
ranging from 0 to 1. A smaller value denotes more consistency
between the sampling result and the original graph. The horizontal
axis lists the graph properties. Each line in the chart represents one
sampling method. Its value indicates the sampling method’s
performance. From the statistical comparison, we can identify how
those sampling methods perform, and similarities or differences
between them.

Figure 1: Visualization of original Facebook graph. Each group of vertices and
edges with unique color represents one clusters. Label size is proportional to
vertices’ degree.

379-4
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

Figure 2: Visual comparison between non-distributed sampling methods and
distributed sampling methods (in columns) at 15% sampling rate on Facebook
graph. Each image stands for one sampling result created by corresponding
sampling method in row.

The last but the most important comparison between non-
distributed sampling methods and distributed sampling methods is
on efficiency shown in Figure 5. Charts are presented in two
columns representing efficiency comparison at two sampling rates
(15% and 25%). For the Friendster graph, the execution time on non-
distributed sampling methods is not provided in Figure 5 for the
reason mentioned above.

Analysis
From the experiment results, we can compare sampling methods
quantitatively or qualitatively in several aspects. First, from
statistical comparison, we can identify how sampling methods
preserve graph properties and the similarities and differences
between two types of sampling methods. Second, from visual
comparison, we discuss the similarities and differences between
distributed sampling methods and non-distributed sampling
approaches. Third, we compare those sampling methods in
efficiency for each dataset. This study demonstrates that different
distributed sampling methods have different advantages from
traditional sampling methods. This study also provides starting point
for other researchers based on the goals that they hope to accomplish
and it provides more clear indications of with sampling methods
should be used for different purposes. Finally, we summarize
characteristics of distributed sampling methods.

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 379-5

Figure 3: Statistical comparisons between non-distributed sampling methods and distributed sampling methods (in two column) on Facebook graph. The vertical
axis is SD values, horizontal axis represents graph properties, and lines represent one sampling methods.

Figure 4: Statistical comparisons between non-distributed sampling methods and distributed sampling methods (in two columns) on Amazon graph. The vertical
axis is SD values, horizontal axis represents graph properties, and lines represent one sampling methods.

379-6
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

Figure 5: Execution time between non-distributed sampling methods and distributed sampling methods at 15% and 25% (in two columns) sampling rates on
Facebook, Amazon, and Friendster datasets (in three rows). In each chart, the horizontal axis represents sampling methods and the vertical axis represents
execution time in seconds.

Statistical Comparison
From statistical comparison results in Figure 3 and 4, we can

draw some observations. Generally, distributed sampling methods
have the similar performance as the non-distributed in preserving
graph properties except for a few sampling methods. In Figure 3 and
4, most sampling methods show roughly consistent performance
between the two sampling types. There are some abnormal cases.
For example, in Facebook data (Figure 3) at sampling rate 15%,
distributed random node neighbor sampling shows better than non-
distributed random node neighbor sampling in persevering
PageRank. In Amazon data (Figure 3) at sampling rate 15%,
distributed random node sampling shows better than non-distributed
random node sampling in persevering PageRank. Conversely, in
Facebook data (Figure 3) at sampling rate 25% and Amazon data
(Figure 4) at sample rate 15%, non-distributed random node-edge
sampling method preserves PageRank better than distributed node-
edge sampling method. In addition, by observing Figure 3 and 4, we

find that both non-distributed and distributed random sampling
methods (e.g. random node sampling, random edge sampling)
cannot behave as well as topology-based sampling in preserving
degree, triangle, and local clustering coefficient, particularly for
large graphs. For instance, in Figure 4, random sampling methods
shows bad performance on degree distribution, triangle distribution,
and local clustering coefficient distribution. Topology-based
sampling methods perform consistently well in preserving all graph
properties. This observation about non-distributed topology-based
sampling methods accords with findings in previous studies [6] [16].

Visual Comparison
We visualize sampling results from Facebook graph at

sampling rate 15% for both non-distributed and distributed sampling
methods, shown in Figure 2. From the visual comparison, we can
find out the tendency and preference of each sampling method in
preserving visual properties.

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 379-7

First, distributed random sampling methods have very similar
performance with non-distributed random sampling methods in
preserving spatial coverage. For example, by referring Figure 1, we
can find both kinds of random sampling roughly generate same
spatial area in both column. This indicates that distributed random
sampling methods have the same preference as non-distributed
random sampling methods when sampling graphs. Second,
sometimes distributed sampling methods have better ability to
preserve the number of clusters. From the visual comparison in
Figure 2, distributed random node sampling and random node
neighbor sampling can sample more clusters than corresponding
non-distributed sampling approaches. Third, for topology-based
sampling, their ability to preserve spatial coverage and clusters is
more random. This is because the seed node is select at random and
it has great influence in sampling results. In breadth first sampling,
non-distributed sampling seems to be better in preserving spatial
coverage and the number clusters. But in forest fire sampling,
distributed sampling method shows better than non-distributed
sampling in preserving such visual properties. Forth, generally,
random sampling methods are more likely to sample broad spatial
coverage and more clusters at the same sampling rate with topology-
based sampling methods. This conclusion is consistent with
previous findings as well [16].

Efficiency Comparison
To compare the efficiency for all sampling methods, we record

the execution time for all methods during the sampling process
(shown in Figure 5). From this figure, we can draw some interesting
observations. First, for small graphs, non-distributed sampling
methods have higher efficiency than distributed sampling methods.
However, for large-scale graphs, distributed sampling approaches
have remarkable improvement in efficiency (around 100 times) than
non-distributed sampling methods, in particular for topology-based
sampling (e.g. breadth first sampling, forest fire sampling, snowball
sampling). For example, in Figure 5, Amazon graph is larger than
Facebook graph. Non-distributed sampling methods use less time in
Facebook graph at both sampling rates. However, distributed
sampling methods are more efficient in the Amazon graph for both
sampling rates. For very large-scale graphs, distributed sampling
methods have huge advantage over non-distributed sampling
methods. For instance, non-distributed topology-based sampling
cannot complete the sampling process in an affordable time, but
distributed topology-based sampling methods can complete in 2
hours on billion-scale graphs. In addition, for both kinds of sampling
approaches, sampling time increases with the increase of sampling
rate and graph size, but random sampling (e.g. random node
sampling, random edge sampling) is not as sensitive to graph size as
topology-based sampling. This observation is also reflected in
previous studies [16].

Summary of Distributed Graph Sampling Methods
From the above statistical comparison, visual comparison, and

efficiency comparison. The merits of distributed sampling methods
can be summarized as follows.

 Distributed sampling methods roughly have similar
ability in preserving graph properties. They are as reliable
as non-distributed sampling methods. In some cases,
distributed sampling performs better than non-distributed
sampling.

 Generally, distributed sampling methods have similar
performance with non-distributed random sampling
methods in preserving spatial coverage. On some
occasions, distributed sampling methods have better

ability to preserve clusters than non-distributed sampling
methods.

 Distributed sampling is more efficient than non-
distributed sampling on large-scale graphs, which scales
with graph size.

 Distributed sampling methods have horizontal scalability.
Theoretically, while using distributed sampling methods,
more machines can handle larger graphs.

Conclusion
We designed and developed nine distributed sampling methods

and made statistical comparisons, visual comparisons, and
efficiency comparisons with non-distributed sampling methods by
applying those sampling methods to Facebook graph, Amazon
graph, and Friendster graph.

In the statistical comparison, there were five graph properties
used to evaluate sampling methods in preserving such quantitative
statistical properties. We found distributed sampling methods have
good reliability compared with non-distributed sampling methods.
This observation offers us a reasonable justification to apply such
sampling methods to large graphs in application. We can also use
such sampling methods to make accurate estimations about graph
properties on original graphs.

In visual comparison, we analyzed distributed sampling
methods and non-distributed sampling methods on their ability to
preserve spatial coverage and size, shape, and number of clusters.
Such comparisons provide us an intuitive understanding of the
similarities and differences among them. From the comparisons, we
learned that distributed random sampling approaches have similar
or even better performance in preserving spatial coverage and
clusters. This observation gives us another justification to use
distributed sampling methods in application.

In our efficiency comparison, we found distributed sampling
methods have a great advantage over non-distributed sampling
methods when sampling on large-scale graphs. This is the most
important reason why we designed and develop distributed sampling
methods for large-scale graphs.

From the above three comparison, we summarized the assets of
distributed sampling methods. The findings in this paper could help
users choose proper sampling methods in application.

Acknowledgments
This work has been supported by the United States Army Corps

of Engineers under Contracts W912HZ-17-C-0016 and W912HZ-
17-C-0015, by the U.S. Department of Defense, and by the Pacific
Northwest National Laboratory which is managed for the U.S.
Department of Energy by Battelle under Contract DE-AC05-
76RL01830.

Reference

[1] Scott, John, “Social network analysis,” Sociology 22, no. 1 (1988):
109-127.

[2] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the Gnutella
network,” IEEE Internet Comput., vol. 6, no. 1, pp. 50–57, 2002.

[3] J. Gehrke, P. Ginsparg, and J. Kleinberg, “Overview of the 2003 KDD
Cup,” ACM SIGKDD Explorations Newsletter, vol. 5. p. 149, 2003.

[4] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks.,” Proc. Natl. Acad. Sci. U. S. A., vol. 99, pp. 7821–
7826, 2002.

379-8
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

[5] Y. Wu, N. Cao, D. Archambault, Q. Shen, H. Qu, and W. Cui,
“Evaluation of Graph Sampling: A Visualization Perspective,” IEEE
Transactions on Visualization and Computer Graphics, vol. 23, no. 1. pp.
401–410, 2017.

[6] N. Ahmed, J. Neville, and R. R. Kompella, “Network sampling via
edge-based node selection with graph induction,” Computer Science
Technical Report. Paper 1747, 2011.

[7] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou, “Walking in
Facebook: A case study of unbiased sampling of OSNs,” in Infocom, 2010
Proceedings IEEE, 2010, pp. 1–9.

[8] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong, “Analysis of
topological characteristics of huge online social networking services,” in
Proceedings of the 16th international conference on World Wide Web -
WWW ’07, 2007, p. 835.

[9] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger, “On
unbiased sampling for unstructured peer-to-peer networks,” IEEE/ACM
Trans. Netw., vol. 17, no. 2, pp. 377–390, 2009.

[10] C. Hübler, H. P. Kriegel, K. Borgwardt, and Z. Ghahramani,
“Metropolis algorithms for representative subgraph sampling,” Proc. - IEEE
Int. Conf. Data Mining, ICDM, no. 1, pp. 283–292, 2008.

[11] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in
Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’06, 2006, p. 631.

[12] N. K. Ahmed, J. Neville, and R. Kompella, “Network Sampling: From
Static to Streaming Graphs,” Tkdd, vol. V, no. 212, 2013.

[13] P. Ebbes, Z. Huang, and A. Rangaswamy, “Sampling of large-scale
social networks: Insights from simulated networks,” 8th Annu. Work. Inf.
Technol. Syst., 2008.

[14] M. Kurant, A. Markopoulou, and P. Thiran, “Towards unbiased BFS
sampling,” IEEE J. Sel. Areas Commun., vol. 29, no. 9, pp. 1799–1809,
2011.

[15] B. Ribeiro and D. Towsley, “Estimating and Sampling Graphs with
Multidimensional Random Walks,” In Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement, pp. 390-403. ACM, 2010.

[16] F. Zhang, S. Zhang, P. Chung Wong, H. Medal, L. Bian, J. E. Swan II,
and T. J. Jankun-Kelly, “A Visual Evaluation Study of Graph Sampling
Techniques,” Electron. Imaging, vol. 2017, no. 1, 2017.

[17] T. Wang, Y. Chen, Z. Zhang, T. Xu, L. Jin, P. Hui, B. Deng, and X. Li,
“Understanding graph sampling algorithms for social network analysis,”
Proc. - Int. Conf. Distrib. Comput. Syst., pp. 123–128, 2011.

[18] Apache Spark, “Apache SparkTM - Lightning-Fast Cluster Computing,”
Spark.Apache.Org, 2015. .

[19] P. Hu and W. Lau, “A survey and taxonomy of graph sampling,” arXiv
preprint arXiv:1308.5865, 2013.

[20] S. Yoon, S. Lee, S. H. Yook, and Y. Kim, “Statistical properties of
sampled networks by random walks,” Phys. Rev. E - Stat. Nonlinear, Soft
Matter Phys., vol. 75, no. 4, 2007.

[21] J. Dittrich and J.-A. Quiané-Ruiz, “Efficient big data processing in
Hadoop MapReduce,” Proc. VLDB Endow., vol. 5, no. 12, pp. 2014–2015,
2012.

[22] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, J. E.
Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica,
“GraphX : Graph Processing in a Distributed Dataflow Framework,” 11th
USENIX Symp. Oper. Syst. Des. Implement., pp. 599–613, 2014.

[23] J. Leskovec and A. Krevl, “{SNAP Datasets}: {Stanford} Large
Network Dataset Collection.” Jun-2014. URL https://snap.stanford.edu/data

[24] J. Leskovec and J. Mcauley, “Learning to discover social circles in ego
networks,” Adv. neural Inf. Process., pp. 1–9, 2012.

[25] J. Yang and J. Leskovec, “Defining and evaluating network
communities based on ground-truth,” Knowl. Inf. Syst., vol. 42, no. 1, pp.
181–213, 2015.

[26] L. Lee, “On the Effectiveness of the Skew Divergence for Statistical
Language Analysis,” AISTATS (Artificial Intell. Stat., pp. 65–72, 2001.

[27] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An Open Source
Software for Exploring and Manipulating Networks,” Third Int. AAAI Conf.
Weblogs Soc. Media, pp. 361–362, 2009.

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 379-9

