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Abstract 
The growth of graph size has created new problems in graph 

visualization and graph analysis. To solve the problem, several 
graph sampling techniques have been proposed dedicated to 
obtaining a representative subgraph from a complex network. While 
prior research indicates that sampling on a large-scale graph is not 
an easy task, especially for topology-based sampling methods (e.g. 
breadth first sampling). Topology-based sampling methods can 
produce a more accurate subgraph than node sampling and edge 
sampling in preserving statistical graph properties. In this paper, 
we propose three types of distributed sampling algorithms and 
develop a sampling package on Spark. To evaluate the effectiveness 
of these distributed sampling techniques, we apply them to three 
graph datasets and compare them with traditional/non-distributed 
sampling approaches. The results show that (1) our distributed 
sampling approaches are as reliable as the non-distributed 
sampling techniques, and (2) they are a great improvement in 
sampling efficiency, especially for topology-based sampling. In 
addition, (3) the distributed architecture of these algorithms causes 
them to have horizontal scalability. 

Keywords: Graph sampling, Graph properties, Sampling Method, 
Visualization, Visual analytics 

Introduction 
Graph, as a standard data model, is widely used in various 

application domains to represent entities and their relationships, 
such as social network [1], Internet network [2], citation network 
[3], and biological network [4]. In the past few years, graphs have 
been growing explosively in numerous research fields. It was 
reported that Facebook had 1.6 billion active users during a month 
in late 2015 [5]. There are 3 billion emails created every day 
worldwide [6].  

Effectively understanding huge graphs becomes more and 
more difficult with the increase of graph size. It is often imperative 
to sample a small subgraph from a large-scale graph. This is 
necessary for several reasons. First, sometimes visualizing a large-
scale graph seems to be impossible because of limits of screen size. 
A good small representative subgraph can help us understand the 
topological structure of the original graph. The findings from the 
subgraph allow us to make more accurate estimations about graph 
features on the original graph. Second, graph property calculation is 
an essential approach to analyze graph features, but the calculation 
of graph properties on a large-scale graph can be costly or 
unaffordable. If an accurate estimation graph properties can be made 
from a representative of original graph, then substantial 
computational cost may be avoided. Third, for some large-scale 
graphs, it is not practical to obtain complete datasets because of 
graph size or other various reasons. For example, total Facebook 
graph has more than 250TB of HTML data [7]. It is impractical to 
obtain complete data considering the time-cost. Graph sampling 
techniques allow us to get a representative sample while preserving 
features in original graph.  

Given a graph G = (V, E), V and E represent vertices and edges 
respectively. Sampling techniques try to get a subgraph Gs = (Vs, 
Es), where Vs ⊂ V, Es ⊂ E. Prior sampling approaches explore 
networks from two aspects [6]: making accurate estimations of the 
original graph [8] [9]; selecting a representative sample whose 
topology is similar to the original [10].  

Many sampling techniques have been proposed aiming to 
sample a representative subgraph from the original graph. Those 
sampling methods can be classified in three categories: node 
sampling [11] [12], edge sampling [12] [13] and topology-based 
sampling [14] [15]. Unfortunately, many of these non-distributed 
sampling methods, especially topology-based sampling, are not 
practical for large-scale graphs (more than 1 million vertices) 
because of efficiency issue or memory issue. For example, in our 
previous research [16], we found that sampling on an Email graph 
(vertices: 265, 214; edges: 420, 045) took more than 24 hours while 
using topology-based sampling. Most prior sampling research only 
worked on graphs with less than 1 million vertices [11] [6] [17]. 
With the increase of graph size, scalable sampling methods are in 
urgent demand in graph research.  

In this paper, we aim to design and develop a number of 
scalable topology-based sampling methods based on a MapReduce 
framework-Spark [18], and make comprehensive evaluations 
between non-distributed sampling approaches and our new methods. 
For completeness, scalable node sampling and scalable edge 
sampling techniques are also included in our work. These scalable 
sampling techniques can greatly improve sampling efficiency 
without losing sampling accuracy. To improve the reliability of 
these distributed sampling algorithms, we apply both non-
distributed sampling methods and new sampling methods to three 
datasets, and make statistical and visual comparison between them. 

The main contributions of our work are as follows: 
 We designed and developed nine scalable graph sampling 

methods based on Spark.  
 We made visual and statistical comparison between non-

distributed sampling methods and distributed graph 
sampling methods.  

 We implemented a large-scale graph sampling package 
which can be incorporated into GraphX for graph 
research. 

 We analyzed the nine distributed graph sampling methods 
from visual and statistical perspectives, and summarized 
their merits compared to non-distributed sampling 
techniques. 

Related Work 
Graph sampling has been an interesting field within graph 

research for many years. Many sampling techniques have been 
proposed in last few decades. Existing graph sampling algorithms 
can be classified into three categories [11] [6]: node sampling, edge 
sampling, and topology-based sampling.  
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Node sampling is a simple sampling method which creates 
representative graph by sampling nodes independently and 
uniformly. For example, in random node sampling [11], vertices are 
sampled randomly and uniformly, creating a subgraph from the 
original graph. The edges between the sampled vertices in the 
original graph are included the sample graph as well. Sometimes, 
node sampling also considers neighbors of the sampled vertices, for 
instance, random node-edge sampling [19] and random node-
neighbor sampling [11]. In random node-edge sampling, when 
vertices are uniformly sampled, edges that are incident to these 
vertices are also uniformly sampled in the sample graph. In random 
node-neighbor sampling, all the edges that are connected to these 
vertices in the original graph are sampled into subgraphs. In some 
cases, node sampling methods integrate topology-based sampling in 
order to use graph topology information, such as random walk 
sampling [20]. The metropolis algorithm [10] is a modified version 
of node sampling. It replaces some sampled vertices with other 
vertices, which often leads to sampled graph properties that are 
consistent with the original.  

Similarly, edge sampling builds a subgraph by randomly 
sampling edges. Random edge sampling [13] is one typical edge 
sampling in which edges are sampled randomly and uniformly, and 
then a subgraph is created from those edges. Induced edge sampling 
[12] is another edge sampling method, which includes totally 
induced edge sampling and partially induced edge sampling. Totally 
induced edge sampling has two steps. First, it conducts random edge 
sampling and obtains adjacent vertices from these edges. Second, all 
edges attached to those vertices are sampled in a subgraph. Partially 
induced edge sampling performs edge sampling in a single pass in 
which edges are selected with a probability. Incident vertices are 
also added to the sampled graph if one edge is selected. In this paper, 
we implement totally induced edge sampling. 

Topology-based sampling is regarded as the state-of-art 
sampling methods because they have good ability to preserve graph 
properties [6]. Graph traversal algorithms are often used in these 
sampling methods. For example, breadth-first sampling [17] creates 
a subgraph by using breadth first search algorithm. It begins with a 
random vertex and visits its neighbors iteratively. For each iteration, 
the first visited vertex will enter the sample first. A subgraph is 
created from visited vertices and those edges that are connected 
between those sampled vertices in the original graph. Forest fire 
sampling [6] [12] can be regarded as a probabilistic version of 
breadth-first sampling. Neighbors are chosen to be added to the 
subgraph with probability p. The number of vertices to be chosen is 
a random number taken from a geometric distribution with mean 
pf/(1−pf). Random walk sampling starts at a seed vertex, and then 
chooses a vertex uniformly at random from the neighbors of the 
current vertex. A subgraph is created from the walking paths. 
Random walk with escape or jump [13] and multiple independent 
random walkers [19] are proposed based on the classic random walk 
sampling method. Random walk with escape or jump sampling is 
more random than random walk sampling since the current walker 
vertex jumps to another random vertex with probability p. 

Spark [18] is an in-memory distributed computing framework 
that manipulates datasets in memory across distributed machines, 
which is different from Hadoop MapReduce [21] in that it keeps 
intermediate data in memory instead of storing it on disk. This 
strategy makes Spark run up to 100 times faster than Hadoop 
MapReduce [18]. It allows us create iterative algorithms efficiently 
because it offers us a MapReduce environment. GraphX [22], a 
Spark library, takes the advantage of data-parallel and graph-parallel 
systems in Spark framework. Within GraphX, several graph 

property calculation algorithms are implemented, such as 
PageRank, connected component, shortest paths, etc. In this paper, 
we design distributed sampling methods and implement them on 
Spark. 

Distributed Graph Sampling Methods 
In this section, we present three types of novel graph sampling 

techniques: 1) distributed node sampling, 2) distributed edge 
sampling, and 3) distributed topology-based sampling. We make 
analytical comparisons between non-distributed sampling methods 
vs. our distributed methods. The graph is partitioned by GraphX 
using the strategy of Random Vertex Cut and distributed into 
multiple machines. The node sampling includes random node 
sampling (RN), random node edge sampling (RNE), and random 
node neighbor sampling (RNN). The edge sampling includes 
random edge sampling (RE), induced edge sampling (IE), and 
random hybrid sampling (RH). The topology-based sampling 
includes breadth first sampling (BF), snowball sampling (SB) and 
forest fire sampling (FF). 

Distributed Node Sampling 
Node sampling constructs subgraphs based on sampling 

vertices from the original graph. In random node sampling, vertices 
are sampled randomly and uniformly.  

Given a graph G = (V, E), where V and E are vertices and edges 
of G. Let G’s degree sequence be {1, 2…i…k}, the number of degree 
i is N (i). If node sampling rate is r, then the expected nodes in non-
distributed random node sampling can be represented as: 

Enon-distributed(NS(r)) = N (1)*r + N (2)*r + … + N (k)*r = r* 
∑ ܰሺ݅ሻ
ୀଵ                                                                                        (1) 

For distributed node sampling algorithms, since graphs are 
distributed into multiple machines, each machine contains one or 
more partitions. In distributed node sampling, nodes are sampled 
from each partition independently. If a graph is distributed into n 
partitions, then the expected nodes in one partition can be 
represented as: 

Ep (NS(r)) = Np (1)*r + Np (2)*r + … + Np (t)*r, where t is 
maximum degree in partition p, and t <= k. If the graph has n 
partitions, then for overall partitions:  

Edistributed (NS(r)) = E1 (NS(r)) + E2 (NS(r)) + …+ En (NS(r)) 
=∑ ሻሻݎሺܰܵሺ	௧ܧ


௧ୀଵ ,  

Since N1 (i) +N2 (i) +…+ Nn (i) = N (i), then  

Edistributed (NS(r)) = ∑ ሻሻݎሺܰܵሺ	௧ܧ

௧ୀଵ  = N (1)*r + N (2)*r + … + N 

(k)*r =	∑ ∑ ௧ܰሺ݅ሻ ∗ ݎ

௧ୀଵ


ୀଵ  = r* ∑ ܰሺ݅ሻ

ୀଵ                                   (2)                   

From equation (1) and (2), theoretically, both distributed node 
sampling and non-distributed node sampling should have the similar 
results. 

Distributed Edge Sampling 
Edge sampling builds a subgraph by randomly sampling edges. 

If |E| is the number of edges, sampling rate is r, then there should 
be r*|E| edges sampled in sampling results. Suppose the degree 
original graph is {1, 2,…i… k}, the number of degrees i is N(i), the 
probability of one node with certain degree falling into sample is 
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|ா|
ሻሿ|ா|.  Thus, the expected nodes in random edge 

sampling can be described as: 

E (ES(r)) = N (1) * ሾ1 െ ሺ1 െ
ଵ

|ா|
ሻሿ|ா| + N (2) * 

ሾ1 െ ሺ1 െ
ଶ

|ா|
ሻሿ|ா|+…+ N (k) * ሾ1 െ ሺ1 െ



|ா|
ሻሿ|ா| 

=	∑ ܰሺݐሻ ∗ ሾ1 െ ሺ1 െ
௧

|ா|
ሻሿ|ா|

௧ୀଵ                                           (3) 

Similarly, in distributed edge sampling algorithms, each 
machine also contains one or more partitions. In each partition, 
edges are sampled independently. If one graph is distributed into n 
partitions, then the expected nodes in one partition can be 
represented as:  

Ep (ES(r)) = Np (1) * ሾ1 െ ሺ1 െ
ଵ

|ா|
ሻሿ|ா| + Np (2) * 

ሾ1 െ ሺ1 െ
ଶ

|ா|
ሻሿ|ா|+…+ Np (t)*ሾ1 െ ሺ1 െ

௧

|ா|
ሻሿ|ா|, where t is 

maximum degree in partition p, and t <= k. If graph has n partitions, 
then for overall partitions: 

Edistributed (ES(r)) = E1 (ES(r)) + E2 (ES(r)) + …+ En (ES(r)) = 
∑ ሻሻݎሺܵܧሺ	௧ܧ

௧ୀଵ ,  

Edistributed(ES(r)) = ∑ ሻሻݎሺܵܧሺ	௧ܧ

௧ୀଵ  = N (1)*	ሾ1 െ ሺ1 െ

ଵ

|ா|
ሻሿ|ா|  + N (2)*	ሾ1 െ ሺ1 െ

ଶ

|ா|
ሻሿ|ா|  + … + N (k)*	ሾ1 െ ሺ1 െ



|ா|
ሻሿ|ா|  =	∑ ∑ ௧ܰሺ݅ሻ ∗ ሾ1 െ ሺ1 െ



|ா|
ሻሿ|ா|	

௧ୀଵ

ୀଵ   

=  ∑ ܰሺ݅ሻ ∗ ሾ1 െ ሺ1 െ


|ா|
ሻሿ|ா|

ୀଵ                                          (4) 

From equation (3) and (4), theoretically, both distributed edge 
sampling and non-distributed edge sampling should have the similar 
results as well. 

From the distributed random node sampling and distributed 
random edge sampling, we can easily demonstrate that distributed 
random node edge sampling, distributed random node neighbor 
sampling, distributed induced edge sampling, and distributed 
random hybrid sampling can produce the similar sampling results as 
its corresponding non-distributed sampling method. 

Distributed Topology-based Sampling 
Since topology-based sampling creates subgraphs based on the 

topological information of the original graph, instead of sampling 
vertices or edges directly, which selects nodes or edges in sequential 
order. The topological visited indices represents the order that one 
node or edge enter sampling results. In distributed topology-based 
sampling, there are two challenges in the sampling process. First, 
the graph is distributed into multiple machines, it is not easy to 
create visited index in such a graph because it involves frequent 
communication between partitions, particularly while sampling on 
multiple partitions at the same time. Second, it is important to take 
into consideration that that one graph may have multiple 
unconnected components. Those components might be partitioned 
into multiple machines. Which component starts the sampling 
process has a great influence in sampling results.  

To solve the aforementioned challenges, we develop new 
strategies to implement topology-based sampling on distributed 
graphs. The topology-based sampling process is divided into two 
stages: vertex labeling and sampling. Initially, a screening for the 
quantity of unconnected components the graph contains will be 

completed. All components have equal probability to act as the seed 
node, and they are visited in sequential order. We keep a record of 
the number of vertices for each component during labeling stage. 
Each vertex has an index number that indicates how many vertices 
were visited before reaching the current vertex. Thus, the sampling 
process can be tracked with the label index in the sampling stage. 
Because our distributed topology-based sampling uses the same 
principle as non-distributed topology-based sampling, they should 
produce similar sampling results. Forest fire sampling is a 
randomized version of breadth first sampling [6], and snowball 
sampling is similar to breadth first sampling [13]. Here we only 
provide the pseudocode of distributed breadth first sampling 
methods. 

 
Distributed Breadth First Sampling 
 
Input: Graph G = (V, E), sampling rate θ 
Output: Sampled graph Gs = (Vs, Es) 
Begin 

// cache sampling rate on each machine 
Broadcast (θ)  
Gc ← add one vertex attribute (index ← MaxValue) 
step ← 1 
componentsList ← components in Gc 
Repeat: each component c in Gc 
    startNode ← choose a random node in c 
    iteratively modify vertex attribute in c (index ← step) 
    step ← step + 1 
Until termination; 
Repeat:  s in 1 to step 

check the number of vertices when index < s 
Until the number of vertices is satisfied 
Gsubgraph← Gc ((V, index < s), E) 

End algorithm 
 

Distributed Sampling Algorithms Implementation 
The nine distributed sampling methods provided above are 

implemented using GraphX in Spark [18]. GraphX provides two 
special versions of resilient distributed datasets (RDD): a 
VertexRDD and an EdgeRDD, which are used to represent vertex 
information and edge information in memory or hard disk. The 
distributed sampling algorithms are written in Scala language and 
compiled into a JAR file for distribution. This package and source 
code will be uploaded to GitHub for public access upon the 
publication of this work.  

In our experiments, the distributed graph sampling on large 
scale graph is done on Shadow (a 322-teraflop Cray CS300-LC 
cluster supercomputer with Intel® Xeon® E5-2600 v2 processors 
and Intel® Xeon Phi™ coprocessors), each node has 500GB and 20 
processors.   

Experimental Evaluation 
Here we present our experiments to evaluate distributed 

sampling methods from visual and statistical perspectives by 
making comparisons with non-distributed sampling methods on 
three graph datasets ranging from 88234 edges to 1,806,067,135 
edges (described in Table 1). Specifically, we will introduce some 
graph properties, and statistical and visual comparison techniques 
used in the evaluation.  

Graph Datasets 
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Table 1: Three test datasets and their properties 

Graph 

Dataset 

Graph 

Type 

Model # Vertices # Edges 

Facebook Undirected Real 4,039 88,234 

Amazon Undirected Real 334,863 925,872 

Friendster Undirected Real 65,608,366 1,806,067,135 

We apply our sampling algorithms on the three datasets: 
Facebook graph, Amazon graph, and Friendster graph that are 
collected from Stanford Network Analysis Platform (SNAP) [23]. 
Facebook, as an anonymized graph using an integer number as user 
id, was collected from the Facebook app [24].  Amazon was created 
from the Amazon website based on the relation between items that 
are co-purchased [25]. Friendster is an on-line gaming network 
created from a social networking site [25].  These graph datasets are 
summarized in Table 1. 

Graph Metrics 
For evaluation of distributed sampling methods, several graph 

metrics are used to assess the quality of sampling results in statistical 
comparisons. The comparison between sampling results and 
original graphs is realized by comparing their graph property 
distributions in statistics. Here we focus on degree distribution 
(DD), average neighbor degree distribution (ANDD), triangle 
distribution (TD), PageRank distribution (PR), and local clustering 
coefficient distribution (LCCD). 

Statistical Comparison 
To evaluate distributed sampling methods and non-distributed 

sampling methods, we appraise their performance by how well the 
sampled results preserve each of graph properties. A good sampling 
method should produce a subgraph that approximates the original 
graph. That is, the probability distributions of the properties of the 
two graphs should have a short distance between them. Here we use 
skew divergence (SD) to evaluate the difference between two 
distributions [26]. Generally, skew divergence is used to measure 
Kullback-Leibler (KL) divergence between two probability density 
distributions that do not have continuous support over the range of 
values. Because graph properties distributions are not continuous, 
e.g. clustering coefficient, the two probability density distributions 
should be smoothed before computing KL divergence. We use the 
same strategy as Ahmed [6] and Lee [26] to smooth the 
distributions: 

,ሺܲܦܵ ܳ, ሻߙ ൌ ܲߙሾܮܭ  ሺ1 െ ܳߙ||ሻܳߙ  ሺ1 െ  ሻܲሿߙ

To better compare the sampling results, we use the average SD 
defined in the paper, and α is set to 0.99 as in the paper  Ahmed [6] 
and Lee [26]. Previous work [26] has proven that SD has better 
performance approximating KL divergence on non-smoothed 
distributions. 

Visual Comparison 
In addition to making comparisons between sampled subgraphs 

and the original graph statistically, we also compare them visually 
by using Gephi [27]. We first draw the original graph and export the 
decorated graph into a file with vertex decorations preserved (e.g. 
vertex color, label size, location). When sampling on the decorated 
graph, vertex attributes are also sampled along with vertices. The 
layout in the sampling results should have the same layout as in the 

decorated graph—i.e., the same vertex in all sampled graphs will 
occupy the same location as in the decorated graph.  Also, the same 
vertex in all sampled graphs has the same color and label size as the 
original graph. We do not preserve the attributes of edges, such as 
edge color, edge weight, etc. The vertex attributes, for example, 
vertex position, color, are preserved in subgraph because we 
consider that such vertex attributes are significant in visual 
comparison. In this way, the similarity and difference within or 
between sampling results can be easily identified.  

Because of space limits, only the visual comparison of 
Facebook graph is provided in this paper. 

Results 
In our experiment, both non-distributed and distributed 

sampling methods are applied to Facebook and Amazon graph 
datasets. For Friendster, since the Friendster graph is too large for 
non-distributed sampling methods because of unaffordable 
sampling time cost, we do not apply non-distributed graph sampling 
to this graph data. We investigate the performance of distributed 
sampling methods by comparing their abilities to preserve the 
features of original graph. When sampling these graphs, we set the 
sampling rate at 15% and 25% based on the number of vertices for 
each graph. For each sampling rate, there are 5 different runs carried 
out in this experiment. We take the average SD value as final value 
for analyzing each graph-metric. 

We first compare sampling results visually on Facebook data 
in Figure 2 (For space limits, we only provide visual comparison at 
15% sampling rate). The non-distributed sampling results and 
distributed sampling results are visualized in two columns. Each row 
in Figure 2 represents one sampling method. To allow for better 
comparison, the original graph is also visualized in Figure 1.  

We then compare sampling results in statistics on Facebook 
(Figure 3) and Amazon (Figure 4) graph, and each comparison 
includes two sampling rates: 15% and 25%. In each statistical 
comparison, the line charts (in Figure 3 and 4) indicate the SD 
between sampling results and original graphs for each sampling 
method on each statistical property. The vertical axis in the line chart 
is the SD value between the sampling result and the original graph 
ranging from 0 to 1. A smaller value denotes more consistency 
between the sampling result and the original graph. The horizontal 
axis lists the graph properties. Each line in the chart represents one 
sampling method. Its value indicates the sampling method’s 
performance. From the statistical comparison, we can identify how 
those sampling methods perform, and similarities or differences 
between them.  

 

 
Figure 1: Visualization of original Facebook graph. Each group of vertices and 
edges with unique color represents one clusters. Label size is proportional to 
vertices’ degree.   
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Figure 2: Visual comparison between non-distributed sampling methods and 
distributed sampling methods (in columns) at 15% sampling rate on Facebook 
graph. Each image stands for one sampling result created by corresponding 
sampling method in row.   

The last but the most important comparison between non-
distributed sampling methods and distributed sampling methods is 
on efficiency shown in Figure 5. Charts are presented in two 
columns representing efficiency comparison at two sampling rates 
(15% and 25%). For the Friendster graph, the execution time on non-
distributed sampling methods is not provided in Figure 5 for the 
reason mentioned above. 

Analysis 
From the experiment results, we can compare sampling methods 
quantitatively or qualitatively in several aspects. First, from 
statistical comparison, we can identify how sampling methods 
preserve graph properties and the similarities and differences 
between two types of sampling methods. Second, from visual 
comparison, we discuss the similarities and differences between 
distributed sampling methods and non-distributed sampling 
approaches. Third, we compare those sampling methods in 
efficiency for each dataset. This study demonstrates that different 
distributed sampling methods have different advantages from 
traditional sampling methods. This study also provides starting point 
for other researchers based on the goals that they hope to accomplish 
and it provides more clear indications of with sampling methods 
should be used for different purposes. Finally, we summarize 
characteristics of distributed sampling methods.  
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Figure 3: Statistical comparisons between non-distributed sampling methods and distributed sampling methods (in two column) on Facebook graph. The vertical 
axis is SD values, horizontal axis represents graph properties, and lines represent one sampling methods. 

 
Figure 4: Statistical comparisons between non-distributed sampling methods and distributed sampling methods (in two columns) on Amazon graph. The vertical 
axis is SD values, horizontal axis represents graph properties, and lines represent one sampling methods. 
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Figure 5: Execution time between non-distributed sampling methods and distributed sampling methods at 15% and 25% (in two columns) sampling rates on 
Facebook, Amazon, and Friendster datasets (in three rows). In each chart, the horizontal axis represents sampling methods and the vertical axis represents 
execution time in seconds. 

Statistical Comparison 
From statistical comparison results in Figure 3 and 4, we can 

draw some observations. Generally, distributed sampling methods 
have the similar performance as the non-distributed in preserving 
graph properties except for a few sampling methods. In Figure 3 and 
4, most sampling methods show roughly consistent performance 
between the two sampling types. There are some abnormal cases. 
For example, in Facebook data (Figure 3) at sampling rate 15%, 
distributed random node neighbor sampling shows better than non-
distributed random node neighbor sampling in persevering 
PageRank. In Amazon data (Figure 3) at sampling rate 15%, 
distributed random node sampling shows better than non-distributed 
random node sampling in persevering PageRank. Conversely, in 
Facebook data (Figure 3) at sampling rate 25% and Amazon data 
(Figure 4) at sample rate 15%, non-distributed random node-edge 
sampling method preserves PageRank better than distributed node-
edge sampling method. In addition, by observing Figure 3 and 4, we 

find that both non-distributed and distributed random sampling 
methods (e.g. random node sampling, random edge sampling) 
cannot behave as well as topology-based sampling in preserving 
degree, triangle, and local clustering coefficient, particularly for 
large graphs. For instance, in Figure 4, random sampling methods 
shows bad performance on degree distribution, triangle distribution, 
and local clustering coefficient distribution. Topology-based 
sampling methods perform consistently well in preserving all graph 
properties. This observation about non-distributed topology-based 
sampling methods accords with findings in previous studies [6] [16]. 

Visual Comparison 
We visualize sampling results from Facebook graph at 

sampling rate 15% for both non-distributed and distributed sampling 
methods, shown in Figure 2. From the visual comparison, we can 
find out the tendency and preference of each sampling method in 
preserving visual properties.  
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First, distributed random sampling methods have very similar 
performance with non-distributed random sampling methods in 
preserving spatial coverage. For example, by referring Figure 1, we 
can find both kinds of random sampling roughly generate same 
spatial area in both column. This indicates that distributed random 
sampling methods have the same preference as non-distributed 
random sampling methods when sampling graphs. Second, 
sometimes distributed sampling methods have better ability to 
preserve the number of clusters. From the visual comparison in 
Figure 2, distributed random node sampling and random node 
neighbor sampling can sample more clusters than corresponding 
non-distributed sampling approaches. Third, for topology-based 
sampling, their ability to preserve spatial coverage and clusters is 
more random. This is because the seed node is select at random and 
it has great influence in sampling results. In breadth first sampling, 
non-distributed sampling seems to be better in preserving spatial 
coverage and the number clusters. But in forest fire sampling, 
distributed sampling method shows better than non-distributed 
sampling in preserving such visual properties. Forth, generally, 
random sampling methods are more likely to sample broad spatial 
coverage and more clusters at the same sampling rate with topology-
based sampling methods. This conclusion is consistent with 
previous findings as well [16]. 

Efficiency Comparison 
To compare the efficiency for all sampling methods, we record 

the execution time for all methods during the sampling process 
(shown in Figure 5). From this figure, we can draw some interesting 
observations. First, for small graphs, non-distributed sampling 
methods have higher efficiency than distributed sampling methods. 
However, for large-scale graphs, distributed sampling approaches 
have remarkable improvement in efficiency (around 100 times) than 
non-distributed sampling methods, in particular for topology-based 
sampling (e.g. breadth first sampling, forest fire sampling, snowball 
sampling).  For example, in Figure 5, Amazon graph is larger than 
Facebook graph. Non-distributed sampling methods use less time in 
Facebook graph at both sampling rates. However, distributed 
sampling methods are more efficient in the Amazon graph for both 
sampling rates. For very large-scale graphs, distributed sampling 
methods have huge advantage over non-distributed sampling 
methods. For instance, non-distributed topology-based sampling 
cannot complete the sampling process in an affordable time, but 
distributed topology-based sampling methods can complete in 2 
hours on billion-scale graphs. In addition, for both kinds of sampling 
approaches, sampling time increases with the increase of sampling 
rate and graph size, but random sampling (e.g. random node 
sampling, random edge sampling) is not as sensitive to graph size as 
topology-based sampling. This observation is also reflected in 
previous studies [16]. 

Summary of Distributed Graph Sampling Methods 
From the above statistical comparison, visual comparison, and 

efficiency comparison. The merits of distributed sampling methods 
can be summarized as follows. 

 Distributed sampling methods roughly have similar 
ability in preserving graph properties. They are as reliable 
as non-distributed sampling methods. In some cases, 
distributed sampling performs better than non-distributed 
sampling. 

 Generally, distributed sampling methods have similar 
performance with non-distributed random sampling 
methods in preserving spatial coverage. On some 
occasions, distributed sampling methods have better 

ability to preserve clusters than non-distributed sampling 
methods. 

 Distributed sampling is more efficient than non-
distributed sampling on large-scale graphs, which scales 
with graph size. 

 Distributed sampling methods have horizontal scalability. 
Theoretically, while using distributed sampling methods, 
more machines can handle larger graphs. 

Conclusion 
We designed and developed nine distributed sampling methods 

and made statistical comparisons, visual comparisons, and 
efficiency comparisons with non-distributed sampling methods by 
applying those sampling methods to Facebook graph, Amazon 
graph, and Friendster graph.  

In the statistical comparison, there were five graph properties 
used to evaluate sampling methods in preserving such quantitative 
statistical properties. We found distributed sampling methods have 
good reliability compared with non-distributed sampling methods. 
This observation offers us a reasonable justification to apply such 
sampling methods to large graphs in application. We can also use 
such sampling methods to make accurate estimations about graph 
properties on original graphs.  

In visual comparison, we analyzed distributed sampling 
methods and non-distributed sampling methods on their ability to 
preserve spatial coverage and size, shape, and number of clusters. 
Such comparisons provide us an intuitive understanding of the 
similarities and differences among them. From the comparisons, we 
learned that distributed random sampling approaches have similar 
or even better performance in preserving spatial coverage and 
clusters.  This observation gives us another justification to use 
distributed sampling methods in application.  

In our efficiency comparison, we found distributed sampling 
methods have a great advantage over non-distributed sampling 
methods when sampling on large-scale graphs. This is the most 
important reason why we designed and develop distributed sampling 
methods for large-scale graphs.  

From the above three comparison, we summarized the assets of 
distributed sampling methods. The findings in this paper could help 
users choose proper sampling methods in application. 

Acknowledgments 
This work has been supported by the United States Army Corps 

of Engineers under Contracts W912HZ-17-C-0016 and W912HZ-
17-C-0015, by the U.S. Department of Defense, and by the Pacific 
Northwest National Laboratory which is managed for the U.S. 
Department of Energy by Battelle under Contract DE-AC05-
76RL01830. 

Reference 
 

[1] Scott, John, “Social network analysis,” Sociology 22, no. 1 (1988): 
109-127. 

[2] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the Gnutella 
network,” IEEE Internet Comput., vol. 6, no. 1, pp. 50–57, 2002. 

[3] J. Gehrke, P. Ginsparg, and J. Kleinberg, “Overview of the 2003 KDD 
Cup,” ACM SIGKDD Explorations Newsletter, vol. 5. p. 149, 2003. 

[4] M. Girvan and M. E. J. Newman, “Community structure in social and 
biological networks.,” Proc. Natl. Acad. Sci. U. S. A., vol. 99, pp. 7821–
7826, 2002. 

379-8
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018



 

 

[5] Y. Wu, N. Cao, D. Archambault, Q. Shen, H. Qu, and W. Cui, 
“Evaluation of Graph Sampling: A Visualization Perspective,” IEEE 
Transactions on Visualization and Computer Graphics, vol. 23, no. 1. pp. 
401–410, 2017. 

[6] N. Ahmed, J. Neville, and R. R. Kompella, “Network sampling via 
edge-based node selection with graph induction,” Computer Science 
Technical Report. Paper 1747, 2011. 

[7] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou, “Walking in 
Facebook: A case study of unbiased sampling of OSNs,” in Infocom, 2010 
Proceedings IEEE, 2010, pp. 1–9. 

[8] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong, “Analysis of 
topological characteristics of huge online social networking services,” in 
Proceedings of the 16th international conference on World Wide Web  - 
WWW ’07, 2007, p. 835. 

[9] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger, “On 
unbiased sampling for unstructured peer-to-peer networks,” IEEE/ACM 
Trans. Netw., vol. 17, no. 2, pp. 377–390, 2009. 

[10] C. Hübler, H. P. Kriegel, K. Borgwardt, and Z. Ghahramani, 
“Metropolis algorithms for representative subgraph sampling,” Proc. - IEEE 
Int. Conf. Data Mining, ICDM, no. 1, pp. 283–292, 2008. 

[11] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in 
Proceedings of the 12th ACM SIGKDD international conference on 
Knowledge discovery and data mining - KDD ’06, 2006, p. 631. 

[12] N. K. Ahmed, J. Neville, and R. Kompella, “Network Sampling: From 
Static to Streaming Graphs,” Tkdd, vol. V, no. 212, 2013. 

[13] P. Ebbes, Z. Huang, and A. Rangaswamy, “Sampling of large-scale 
social networks: Insights from simulated networks,” 8th Annu. Work. Inf. 
Technol. Syst., 2008. 

[14] M. Kurant, A. Markopoulou, and P. Thiran, “Towards unbiased BFS 
sampling,” IEEE J. Sel. Areas Commun., vol. 29, no. 9, pp. 1799–1809, 
2011. 

[15] B. Ribeiro and D. Towsley, “Estimating and Sampling Graphs with 
Multidimensional Random Walks,” In Proceedings of the 10th ACM 
SIGCOMM conference on Internet measurement, pp. 390-403. ACM, 2010. 

[16] F. Zhang, S. Zhang, P. Chung Wong, H. Medal, L. Bian, J. E. Swan II, 
and T. J. Jankun-Kelly, “A Visual Evaluation Study of Graph Sampling 
Techniques,” Electron. Imaging, vol. 2017, no. 1, 2017. 

[17] T. Wang, Y. Chen, Z. Zhang, T. Xu, L. Jin, P. Hui, B. Deng, and X. Li, 
“Understanding graph sampling algorithms for social network analysis,” 
Proc. - Int. Conf. Distrib. Comput. Syst., pp. 123–128, 2011. 

[18] Apache Spark, “Apache SparkTM - Lightning-Fast Cluster Computing,” 
Spark.Apache.Org, 2015. . 

[19] P. Hu and W. Lau, “A survey and taxonomy of graph sampling,” arXiv 
preprint arXiv:1308.5865, 2013. 

[20] S. Yoon, S. Lee, S. H. Yook, and Y. Kim, “Statistical properties of 
sampled networks by random walks,” Phys. Rev. E - Stat. Nonlinear, Soft 
Matter Phys., vol. 75, no. 4, 2007. 

[21] J. Dittrich and J.-A. Quiané-Ruiz, “Efficient big data processing in 
Hadoop MapReduce,” Proc. VLDB Endow., vol. 5, no. 12, pp. 2014–2015, 
2012. 

[22] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, J. E. 
Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica, 
“GraphX : Graph Processing in a Distributed Dataflow Framework,” 11th 
USENIX Symp. Oper. Syst. Des. Implement., pp. 599–613, 2014. 

[23] J. Leskovec and A. Krevl, “{SNAP Datasets}: {Stanford} Large 
Network Dataset Collection.” Jun-2014. URL https://snap.stanford.edu/data 

[24] J. Leskovec and J. Mcauley, “Learning to discover social circles in ego 
networks,” Adv. neural Inf. Process., pp. 1–9, 2012. 

[25] J. Yang and J. Leskovec, “Defining and evaluating network 
communities based on ground-truth,” Knowl. Inf. Syst., vol. 42, no. 1, pp. 
181–213, 2015. 

[26] L. Lee, “On the Effectiveness of the Skew Divergence for Statistical 
Language Analysis,” AISTATS (Artificial Intell. Stat., pp. 65–72, 2001. 

[27] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An Open Source 
Software for Exploring and Manipulating Networks,” Third Int. AAAI Conf. 
Weblogs Soc. Media, pp. 361–362, 2009. 

 

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 379-9


