

BGS: A Large-Scale Graph Visualization Tool
1Fangyan Zhang, 1Song Zhang, 1Christopher Lightsey, 1Sarah Harun, 2Pak Chung Wong

1Mississippi State University, Mississippi State, MS. USA
2ACT, Iowa City, IA, USA

Abstract

We present BGS (Big Graph Surfer), a scalable graph
visualization tool that creates hierarchical structure from original
graphs and provide interactive navigation along the hierarchy by
expanding or collapsing clusters when visualizing large-scale
graphs. A distributed computing framework-Spark provides the
backend for BGS on clustering and visualization. This architecture
makes it capable of visualizing a graph bigger than 1 billion nodes
or edges in real-time after preprocessing. In addition, BGS
provides a series of hierarchy and graph exploration methods,
such as hierarchy view, hierarchy navigation, hierarchy search,
graph view, graph navigation, graph search, and other useful
interactions. These functionalities facilitate the exploration of very
large-scale graphs. To evaluate the effectiveness of BGS, we apply
BGS to several large-scale graph datasets, and discuss its
scalability, usability, and flexibility.

Introduction
Graphs, as a prevalent method to represent real world

datasets, are widely used in a diverse range of fields, like social
network, Internet network, citation network, etc. Graph
visualization is an intuitive and fundamental technique to
understand relations within graph data. Until now, many
visualization techniques and systems have been developed in a
variety of domains. However, as graphs grow exponentially in size,
we find existing visualization systems have more and more
difficulty to visualizing such large-scale graphs in application.

When visualizing large-scale graphs, there are several
fundamental issues that impair graph visualization, such as
memory issues, display issues, layout issues, and interaction issues.
Also, all the issues are getting worse and worse with the increase
of graph size.

To alleviate these issues, a great number of visualization
techniques have been proposed over the last few decades. We
present a graph visualization system called BGS which is designed
to visualize large-scale graphs by combining several ideas from
prevailing graph visualization systems, and overcomes their
drawbacks in dealing with the above issues. For BGS, the
fundamental task is to visualize very large-scale graphs that are too
large to fit into main memory, and interact with such graphs
efficiently.

According to Shneiderman’s visualization principle of
“Overview fast, zoom and filter, then details-on-demand” [1], BGS
provides hierarchy view and graph view that allow us to navigate
along the hierarchy by expanding or collapsing clusters, zooming
in or zooming out to observe details or overviews, highlighting and
focusing on vertices. To realize such manipulations, the basic
technique we used is graph hierarchy, which is widely used in
many visualization systems [2] [3] [4]. Graph hierarchy was
proposed to visualize a graph at multiple layers, which can reduce
the number of displayed vertices while preserving structural
information. At the same time, graph hierarchy provides us a series

of abstractions on original graph data. The meaningful abstractions
not only enhance layout performance and rendering, but also
reduce visual complexity in visualization.

To construct graph hierarchical structure, clustering is broadly
applied by researchers to create hierarchies on graphs, which
discovers groups or communities based on a certain semantics and
abstracts them recursively. Clustering includes content-based
clustering and structure-based clustering. Content-based clustering
is one clustering method based on the meaning of attributes, which
only works for performing clustering on attributed graphs. Since
BGS is designed as a general visualization system, it uses one type
of structure-based clustering methods-Louvain clustering
technique [5] to build the hierarchy

In term of architecture, BGS is developed on several
platforms: Spark [6], R [7], Rstudio [8], and Shiny [9]. Spark is a
distributed computing framework deployed on supercomputers,
which acts as a back-end platform working on graph hierarchy
construction, graph filtering, and aggregation etc. Shiny works as
front-end to visualize graphs in web. R and Rstudio act as
intermediate link that is responsible for communication with back-
end and front-end. This architecture makes our tool very powerful
in dealing with large-scale graphs. Theoretically, adding more
computers allows for handling larger graphs. In addition, BGS
provides two visualization modes (Local-Memory mode and
Distributed-Memory mode) and two view modes (Minimum Mode
and Add-Up Mode). The visualization modes and view modes
have four different combination modes. All these combinations
modes are helpful in dealing with different occasions. This is a
unique feature for our tool.

In summary, the main contributions of our visualization tool
are as follows.

• The architecture of BGS brings significant increase on
graph visualization scalability, which makes BGS capable of
visualizing graphs with billion-scale vertices or edges. After
clustering on vertices, BGS allows for real-time interaction with
graphs that would normally be too large for visualization.

• BGS uses an efficient clustering technique in hierarchy
construction-Louvain clustering, which is the optimal combination
of speed and accuracy, and implements it in distributed computing
system.

• BGS provides two visualization modes and two view
modes. These techniques allow us to explore hierarchy and graph
based on users' needs and visualization efficiency.

• BGS supports direct search on hierarchy view and graph
view by vertices attribute(s) or edges attribute(s), which helps
users identify interesting vertices or edges promptly.

Related Work
Until now, a variety of graph visualization systems have been

proposed, such as ASK-GraphView [4], CGV [10], TeGViz [11],
GraphVizdb [12], Network Explorer [13], Vizster [14], ZAME
[15], Matrix Zoom [16], etc. In this section, we analyze these

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 378-1

https://doi.org/10.2352/ISSN.2470-1173.2018.01.VDA-378
© 2018, Society for Imaging Science and Technology

visualization tools, discuss their strengths and weaknesses, and talk
about how BGS takes advantage of their merits and overcomes
their drawbacks in architecture, graph representation, graph
exploration, interaction etc.

In architecture, GraphVizdb uses database-MySQL as server
for storing graph data and WebUI as client for visualization
interface. TeGViz uses a distributed system as server and adjacent
matrix to represent graphs. BGS has a similar client-server mode
to GraphVizdb and TeGViz. This mode can greatly increase graph
visualization scalability. BGS uses a distributed system as server
for graph data manipulation and WebUI as client for graph
visualization. This architecture takes the advantage of high
efficiency in distributed system and flexibility in WebUI.

In graph representation, TeGViz, Matrix Zoom, and ZAME
are developed using adjacency matrices for graph visualization.
Compared to node-link diagram, adjacency matrix has one major
disadvantage in generating hierarchy from original graph because
clustering on adjacent matrix cannot be sophisticated. In addition,
users may have more difficulty in understanding graph structures
in adjacency matrix than in node-link representation since matrix
representation is not intuitive when showing structural information.
For example, neighbors are not displayed close to each other in
adjacency matrix. Third, considering that hierarchy is brought into
BGS, only a small subgraph is visualized in most cases, and node-
link can effectively display sparse graphs when they have less than
million-scale vertices. Thus, we choose node-link representation in
BGS system instead of adjacency matrix to represent graphs in
visualization.

In graph exploration, ASK-GraphView and Network Explorer
are the two visualization tools that are the most similar to our BGS.
They both focus on exploring a graph interactively by clustering on
the graph and navigating along those clusters in top-down manner.
The vertices that users are interested are discovered during
exploration process. Unfortunately, on one hand, the hierarchies in
ASK-GraphView and Network Explorer are too simple to offer
much help. On the other hand, ASK-GraphView and Network
Explorer cannot generate crossover links between different layers.
The crossover edges are meaningful in attributed graphs because
they can show the relation between two nodes at different
abstraction layers. Our visualization system provides rich
functionality within hierarchy view and supports generation of
such crossover edges while expanding or collapsing clusters in
graph view. To our knowledge, this is unique feature of BGS.

In interaction, CGV is one of the best interactive graph
visualization system because it provides extensive interactions,
including dynamic filtering, graph lenses, and some basic
interactions, such as zooming, lock/unlock, brushing,
expand/collapse clusters etc. Vizster is another interactive
visualization software for online social networks, which has some
basic interactions, navigation, search, and other functionalities.
Such well-designed interactions in above two visualization systems
offer great convenience for users to seek graph data. Therefore, we
implement most of those interactions and integrate them into BGS.

In summary, by investigating those existing graph
visualization systems, we develop a new visualization tool which
integrates many state-of-the-art visualization techniques. The BGS
can outperform existing visualization systems in scalability,
efficiency, and flexibility.

Methodology
The existing graph visualization systems provide us many

techniques to solve various issues in graph visualization. Based on

the existing visualization systems, we designed our new
visualization software for visualizing large-scale graphs. In this
section, we mainly elaborate new techniques used in BGS and
discuss how BGS deals with the issues and challenges in large-
scale graph visualization.

Architecture
One major issue in large-scale graph visualization is the

scalability caused by the resource/capacity limits in single
machine. To increase the scalability, we attempt to use multiple
machines and aim for linear performance gain on the number of
machines in graph visualization. Thus, we bring a distributed
computing system-Spark into BGS development. Figure 1 shows
the architecture of BGS. The Spark works on HPC clusters as a
server (back-end) undertaking heavy computation tasks like
clustering, filtering, aggregation etc. Shiny and visNetwork [17]
act as the client (front-end) interpreting graph data and displaying
the graph in a WebUI [9]. R and RStudio act as an intermediate
module that works for the communication between client and
server. R is connected to Spark via Sparklyr [20]. Sparklyr is a R
package which provides a complete dplyr [18] backend and enable
R to manipulate Spark. Shiny and visNetwork both are R packages.
The former is a web application framework and provides a
visualization container for graph, the latter works on graph
visualization. Compared to visualization tools running on single
machine, BGS has great advantages in scalability because it
assigns heavy computation tasks to a distributed computing system
which can work in parallel. Also, this architecture allows BGS to
utilize all resource across multiple machines, which save huge
amount of time to transfer graph data between memory and disk
when dealing with large-scale graphs.

Figure 1: Architecture of BGS

Hierarchy
For dense graphs or large-scale graphs, some techniques are

useful to maintain readability of graph visualization, such as
dimensionality reduction [19], layout, and hierarchical abstraction.
In BGS, we decide to use hierarchical abstraction because of the
following reasons. First, since the goal of BGS is to visualize
large-scale graphs with billion-scale vertices, hierarchy can greatly
reduce the overlaps for very large-scale graphs. In addition,
hierarchy support vertical navigation or horizontal navigation by
expanding/collapsing clusters to explore the graph. Third, when
using hierarchy, only a small subgraph in which users are
interested is visualized, which can tremendously reduce expensive
layout computation by avoiding computing the layout for the
whole graph. The layout for the small subgraph can be done at the
rendering stage in real-time.

BGS uses improved Louvain clustering algorithm [5] to build
hierarchical structure. Its complexity is linear with respect to the
number of vertices. Louvain algorithm can be implemented in a
distributed computing system without much difficulty, which
allows us to perform clustering on very large-scale graphs.

Graph Data Definition

378-2
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

Our visualization system operates on undirected and directed
graphs G = (V, E) where V and E represent the set of vertices and
edges respectively. The hierarchy is generated from the original
graph G recursively. If each layer of the hierarchy denotes Gi (Vi,
Ei), then G0 (V0, E0) is G (V, E), and Gi (Vi, Ei) is abstracted from
Gi-1 (Vi-1, Ei-1).

For hierarchy tree, we define the following concepts:

 T: the whole hierarchy tree
 Ti : the subtrees at ith level.
 Leaves (T): set of leaves of T. Leaves (T) = V0 = V.
 Children (Ti): the children of subtree Ti . Children (Ti) =

Vi , Children (T0) = V0 = V.

Layers Gi describes layer information. Tree Ti defines vertical
information. {(Ti , Gi) , 0 <= i < h} consists of the whole hierarchy
of the graph, where h is the depth of the hierarchy.

Visualization
After clustering on original graph and generating hierarchy

data, BGS will load the hierarchy data into Spark for visualization.
In BGS, hierarchy view and graph view both are provided. For
hierarchy view, BGS provides hierarchy expansion, hierarchy
search, and hierarchy selection. For graph view, we are also
allowed to do graph expansion, graph search, and graph selection.
In both views, some useful decorations and interactions are
presented in BGS, which aid us in graph exploration. The
following sections will discuss each functionality in detail.

Hierarchy View and Graph View
Hierarchy view is an approach to visualize part of the

hierarchy generated from original graph. Hierarchy view only
provides vertical links amid clusters or nodes at different layers,
instead of horizontal links. Graph view, on the contrary, only
offers horizontal links or reduced horizontal links among clusters
or nodes. Clusters’ vertical information is absorbed by their
children with expansion in graph view. Hierarchy view offers us
high level abstractions of the original graph. More importantly,
hierarchy view can easily locate interesting nodes, which can help
users to find the correct clusters to expand to reach the interesting
nodes in graph view. Hierarchy view and graph view work
together coordinately to display whole graph data.

View Mode
To satisfy users’ different demands in graph visualization, we

design two modes, Minimum mode and Add-Up mode, for
hierarchy view and graph view in BGS based on different
principles. In Minimum mode, BGS allows users to focus on
current expanded clusters or nodes. The previously expanded
clusters or nodes will be automatically collapsed into a cluster that
is a sibling of the cluster/node or a sibling of its predecessors. In
this mode, only one cluster or node is permitted to reach lower
layers of the hierarchy at one time, which maintains high
efficiency in large-scale graph visualization. In Add-Up mode,
BGS allows users to focus on multiple expanded clusters or nodes.
The previously expanded clusters or nodes will be preserved
instead of collapsed. In this mode, users can observe detailed
relations amid multiple clusters or nodes. Minimum mode and
Add-Up mode are offered in both hierarchy view and graph view,
which can serve users’ fundamental visualization requirements.

Hierarchy Exploration
Hierarchical structure represents graph’s abstraction at

different levels, which shows which clusters or nodes belong to
which group or cluster. In an attributed graph, the hierarchy may

have specific meaning at each level. For example, the flight graph
in Case Study, flights can be regarded as graph edges which
connect two different airports. For each flight, it has some related
information, such as departure airport, departure city, departure
country, departure continent, arrival airport, arrival city, arrival
country, and arrival continent. From the fight graph, we can
obviously abstract it at four levels: airport level, city level, country
level, and continent level. For international flights, we can observe
it at country level or even continent level, which shows the
connection from one country to another or from one continent to
another. For domestic flights, we focus on city level, from one city
to another city. From the hierarchical structure, we can easily find
graph nodes-airports. Hierarchy exploration includes hierarchy
layer/level selection, hierarchy expansion, and hierarchy search.

a) Hierarchy layers Selection
When exploring graph hierarchical structures, users probably

do not want to start with only one top level cluster because it
cannot convey much background information for users. BGS deals
with such problem by allowing users to set serval top levels for
observation at the beginning. If one hierarchy has depth h, and the
initial hierarchy has s layers, then the initial hierarchy is {Ti, h-s +1
< i <=h} which provides informative context for users to explore
the graph hierarchy. Also, the several top levels in the hierarchy
will consistently exist with expanding clusters. For example,
Figure 2 shows selecting top two layers in hierarchy view.

Figure 2: hierarchy layer selection.

b) Hierarchy Expansion
Hierarchy expansion is a major approach to find out where

one node or cluster stays in the hierarchy, which provides a top
down manner to explore graph hierarchical structure. Since BGS
has two view modes for hierarchy view and graph view, there are
two expansion modes in hierarchy expansion: Minimum mode
hierarchy expansion and Add-Up hierarchy expansion. To illustrate
the two modes, one simple graph hierarchy is used in Figure 3 to
explain the two concepts. Different layers can be differentiated in
different colors (red: layer 3; purple: layer 2; green: layer 1; blue:
layer 0).

Figure 3: original graph hierarchy

As we mentioned before, there are two hierarchy expansion
modes: Minimum hierarchy expansion and Add-Up hierarchy
expansion. In Minimum mode, which is demonstrated in figure 4,

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 378-3

the initial hierarchy layers selection is top 3, when expanding one
cluster (node 13), there will be out-going links generated from the
cluster to connect its children (edge from 13 to 1, from 13 to 12).
Previous expanded cluster (node 16) whose children (node 7 and 8)
do not belong to its siblings or its predecessors and their siblings

will be collapsed if previous expanded cluster does not belong to
initial hierarchy (node 7 and node 8 are collapsed into node 16,
node 16 belongs to initial hierarchy). Minimum hierarchy
expansion only allows one cluster/node, its siblings, and its
predecessors and their siblings in hierarchy to be visualized.

Figure 4: hierarchy expansion at Minimum mode

In Add-Up mode, for example in Figure 5, when expanding
one cluster (node 13), just as Minimum mode, it will create out-
going links from the cluster to connect its children (edge from 13
to 1, from 13 to 2), but previous expanded clusters’ children (node
7 and node 8) will be always maintained, even though they are not

siblings of the currently expanded cluster (node 13), or
predecessors and their siblings of the currently expanded cluster.
Add-Up mode allows multiple clusters/nodes, their siblings, and
their predecessors in hierarchy to be visualized.

Figure 5: hierarchy expansion at Add-Up mode

c) Hierarchy Search
Hierarchy search is designed to display one node and its

hierarchy path from root. The hierarchy path can tell users where
the destination node is, how to identify the node, and which cluster
to expand in graph view. When users have no background in
hierarchy abstraction, hierarchy search becomes necessary and
indispensable to explore a graph. In hierarchy search, hierarchy

path is generated based on a node index/attributes. Likewise,
hierarchy search also has two modes: Minimum mode and Add-Up
mode. Minimum mode only allows one input of node information.
In Add-Up mode, users can search arbitrary number of nodes. For
example, in Figure 6, (a) search node 1 or 2 at Minimum mode, (b)
search node 1 or 2, and 9 or 10 at Add-Up mode.

(a) (b)

Figure 6: hierarchy search at Minimum mode (a) and Add-up mode (b).

Graph Exploration
Graph exploration is a core part of BGS, which provides

graph views at different layers. When expanding clusters, there
will be links generated across multiple layers, called crossover
edges. Crossover edges are extremely important links when we
make an abstraction on an original graph. It conveys different
meanings with edges in original graph. For example, in flight data,
the original graph shows connections between airports. Crossover

edges can represent connections between airport to city, airport to
country, airport to continent, city to country, city to continent, or
country to continent. From crossover edges in graph view, we can
straightforwardly answer such questions as: whether we can travel
from one airport to another city, country, or continent? Whether we
can travel from one city to another country, or continent? Whether
we can travel from one country to another continent? All the
answers can be found in graph view in the form of crossover

378-4
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

edges. Graph Exploration is a crucial aspect of BGS that includes
graph layer selection, graph expansion, and graph search.

a) Graph Layer Selection
Initially, BGS starts with the top layer graph Gh (h is the depth

of the hierarchy) at graph view. In order to help users quickly
identify interesting vertices, users are permitted to select another
starting layer Gi to visualize. For example, in Figure 7, the third
layer is chosen as the starting layer. Based on this layer, users can
expand clusters recursively to navigate down layer by layer. Graph
Layer Selection is different from hierarchy selection, which selects
several top layers, but only one layer is chosen in graph layer
selection.

Figure 7: graph layer selection

b) Graph Expansion
Graph expansion is a fundamental measure to navigate down

along the hierarchical structure. During the expansion, users can
observe the hierarchy abstractions and their relations in a top-down
manner, until they reach the destination node. At this moment,
graph view is displaying overall information about the target node,
including vertical information and horizontal information. The
vertical information refers to the relation between the target node
with upper layer clusters, or even down layer nodes/clusters if the
target node is not a leaf node. The horizontal information denotes
the relation between the target node and its neighbors at the same
layer.

In graph expansion, one of the challenging tasks is to
determine whether crossover edges exist between the target
cluster’s children and the target cluster’s neighbors. To check the
crossover edges, all pairs of neighbors and children are reduced to
the same layer. Like hierarchy expansion, graph expansion has two
view modes: Minimum mode and Add-Up mode. In Minimum
mode, demonstrated in Figure 8, when expanding one cluster
(cluster 20), it will be replaced by its children (node 15 and 16).
Previously expanded clusters (node 21) whose children (node 17
and 18) do not belong to the new expanded cluster’s (cluster 20)
siblings, or its predecessors and their siblings will be collapsed into
one sibling (cluster 21) of the new expanded cluster, or one sibling
of the new expanded cluster’s predecessors. Minimum mode only
allows one cluster, its siblings, and its predecessors and their
siblings to be visualized.

Figure 8: graph expansion at Minimum mode

In Add-Up mode, demonstrated in Figure 9, when expanding
one cluster (cluster 20), it will be replaced by its children (node 15
and 16). For previously expanded clusters (cluster 21), their
children (node 17 and 18) are always retained, even though they
are not siblings of the newly expanded cluster (cluster 20), or
predecessors or the siblings of the newly expanded cluster. Add-
Up mode allows multiple clusters/nodes, their siblings, and their
predecessors in the hierarchy to be visualized.

Figure 9: graph expansion at Add-Up mode

c) Graph Search
Graph search in BGS can be regarded as one-step probing of

nodes or edges. When visualizing a large-scale graph, we will
probably have difficulty in finding target node if we start from
starting graph view. Even if users have hierarchy background
information, they still have to expand clusters to navigate down to
find the target node. BGS supports probing vertex/vertices or
edge/edges by index or its/their attributes. If users already have
target vertices or edges, the identification of such vertices or edges
in large-scale graphs is greatly facilitated. In BGS, users can
identify one vertex/edge, or more vertices/edges. BGS will show
the target vertices/edges and their neighbors. If two target vertices
have common neighbors or two target edges have common
vertices, the probing results are connected. For example, in figure
10, (a) search node 16, (b) search node 16 and 18.

(a) (b)

Figure 10: Graph Search at one node (a): node 16; and two nodes (b): node
16 and 18

Visualization Mode
When expanding clusters in graph view, one huge computing

task is creating crossover edges. If one cluster has n neighbors and
m children, there will be m*n potential crossover edges to be
generated. Since Spark provides the back-end for BGS, all vertices,
edges and hierarchy data are stored in Spark. When generating
crossover edges, R needs to send 2*d*m*n request to obtain
required graph data (d is the average layer distance between
cluster’s neighbors and children), which causes tremendous
communication overheads. To solve this issue, we present two
visualization modes on BGS: Local-Memory mode and
Distributed-Memory mode.

a) Local-Memory mode
Local-Memory mode is designed for small graphs. When

visualizing a small graph, if graph data can be completely loaded
into main memory of the local machine, BGS will do this before
the graph view rendering. Crossover edge generation is done on

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 378-5

local machine. Thereby, great communication overheads can be
avoided.

b) Distributed-Memory mode
Local-Memory mode only works well on small graphs, so we

designed another visualization mode, Distributed-Memory mode,
for large graphs. In this mode, the graph and its hierarchy data are
distributed into multiple machines instead of the local machine. To
minimize the data requests to Spark, we must first figure out what
graph data is really needed. When expanding clusters, only
vertices, edges, and hierarchy on the cluster’s neighbors and
children are used in crossover edge generation. Second, we retrieve
exact graph data from Spark only once. In this way, the number of
data requests can be reduced to d*m*n +2. This measure makes
BGS only keep a small necessary graph data in local memory for
rendering, which not only can increase BGS’s efficiency but also
maintain its visualization scalability.

Decoration and Interactions
To increase readability, BGS provides some decoration to

modify hierarchy view and graph view and interactions help us
explore details in both views. For graph view, BGS allows us to
change vertex shape, edge shape, graph layout, etc. For hierarchy
view, we can adjust level separation, hierarchy direction, layout
etc. These decorations are helpful to increase the readability for
both views.

From Shneiderman’s visualization principle, we can realize
the importance of Interaction in graph exploration. According to
BGS’s visualization characteristics, we provide the following
interactions for BGS.

a) Zooming in/out
Zooming, operated by mouse, is very useful interaction to

adjust the viewpoint to focus on certain vertices or edges, which is
fundamental to graph visualization interaction. Before zooming,
we first need to find a focus, then zoom in or out by scrolling with
the mouse. In conjunction with dragging and moving nodes,
zooming can help us find details in graph view and hierarchy view.

b) Vertex identification
When many nodes are visualized in graph view, it may be not

easy to find where the target node is. BGS provides vertex
identification by telling the system which vertex users want to
focus, then the viewpoint will move to the target node. In the
functionality, users can then tune zoom factors to make the
viewpoint a proper distance.

c) Vertex Selection and layer selection
Graph selection refers to highlighting one vertex or group of

vertices in the visualization interface. Typically, the selected vertex
or group of vertices are exhibited in a different color to
differentiate with other unselected subgraphs. For example, when
visualizing a social network, users can select one person or a group
of people in whom users are interested. Only such selected people
and their relations become noticeable. This functionality is
beneficial for visualization and makes us focus on specific
information.

Case Study
To illustrate BGS’s functionalities and scalability, we present

three case studies to find out what BGS can achieve. The three
graph datasets are Facebook, Friendster, and Flight (see Table 1).
The Facebook graph is a small social network. Friendster is a large
graph with more than 1 billion edges. These three datasets can
cover most cases: small graph and large graph, attributed graph
and non-attributed graph, where the functionalities in BGS will be
evaluated. In both Facebook and Friendster graphs, vertices

represent users, edges refer to their friendship between two users.
The flight graph is an attributed graph which represents flights
from one airport to another. Each airport has some attributes, for
example, airport name, city, country, and continent. The case
studies are to verify the usage of BGS in various scenarios. We
will observe BGS’s performance on functionalities, scalability, and
interactions. BGS can be thoroughly evaluated from these three
aspects.

Table 1: Graph datasets for visualization

BGS Functionalities
a) Hierarchy layers selection
The hierarchy layers selection refers to allowing users to

choose several top layers to visualize in the initial hierarchy
structure, which provides the fundamental background information
for users. Figure 11 is two views of hierarchy layers selection on
Flight data. (a) shows the top two layers; we can expand hierarchy
based on the continent layer to search for country, city, or airport.
For example, if the target cluster/node is the United States, then the
node of North America should be expanded. If we seek airports at
Atlanta, we will continue to expand the cluster of the United Sates.
(b) shows the top three layers of the hierarchy, which reaches
country layer. In Figure 11 (b) there are six clusters representing
six continents. From this hierarchy view, users can expand one
country to look for cities or airports.

How many layers should be selected in initial hierarchy view
depends on users. Fewer or more layers selected both have merits
and drawbacks. If more layers are selected in the initial hierarchy
view, it can convey more abundant information to users, but it may
cause a burden for visualization and lead to many overlaps. If
fewer layers are selected in the initial hierarchy view, it can reduce
overlaps in visualization, but less information can be found in the
initial hierarchy view.

(a)

Graph Vertices Edges Attributed File Size

Facebook 4,039 88,234 No 1MB

Flight 3,125 58,568 Yes 1MB

Friendster 65,608,366 1,806,067,135 No 30GB

378-6
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

(b)

Figure 11: Hierarchy layers selection (a) top 2 layers; (b) top 3 layers of Flight
Graph

b) Hierarchy view
Figure 12 is the hierarchy view on Friendster graph in

Minimum mode. Figure 13 is the hierarchy view on Flight graph in
Add-Up mode. The two modes of hierarchy view are used in
different scenarios. If users want to search hierarchy for one node,
then Minimum mode is a better choice because it only shows the
minimized hierarchy, irrelevant hierarchical structures are
collapsed, which improves visualization efficiency and reduces
overlaps. For example, Figure 12 displays the hierarchy of node
101, from level 7 to level 0. Only node 101, its siblings, its
predecessors, and their siblings are displayed. If users wish to
observe the hierarchy including two target nodes, Add-up mode is
more suitable since it can show the combination of two hierarchies,
which allows us to explore some insights from the hierarchy easily.
For instance, Figure 13 is showing hierarchy of Nadi international
airport and Auckland international airport. From the hierarchy we
know both airports belong to different countries but both are
located in Oceania.

Figure 12: Hierarchy view of Friendster Graph in Minimum mode

Figure 13: Hierarchy view of Flight Graph in Add-Up mode. Leaf Nodes: Nadi
International Airport (Nandi, Fiji, Oceania) and Auckland International Airport
(Auckland, New Zealand, Oceania)

c) Graph view
Figure 14 shows the graph view of Flight data. From the initial
graph view, we expand the cluster North America, the cluster
Mexico within North America, Mexico City within Mexico, until
Licenciado Benito Juarez International Airport is located. Since
we use the interaction of vertex selection in the graph view, the
node of Licenciado Benito Juarez International Airport and its
direct neighbors are highlighted, other irrelevant nodes/clusters
become gray. To zoom in on Licenciado Benito Juarez
International Airport, the links starting from the airport
demonstrate which continents, countries, and cities the airport can
reach with non-stop flights, which illustrates the significance of
crossover edges in graph view.

Figure 14: Graph view of Licenciado Benito Juarez International Airport
(Mexico City) from the Flight graph.

d) Graph search

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 378-7

Graph search in BGS not only includes vertex search but also edge
search. In vertex search, for single node search or multiple nodes
search, node id or node attributes are accepted. In edge search,
single edge search or multiple edges search, edge id or edge
attributes are taken by BGS as well. When doing a search on a
single node, it will show one node and its neighbors. When doing a
search on multiple nodes, the two nodes and their neighbors and
common neighbors are displayed. For example, Figure 15 shows
the search result from Jackson Evers and Birmingham international
airport on Flight graph. Their common neighbors are displayed in
the middle. Graph edge search works based on the same principle.
Graph search is an effective approach to explore original graph in
one step. It is important when visualizing a very large graph.

Figure 15: Graph search view of Jackson Evers international airport and
Birmingham international airport from the Flight graph

BGS Scalability
From the case studies, our visualization system can easily

visualize graphs with billion scale edges. Table 2 shows the
clustering time, loading time, and visualization time for the three
graphs using BGS. Since Facebook and Flight are small graphs, we
use Local-Memory mode in order to obtain high efficiency. For
Friendster graph, we can only use Distributed-Memory mode
because it cannot be loaded into local memory because of large
graph size.

Table 2: clustering time, loading time, and visualization time for

graph datasets

Compared to ASK-GraphView, BGS has good visualization
efficiency due to its distributed architecture, which fundamentally
differentiates from ASK-GraphView. ASK-GraphView creates
separate files in disk when dealing with large-scale graphs. In
BGS, however, the whole graph data is kept in distributed memory
or local memory, it can quickly retrieve data from Spark and

visualize the graph in real time. Thus, BGS has a significant
improvement over ASK-GraphView in efficiency. Similarly, BGS
is a universal graph visualization tool which has no restrictions on
the graph’s structure and density. This feature increases BGS’s
flexibility in application.

Interactions
When using BGS on the Facebook graph and Flight graph, we

can instantly interact with BGS, for example, zooming in or out,
vertex identification, vertex selection or level selection, clustering
expanding etc. For the Friendster graph, we can feel a little delay
in interactions with BGS using distributed memory mode for such
a large graph. It takes some time to generate crossover edges when
expanding clusters.

In summary, BGS achieves our desired goal. Specifically,
users can visualize graphs through hierarchy view and graph view
while using BGS, and get some meaningful insights from the
exploration.

Discussion
Since BGS provides two view modes and two visualization

mode, when we apply BGS to various graphs, there will be four
combination modes. Generally, Minimum mode has constantly
efficiency. In Add-Up mode, efficiency gradually decreases with
expanding more clusters. Local-Memory mode has high efficiency,
but is only fit for small graphs. Distributed-Memory mode is fit for
large-scale graphs, but its visualization efficiency is not as good as
Local-Memory mode. This principle can guide users to choose
proper combination mode in graph visualization. Proper view
mode and visualization mode not only can enhance readability but
also improve visualization efficiency.

Apart from the above merits, BGS also has some limitations.
First, clustering on vertices must be performed before visualization
can take place. Second, BGS is highly dependent on the hardware
on which it runs and requires a great deal of memory in order to
load the hierarchical structure of a large graph. Finally, in
visualization, the response time is dependent on the number of
crossover edges generated between different levels when
expanding clusters in graph view, so when expanding a cluster
with a large number of neighbors and children it may take some
time to check whether it needs to generate crossover edges before
visualization.

Conclusion and Future Work
In this paper, we propose a scalable graph visualization

system that aims to visualize large-scale graphs efficiently. BGS is
developed on Spark, R, RStudio, and Shiny. Spark is a distributed
computing framework which acts as backend in BGS working on
clustering and visualization. This architecture brings BGS great
improvement on scalability and efficiency.

In visualization, BGS has hierarchy view and graph view.
Hierarchy view shows a series of high level abstractions, which
aids users to seek the correct clusters to expand in graph view. In
hierarchy view, we can do hierarchy expansion, hierarchy search,
and hierarchy selection. Likewise, graph view has graph
expansion, graph search, and graph selection. In both views, some
useful decorations and interactions are provided.

In addition, BGS has two view modes and two visualization
modes. We provide a summary of four combination modes in
Table 4, which offers us a guideline to opt for proper mode in
application.

Graph Clustering Loading Visualization Delay Visualization Mode

Facebook 49 s 1 min 1-3 s Local Memory

Flight
__

50 s 1-3 s Local Memory

Friendster 4.2 h 3 min about 20 s Distributed Memory

* Flight data is clustered by geographical location

378-8
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

This paper conducts three case studies, which cover the scope
of small graph, large graph, attributed graph, and non-attributed
graph. The study shows that BGS can satisfy our needs in graph
visualization in terms of efficiency and effectiveness.

Acknowledgments
This work has been supported by the United States Army

Corps of Engineers under Contracts W912HZ-17-C-0016 and
W912HZ-17-C-0015, by the U.S. Department of Defense, and by
the Pacific Northwest National Laboratory which is managed for
the U.S. Department of Energy by Battelle under Contract DE-
AC05-76RL01830.

Reference
[1] B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in Visual Languages, 1996. Proceedings.,
IEEE Symposium on, 1996, pp. 336–343.

[2] D. Archambault, T. Munzner, and D. Auber, “TopoLayout:
Multilevel graph layout by topological features,” IEEE Trans. Vis. Comput.
Graph., vol. 13, no. 2, pp. 305–316, 2007.

[3] J. Abello and J. Korn, “MGV: A system for visualizing massive
multidigraphs,” IEEE Trans. Vis. Comput. Graph., vol. 8, no. 1, pp. 21–38,
2002.

[4] J. Abello, F. Van Ham, and N. Krishnan, “ASK-Graph View: A large
scale graph visualization system,” IEEE Trans. Vis. Comput. Graph., vol.
12, no. 5, p. 669, 2006.

[5] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of community hierarchies in large networks,” Networks, pp. 1–6,
2008.

[6] Apache Spark, “Apache SparkTM-Lightning-Fast Cluster Computing,”
Spark.Apache.Org, 2015. .

[7] R. Ihaka and R. Gentleman, “R: a language for data analysis and
graphics,” J. Comput. Graph. Stat., vol. 5, no. 3, pp. 299–314, 1996.

[8] - RStudio Team, “RStudio: Integrated Development for R,” [Online]
RStudio, Inc., Boston, MA URL http//www. rstudio. com, p. RStudio, Inc.,
Boston, MA, 2016.

[9] W. Chang, J. Cheng, J. Allaire, Y. Xie, and J. McPherson, “Shiny:
web application framework for R,” R Packag. version 0.11, vol. 1, 2015.

[10] C. Tominski, J. Abello, and H. Schumann, “CGV - An interactive
graph visualization system,” Comput. Graph., vol. 33, no. 6, pp. 660–678,
2009.

[11] B. Jeon, I. Jeon, and U. Kang, “TeGViz: Distributed Tera-Scale
Graph Generation and Visualization,” in 2015 IEEE International
Conference on Data Mining Workshop (ICDMW), 2015, pp. 1620–1623.

[12] N. Bikakis, J. Liagouris, M. Krommyda, G. Papastefanatos, and T.
Sellis, “GraphVizdb: A scalable platform for interactive large graph
visualization,” in 2016 IEEE 32nd International Conference on Data
Engineering, ICDE 2016, 2016, pp. 1342–1345.

[13] J. A. Guerra-gomez, A. Wilson, J. Liu, and D. Davies, “Network
Explorer : Design , Implementation , and Real World Deployment of a
Large Network Visualization Tool,” Proc. Int. Work. Conf. Adv. Vis.
Interfaces - AVI ’16, pp. 108–111, 2016.

[14] J. Heer and D. Boyd, “Vizster: visualizing online social networks,” in
IEEE Symposium on Information Visualization, 2005. INFOVIS 2005.,
2005, pp. 32–39.

[15] N. Elmqvis, T. N. Do, H. Goodell, N. Henry, and J. D. Fekete,
“ZAME: Interactive large-scale graph visualization,” IEEE Pacific Vis.
Symp. 2008, PacificVis - Proc., pp. 215–222, 2008.

[16] J. Abello and F. Van Ham, “Matrix zoom: A visual interface to semi-
external graphs,” in Proceedings - IEEE Symposium on Information
Visualization, INFO VIS, 2004, pp. 183–190.

[17] B. V. Almende and B. Thieurmel, “visNetwork: Network
Visualization using ‘vis.js’ Library,” CRAN. 2016.

[18] H. Wickham and R. Francois, “The dplyr package,” R Core Team,
2016.

[19] S. Yan, D. Xu, B. Zhang, H. J. Zhang, Q. Yang, and S. Lin, “Graph
embedding and extensions: A general framework for dimensionality
reduction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 40–
51, 2007.

[20] https://spark.rstudio.com/

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 378-9

