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Abstract 

We present BGS (Big Graph Surfer), a scalable graph 
visualization tool that creates hierarchical structure from original 
graphs and provide interactive navigation along the hierarchy by 
expanding or collapsing clusters when visualizing large-scale 
graphs. A distributed computing framework-Spark provides the 
backend for BGS on clustering and visualization. This architecture 
makes it capable of visualizing a graph bigger than 1 billion nodes 
or edges in real-time after preprocessing. In addition, BGS 
provides a series of hierarchy and graph exploration methods, 
such as hierarchy view, hierarchy navigation, hierarchy search, 
graph view, graph navigation, graph search, and other useful 
interactions. These functionalities facilitate the exploration of very 
large-scale graphs. To evaluate the effectiveness of BGS, we apply 
BGS to several large-scale graph datasets, and discuss its 
scalability, usability, and flexibility. 

Introduction  
Graphs, as a prevalent method to represent real world 

datasets, are widely used in a diverse range of fields, like social 
network, Internet network, citation network, etc. Graph 
visualization is an intuitive and fundamental technique to 
understand relations within graph data. Until now, many 
visualization techniques and systems have been developed in a 
variety of domains. However, as graphs grow exponentially in size, 
we find existing visualization systems have more and more 
difficulty to visualizing such large-scale graphs in application.  

When visualizing large-scale graphs, there are several 
fundamental issues that impair graph visualization, such as 
memory issues, display issues, layout issues, and interaction issues. 
Also, all the issues are getting worse and worse with the increase 
of graph size.  

To alleviate these issues, a great number of visualization 
techniques have been proposed over the last few decades. We 
present a graph visualization system called BGS which is designed 
to visualize large-scale graphs by combining several ideas from 
prevailing graph visualization systems, and overcomes their 
drawbacks in dealing with the above issues. For BGS, the 
fundamental task is to visualize very large-scale graphs that are too 
large to fit into main memory, and interact with such graphs 
efficiently.   

According to Shneiderman’s visualization principle of 
“Overview fast, zoom and filter, then details-on-demand” [1], BGS 
provides hierarchy view and graph view that allow us to navigate 
along the hierarchy by expanding or collapsing clusters, zooming 
in or zooming out to observe details or overviews, highlighting and 
focusing on vertices. To realize such manipulations, the basic 
technique we used is graph hierarchy, which is widely used in 
many visualization systems [2] [3] [4]. Graph hierarchy was 
proposed to visualize a graph at multiple layers, which can reduce 
the number of displayed vertices while preserving structural 
information. At the same time, graph hierarchy provides us a series 

of abstractions on original graph data. The meaningful abstractions 
not only enhance layout performance and rendering, but also 
reduce visual complexity in visualization.  

To construct graph hierarchical structure, clustering is broadly 
applied by researchers to create hierarchies on graphs, which 
discovers groups or communities based on a certain semantics and 
abstracts them recursively. Clustering includes content-based 
clustering and structure-based clustering. Content-based clustering 
is one clustering method based on the meaning of attributes, which 
only works for performing clustering on attributed graphs. Since 
BGS is designed as a general visualization system, it uses one type 
of structure-based clustering methods-Louvain clustering 
technique [5] to build the hierarchy 

In term of architecture, BGS is developed on several 
platforms: Spark [6], R [7], Rstudio [8], and Shiny [9].  Spark is a 
distributed computing framework deployed on supercomputers, 
which acts as a back-end platform working on graph hierarchy 
construction, graph filtering, and aggregation etc. Shiny works as 
front-end to visualize graphs in web. R and Rstudio act as 
intermediate link that is responsible for communication with back-
end and front-end. This architecture makes our tool very powerful 
in dealing with large-scale graphs. Theoretically, adding more 
computers allows for handling larger graphs. In addition, BGS 
provides two visualization modes (Local-Memory mode and 
Distributed-Memory mode) and two view modes (Minimum Mode 
and Add-Up Mode). The visualization modes and view modes 
have four different combination modes. All these combinations 
modes are helpful in dealing with different occasions. This is a 
unique feature for our tool. 

In summary, the main contributions of our visualization tool 
are as follows. 

• The architecture of BGS brings significant increase on 
graph visualization scalability, which makes BGS capable of 
visualizing graphs with billion-scale vertices or edges. After 
clustering on vertices, BGS allows for real-time interaction with 
graphs that would normally be too large for visualization. 

• BGS uses an efficient clustering technique in hierarchy 
construction-Louvain clustering, which is the optimal combination 
of speed and accuracy, and implements it in distributed computing 
system.  

• BGS provides two visualization modes and two view 
modes. These techniques allow us to explore hierarchy and graph 
based on users' needs and visualization efficiency.  

• BGS supports direct search on hierarchy view and graph 
view by vertices attribute(s) or edges attribute(s), which helps 
users identify interesting vertices or edges promptly. 

Related Work 
Until now, a variety of graph visualization systems have been 

proposed, such as ASK-GraphView [4], CGV [10], TeGViz [11], 
GraphVizdb [12], Network Explorer [13], Vizster [14], ZAME 
[15], Matrix Zoom [16], etc. In this section, we analyze these 
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visualization tools, discuss their strengths and weaknesses, and talk 
about how BGS takes advantage of their merits and overcomes 
their drawbacks in architecture, graph representation, graph 
exploration, interaction etc.  

In architecture, GraphVizdb uses database-MySQL as server 
for storing graph data and WebUI as client for visualization 
interface. TeGViz uses a distributed system as server and adjacent 
matrix to represent graphs.  BGS has a similar client-server mode 
to GraphVizdb and TeGViz. This mode can greatly increase graph 
visualization scalability. BGS uses a distributed system as server 
for graph data manipulation and WebUI as client for graph 
visualization. This architecture takes the advantage of high 
efficiency in distributed system and flexibility in WebUI.  

In graph representation, TeGViz, Matrix Zoom, and ZAME 
are developed using adjacency matrices for graph visualization. 
Compared to node-link diagram, adjacency matrix has one major 
disadvantage in generating hierarchy from original graph because 
clustering on adjacent matrix cannot be sophisticated. In addition, 
users may have more difficulty in understanding graph structures 
in adjacency matrix than in node-link representation since matrix 
representation is not intuitive when showing structural information. 
For example, neighbors are not displayed close to each other in 
adjacency matrix. Third, considering that hierarchy is brought into 
BGS, only a small subgraph is visualized in most cases, and node-
link can effectively display sparse graphs when they have less than 
million-scale vertices. Thus, we choose node-link representation in 
BGS system instead of adjacency matrix to represent graphs in 
visualization.  

In graph exploration, ASK-GraphView and Network Explorer 
are the two visualization tools that are the most similar to our BGS. 
They both focus on exploring a graph interactively by clustering on 
the graph and navigating along those clusters in top-down manner. 
The vertices that users are interested are discovered during 
exploration process. Unfortunately, on one hand, the hierarchies in 
ASK-GraphView and Network Explorer are too simple to offer 
much help. On the other hand, ASK-GraphView and Network 
Explorer cannot generate crossover links between different layers. 
The crossover edges are meaningful in attributed graphs because 
they can show the relation between two nodes at different 
abstraction layers. Our visualization system provides rich 
functionality within hierarchy view and supports generation of 
such crossover edges while expanding or collapsing clusters in 
graph view. To our knowledge, this is unique feature of BGS.  

In interaction, CGV is one of the best interactive graph 
visualization system because it provides extensive interactions, 
including dynamic filtering, graph lenses, and some basic 
interactions, such as zooming, lock/unlock, brushing, 
expand/collapse clusters etc. Vizster is another interactive 
visualization software for online social networks, which has some 
basic interactions, navigation, search, and other functionalities. 
Such well-designed interactions in above two visualization systems 
offer great convenience for users to seek graph data. Therefore, we 
implement most of those interactions and integrate them into BGS.  

In summary, by investigating those existing graph 
visualization systems, we develop a new visualization tool which 
integrates many state-of-the-art visualization techniques. The BGS 
can outperform existing visualization systems in scalability, 
efficiency, and flexibility. 

Methodology 
The existing graph visualization systems provide us many 

techniques to solve various issues in graph visualization. Based on 

the existing visualization systems, we designed our new 
visualization software for visualizing large-scale graphs. In this 
section, we mainly elaborate new techniques used in BGS and 
discuss how BGS deals with the issues and challenges in large-
scale graph visualization. 

Architecture 
One major issue in large-scale graph visualization is the 

scalability caused by the resource/capacity limits in single 
machine. To increase the scalability, we attempt to use multiple 
machines and aim for linear performance gain on the number of 
machines in graph visualization. Thus, we bring a distributed 
computing system-Spark into BGS development. Figure 1 shows 
the architecture of BGS. The Spark works on HPC clusters as a 
server (back-end) undertaking heavy computation tasks like 
clustering, filtering, aggregation etc. Shiny and visNetwork [17] 
act as the client (front-end) interpreting graph data and displaying 
the graph in a WebUI [9]. R and RStudio act as an intermediate 
module that works for the communication between client and 
server. R is connected to Spark via Sparklyr [20]. Sparklyr is a R 
package which provides a complete dplyr [18] backend and enable 
R to manipulate Spark. Shiny and visNetwork both are R packages. 
The former is a web application framework and provides a 
visualization container for graph, the latter works on graph 
visualization. Compared to visualization tools running on single 
machine, BGS has great advantages in scalability because it 
assigns heavy computation tasks to a distributed computing system 
which can work in parallel. Also, this architecture allows BGS to 
utilize all resource across multiple machines, which save huge 
amount of time to transfer graph data between memory and disk 
when dealing with large-scale graphs. 

 
Figure 1: Architecture of BGS 

Hierarchy 
For dense graphs or large-scale graphs, some techniques are 

useful to maintain readability of graph visualization, such as 
dimensionality reduction [19], layout, and hierarchical abstraction. 
In BGS, we decide to use hierarchical abstraction because of the 
following reasons. First, since the goal of BGS is to visualize 
large-scale graphs with billion-scale vertices, hierarchy can greatly 
reduce the overlaps for very large-scale graphs. In addition, 
hierarchy support vertical navigation or horizontal navigation by 
expanding/collapsing clusters to explore the graph. Third, when 
using hierarchy, only a small subgraph in which users are 
interested is visualized, which can tremendously reduce expensive 
layout computation by avoiding computing the layout for the 
whole graph. The layout for the small subgraph can be done at the 
rendering stage in real-time. 

BGS uses improved Louvain clustering algorithm [5] to build 
hierarchical structure. Its complexity is linear with respect to the 
number of vertices. Louvain algorithm can be implemented in a 
distributed computing system without much difficulty, which 
allows us to perform clustering on very large-scale graphs. 

Graph Data Definition 
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Our visualization system operates on undirected and directed 
graphs G = (V, E) where V and E represent the set of vertices and 
edges respectively.  The hierarchy is generated from the original 
graph G recursively. If each layer of the hierarchy denotes Gi (Vi, 
Ei), then G0 (V0, E0) is G (V, E), and Gi (Vi, Ei) is abstracted from 
Gi-1 (Vi-1, Ei-1).  

For hierarchy tree, we define the following concepts: 

 T: the whole hierarchy tree 
 Ti : the subtrees at ith level. 
 Leaves (T): set of leaves of T. Leaves (T) = V0 = V. 
 Children (Ti): the children of subtree Ti . Children (Ti) = 

Vi , Children (T0) = V0 = V.  

Layers Gi describes layer information. Tree Ti defines vertical 
information. {(Ti , Gi) , 0 <= i < h} consists of the whole hierarchy 
of the graph, where h is the depth of the hierarchy. 

Visualization 
After clustering on original graph and generating hierarchy 

data, BGS will load the hierarchy data into Spark for visualization. 
In BGS, hierarchy view and graph view both are provided. For 
hierarchy view, BGS provides hierarchy expansion, hierarchy 
search, and hierarchy selection. For graph view, we are also 
allowed to do graph expansion, graph search, and graph selection. 
In both views, some useful decorations and interactions are 
presented in BGS, which aid us in graph exploration. The 
following sections will discuss each functionality in detail. 

Hierarchy View and Graph View 
Hierarchy view is an approach to visualize part of the 

hierarchy generated from original graph. Hierarchy view only 
provides vertical links amid clusters or nodes at different layers, 
instead of horizontal links. Graph view, on the contrary, only 
offers horizontal links or reduced horizontal links among clusters 
or nodes. Clusters’ vertical information is absorbed by their 
children with expansion in graph view. Hierarchy view offers us 
high level abstractions of the original graph. More importantly, 
hierarchy view can easily locate interesting nodes, which can help 
users to find the correct clusters to expand to reach the interesting 
nodes in graph view. Hierarchy view and graph view work 
together coordinately to display whole graph data. 

View Mode 
To satisfy users’ different demands in graph visualization, we 

design two modes, Minimum mode and Add-Up mode, for 
hierarchy view and graph view in BGS based on different 
principles. In Minimum mode, BGS allows users to focus on 
current expanded clusters or nodes. The previously expanded 
clusters or nodes will be automatically collapsed into a cluster that 
is a sibling of the cluster/node or a sibling of its predecessors. In 
this mode, only one cluster or node is permitted to reach lower 
layers of the hierarchy at one time, which maintains high 
efficiency in large-scale graph visualization. In Add-Up mode, 
BGS allows users to focus on multiple expanded clusters or nodes. 
The previously expanded clusters or nodes will be preserved 
instead of collapsed. In this mode, users can observe detailed 
relations amid multiple clusters or nodes. Minimum mode and 
Add-Up mode are offered in both hierarchy view and graph view, 
which can serve users’ fundamental visualization requirements. 

Hierarchy Exploration 
Hierarchical structure represents graph’s abstraction at 

different levels, which shows which clusters or nodes belong to 
which group or cluster. In an attributed graph, the hierarchy may 

have specific meaning at each level. For example, the flight graph 
in Case Study, flights can be regarded as graph edges which 
connect two different airports. For each flight, it has some related 
information, such as departure airport, departure city, departure 
country, departure continent, arrival airport, arrival city, arrival 
country, and arrival continent. From the fight graph, we can 
obviously abstract it at four levels: airport level, city level, country 
level, and continent level. For international flights, we can observe 
it at country level or even continent level, which shows the 
connection from one country to another or from one continent to 
another. For domestic flights, we focus on city level, from one city 
to another city. From the hierarchical structure, we can easily find 
graph nodes-airports. Hierarchy exploration includes hierarchy 
layer/level selection, hierarchy expansion, and hierarchy search. 

a) Hierarchy layers Selection 
When exploring graph hierarchical structures, users probably 

do not want to start with only one top level cluster because it 
cannot convey much background information for users. BGS deals 
with such problem by allowing users to set serval top levels for 
observation at the beginning. If one hierarchy has depth h, and the 
initial hierarchy has s layers, then the initial hierarchy is {Ti, h-s +1 
< i <=h} which provides informative context for users to explore 
the graph hierarchy. Also, the several top levels in the hierarchy 
will consistently exist with expanding clusters. For example, 
Figure 2 shows selecting top two layers in hierarchy view.  

 

Figure 2: hierarchy layer selection. 

b) Hierarchy Expansion 
Hierarchy expansion is a major approach to find out where 

one node or cluster stays in the hierarchy, which provides a top 
down manner to explore graph hierarchical structure. Since BGS 
has two view modes for hierarchy view and graph view, there are 
two expansion modes in hierarchy expansion: Minimum mode 
hierarchy expansion and Add-Up hierarchy expansion. To illustrate 
the two modes, one simple graph hierarchy is used in Figure 3 to 
explain the two concepts. Different layers can be differentiated in 
different colors (red: layer 3; purple: layer 2; green: layer 1; blue: 
layer 0).  

 

Figure 3: original graph hierarchy 

As we mentioned before, there are two hierarchy expansion 
modes: Minimum hierarchy expansion and Add-Up hierarchy 
expansion. In Minimum mode, which is demonstrated in figure 4, 
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the initial hierarchy layers selection is top 3, when expanding one 
cluster (node 13), there will be out-going links generated from the 
cluster to connect its children (edge from 13 to 1, from 13 to 12). 
Previous expanded cluster (node 16) whose children (node 7 and 8) 
do not belong to its siblings or its predecessors and their siblings 

will be collapsed if previous expanded cluster does not belong to 
initial hierarchy (node 7 and node 8 are collapsed into node 16, 
node 16 belongs to initial hierarchy). Minimum hierarchy 
expansion only allows one cluster/node, its siblings, and its 
predecessors and their siblings in hierarchy to be visualized.  

 

Figure 4: hierarchy expansion at Minimum mode 

In Add-Up mode, for example in Figure 5, when expanding 
one cluster (node 13), just as Minimum mode, it will create out-
going links from the cluster to connect its children (edge from 13 
to 1, from 13 to 2), but previous expanded clusters’ children (node 
7 and node 8) will be always maintained, even though they are not 

siblings of the currently expanded cluster (node 13), or 
predecessors and their siblings of the currently expanded cluster. 
Add-Up mode allows multiple clusters/nodes, their siblings, and 
their predecessors in hierarchy to be visualized. 

 

Figure 5: hierarchy expansion at Add-Up mode 

c) Hierarchy Search 
Hierarchy search is designed to display one node and its 

hierarchy path from root. The hierarchy path can tell users where 
the destination node is, how to identify the node, and which cluster 
to expand in graph view. When users have no background in 
hierarchy abstraction, hierarchy search becomes necessary and 
indispensable to explore a graph. In hierarchy search, hierarchy 

path is generated based on a node index/attributes. Likewise, 
hierarchy search also has two modes: Minimum mode and Add-Up 
mode. Minimum mode only allows one input of node information. 
In Add-Up mode, users can search arbitrary number of nodes. For 
example, in Figure 6, (a) search node 1 or 2 at Minimum mode, (b) 
search node 1 or 2, and 9 or 10 at Add-Up mode.  

                                        

(a)                                                                                                            (b) 

Figure 6: hierarchy search at Minimum mode (a) and Add-up mode (b). 

Graph Exploration 
Graph exploration is a core part of BGS, which provides 

graph views at different layers. When expanding clusters, there 
will be links generated across multiple layers, called crossover 
edges. Crossover edges are extremely important links when we 
make an abstraction on an original graph. It conveys different 
meanings with edges in original graph. For example, in flight data, 
the original graph shows connections between airports. Crossover 

edges can represent connections between airport to city, airport to 
country, airport to continent, city to country, city to continent, or 
country to continent. From crossover edges in graph view, we can 
straightforwardly answer such questions as: whether we can travel 
from one airport to another city, country, or continent? Whether we 
can travel from one city to another country, or continent? Whether 
we can travel from one country to another continent? All the 
answers can be found in graph view in the form of crossover 
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edges. Graph Exploration is a crucial aspect of BGS that includes 
graph layer selection, graph expansion, and graph search. 

a) Graph Layer Selection 
Initially, BGS starts with the top layer graph Gh (h is the depth 

of the hierarchy) at graph view. In order to help users quickly 
identify interesting vertices, users are permitted to select another 
starting layer Gi to visualize. For example, in Figure 7, the third 
layer is chosen as the starting layer. Based on this layer, users can 
expand clusters recursively to navigate down layer by layer. Graph 
Layer Selection is different from hierarchy selection, which selects 
several top layers, but only one layer is chosen in graph layer 
selection.  

 

Figure 7: graph layer selection 

b) Graph Expansion 
Graph expansion is a fundamental measure to navigate down 

along the hierarchical structure. During the expansion, users can 
observe the hierarchy abstractions and their relations in a top-down 
manner, until they reach the destination node. At this moment, 
graph view is displaying overall information about the target node, 
including vertical information and horizontal information. The 
vertical information refers to the relation between the target node 
with upper layer clusters, or even down layer nodes/clusters if the 
target node is not a leaf node. The horizontal information denotes 
the relation between the target node and its neighbors at the same 
layer.  

In graph expansion, one of the challenging tasks is to 
determine whether crossover edges exist between the target 
cluster’s children and the target cluster’s neighbors. To check the 
crossover edges, all pairs of neighbors and children are reduced to 
the same layer. Like hierarchy expansion, graph expansion has two 
view modes: Minimum mode and Add-Up mode. In Minimum 
mode, demonstrated in Figure 8, when expanding one cluster 
(cluster 20), it will be replaced by its children (node 15 and 16). 
Previously expanded clusters (node 21) whose children (node 17 
and 18) do not belong to the new expanded cluster’s (cluster 20) 
siblings, or its predecessors and their siblings will be collapsed into 
one sibling (cluster 21) of the new expanded cluster, or one sibling 
of the new expanded cluster’s predecessors. Minimum mode only 
allows one cluster, its siblings, and its predecessors and their 
siblings to be visualized. 

 

Figure 8: graph expansion at Minimum mode 

In Add-Up mode, demonstrated in Figure 9, when expanding 
one cluster (cluster 20), it will be replaced by its children (node 15 
and 16). For previously expanded clusters (cluster 21), their 
children (node 17 and 18) are always retained, even though they 
are not siblings of the newly expanded cluster (cluster 20), or 
predecessors or the siblings of the newly expanded cluster. Add-
Up mode allows multiple clusters/nodes, their siblings, and their 
predecessors in the hierarchy to be visualized. 

 

Figure 9: graph expansion at Add-Up mode 

c) Graph Search 
Graph search in BGS can be regarded as one-step probing of 

nodes or edges. When visualizing a large-scale graph, we will 
probably have difficulty in finding target node if we start from 
starting graph view. Even if users have hierarchy background 
information, they still have to expand clusters to navigate down to 
find the target node. BGS supports probing vertex/vertices or 
edge/edges by index or its/their attributes. If users already have 
target vertices or edges, the identification of such vertices or edges 
in large-scale graphs is greatly facilitated. In BGS, users can 
identify one vertex/edge, or more vertices/edges. BGS will show 
the target vertices/edges and their neighbors. If two target vertices 
have common neighbors or two target edges have common 
vertices, the probing results are connected. For example, in figure 
10, (a) search node 16, (b) search node 16 and 18.  

 

(a)                                     (b) 

Figure 10: Graph Search at one node (a): node 16; and two nodes (b): node 
16 and 18 

Visualization Mode 
When expanding clusters in graph view, one huge computing 

task is creating crossover edges. If one cluster has n neighbors and 
m children, there will be m*n potential crossover edges to be 
generated. Since Spark provides the back-end for BGS, all vertices, 
edges and hierarchy data are stored in Spark. When generating 
crossover edges, R needs to send 2*d*m*n request to obtain 
required graph data (d is the average layer distance between 
cluster’s neighbors and children), which causes tremendous 
communication overheads. To solve this issue, we present two 
visualization modes on BGS: Local-Memory mode and 
Distributed-Memory mode. 

a) Local-Memory mode 
Local-Memory mode is designed for small graphs. When 

visualizing a small graph, if graph data can be completely loaded 
into main memory of the local machine, BGS will do this before 
the graph view rendering. Crossover edge generation is done on 
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local machine. Thereby, great communication overheads can be 
avoided. 

b) Distributed-Memory mode 
Local-Memory mode only works well on small graphs, so we 

designed another visualization mode, Distributed-Memory mode, 
for large graphs. In this mode, the graph and its hierarchy data are 
distributed into multiple machines instead of the local machine. To 
minimize the data requests to Spark, we must first figure out what 
graph data is really needed. When expanding clusters, only 
vertices, edges, and hierarchy on the cluster’s neighbors and 
children are used in crossover edge generation. Second, we retrieve 
exact graph data from Spark only once. In this way, the number of 
data requests can be reduced to d*m*n +2. This measure makes 
BGS only keep a small necessary graph data in local memory for 
rendering, which not only can increase BGS’s efficiency but also 
maintain its visualization scalability. 

Decoration and Interactions 
To increase readability, BGS provides some decoration to 

modify hierarchy view and graph view and interactions help us 
explore details in both views. For graph view, BGS allows us to 
change vertex shape, edge shape, graph layout, etc. For hierarchy 
view, we can adjust level separation, hierarchy direction, layout 
etc. These decorations are helpful to increase the readability for 
both views.  

From Shneiderman’s visualization principle, we can realize 
the importance of Interaction in graph exploration. According to 
BGS’s visualization characteristics, we provide the following 
interactions for BGS. 

a) Zooming in/out 
Zooming, operated by mouse, is very useful interaction to 

adjust the viewpoint to focus on certain vertices or edges, which is 
fundamental to graph visualization interaction. Before zooming, 
we first need to find a focus, then zoom in or out by scrolling with 
the mouse. In conjunction with dragging and moving nodes, 
zooming can help us find details in graph view and hierarchy view. 

b) Vertex identification 
When many nodes are visualized in graph view, it may be not 

easy to find where the target node is. BGS provides vertex 
identification by telling the system which vertex users want to 
focus, then the viewpoint will move to the target node. In the 
functionality, users can then tune zoom factors to make the 
viewpoint a proper distance. 

c) Vertex Selection and layer selection 
Graph selection refers to highlighting one vertex or group of 

vertices in the visualization interface. Typically, the selected vertex 
or group of vertices are exhibited in a different color to 
differentiate with other unselected subgraphs. For example, when 
visualizing a social network, users can select one person or a group 
of people in whom users are interested. Only such selected people 
and their relations become noticeable. This functionality is 
beneficial for visualization and makes us focus on specific 
information. 

 

Case Study 
To illustrate BGS’s functionalities and scalability, we present 

three case studies to find out what BGS can achieve. The three 
graph datasets are Facebook, Friendster, and Flight (see Table 1). 
The Facebook graph is a small social network. Friendster is a large 
graph with more than 1 billion edges. These three datasets can 
cover most cases: small graph and large graph, attributed graph 
and non-attributed graph, where the functionalities in BGS will be 
evaluated. In both Facebook and Friendster graphs, vertices 

represent users, edges refer to their friendship between two users. 
The flight graph is an attributed graph which represents flights 
from one airport to another. Each airport has some attributes, for 
example, airport name, city, country, and continent. The case 
studies are to verify the usage of BGS in various scenarios. We 
will observe BGS’s performance on functionalities, scalability, and 
interactions. BGS can be thoroughly evaluated from these three 
aspects. 

Table 1: Graph datasets for visualization 

 

BGS Functionalities 
a) Hierarchy layers selection 
The hierarchy layers selection refers to allowing users to 

choose several top layers to visualize in the initial hierarchy 
structure, which provides the fundamental background information 
for users. Figure 11 is two views of hierarchy layers selection on 
Flight data. (a) shows the top two layers; we can expand hierarchy 
based on the continent layer to search for country, city, or airport.  
For example, if the target cluster/node is the United States, then the 
node of North America should be expanded. If we seek airports at 
Atlanta, we will continue to expand the cluster of the United Sates. 
(b) shows the top three layers of the hierarchy, which reaches 
country layer. In Figure 11 (b) there are six clusters representing 
six continents. From this hierarchy view, users can expand one 
country to look for cities or airports.   

How many layers should be selected in initial hierarchy view 
depends on users. Fewer or more layers selected both have merits 
and drawbacks. If more layers are selected in the initial hierarchy 
view, it can convey more abundant information to users, but it may 
cause a burden for visualization and lead to many overlaps. If 
fewer layers are selected in the initial hierarchy view, it can reduce 
overlaps in visualization, but less information can be found in the 
initial hierarchy view.  

 

 
(a) 

Graph Vertices Edges Attributed File Size

Facebook 4,039 88,234 No 1MB

Flight 3,125 58,568 Yes 1MB

Friendster 65,608,366 1,806,067,135 No 30GB
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(b) 

Figure 11: Hierarchy layers selection (a) top 2 layers; (b) top 3 layers of Flight 
Graph 

b) Hierarchy view 
Figure 12 is the hierarchy view on Friendster graph in 

Minimum mode. Figure 13 is the hierarchy view on Flight graph in 
Add-Up mode. The two modes of hierarchy view are used in 
different scenarios. If users want to search hierarchy for one node, 
then Minimum mode is a better choice because it only shows the 
minimized hierarchy, irrelevant hierarchical structures are 
collapsed, which improves visualization efficiency and reduces 
overlaps. For example, Figure 12 displays the hierarchy of node 
101, from level 7 to level 0. Only node 101, its siblings, its 
predecessors, and their siblings are displayed. If users wish to 
observe the hierarchy including two target nodes, Add-up mode is 
more suitable since it can show the combination of two hierarchies, 
which allows us to explore some insights from the hierarchy easily. 
For instance, Figure 13 is showing hierarchy of Nadi international 
airport and Auckland international airport. From the hierarchy we 
know both airports belong to different countries but both are 
located in Oceania.  

 

 
Figure 12: Hierarchy view of Friendster Graph in Minimum mode 

 
Figure 13: Hierarchy view of Flight Graph in Add-Up mode. Leaf Nodes: Nadi 
International Airport (Nandi, Fiji, Oceania) and Auckland International Airport 
(Auckland, New Zealand, Oceania) 

c) Graph view 
Figure 14 shows the graph view of Flight data. From the initial 
graph view, we expand the cluster North America, the cluster 
Mexico within North America, Mexico City within Mexico, until 
Licenciado Benito Juarez International Airport is located. Since 
we use the interaction of vertex selection in the graph view, the 
node of Licenciado Benito Juarez International Airport and its 
direct neighbors are highlighted, other irrelevant nodes/clusters 
become gray. To zoom in on Licenciado Benito Juarez 
International Airport, the links starting from the airport 
demonstrate which continents, countries, and cities the airport can 
reach with non-stop flights, which illustrates the significance of 
crossover edges in graph view.  

 

Figure 14: Graph view of Licenciado Benito Juarez International Airport 
(Mexico City) from the Flight graph. 

d) Graph search 
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Graph search in BGS not only includes vertex search but also edge 
search. In vertex search, for single node search or multiple nodes 
search, node id or node attributes are accepted. In edge search, 
single edge search or multiple edges search, edge id or edge 
attributes are taken by BGS as well. When doing a search on a 
single node, it will show one node and its neighbors. When doing a 
search on multiple nodes, the two nodes and their neighbors and 
common neighbors are displayed. For example, Figure 15 shows 
the search result from Jackson Evers and Birmingham international 
airport on Flight graph. Their common neighbors are displayed in 
the middle. Graph edge search works based on the same principle.  
Graph search is an effective approach to explore original graph in 
one step. It is important when visualizing a very large graph.   

 

Figure 15: Graph search view of Jackson Evers international airport and 
Birmingham international airport from the Flight graph 

BGS Scalability 
From the case studies, our visualization system can easily 

visualize graphs with billion scale edges. Table 2 shows the 
clustering time, loading time, and visualization time for the three 
graphs using BGS. Since Facebook and Flight are small graphs, we 
use Local-Memory mode in order to obtain high efficiency. For 
Friendster graph, we can only use Distributed-Memory mode 
because it cannot be loaded into local memory because of large 
graph size.  

Table 2: clustering time, loading time, and visualization time for 

graph datasets 

 

Compared to ASK-GraphView, BGS has good visualization 
efficiency due to its distributed architecture, which fundamentally 
differentiates from ASK-GraphView. ASK-GraphView creates 
separate files in disk when dealing with large-scale graphs. In 
BGS, however, the whole graph data is kept in distributed memory 
or local memory, it can quickly retrieve data from Spark and 

visualize the graph in real time. Thus, BGS has a significant 
improvement over ASK-GraphView in efficiency. Similarly, BGS 
is a universal graph visualization tool which has no restrictions on 
the graph’s structure and density. This feature increases BGS’s 
flexibility in application. 

Interactions 
When using BGS on the Facebook graph and Flight graph, we 

can instantly interact with BGS, for example, zooming in or out, 
vertex identification, vertex selection or level selection, clustering 
expanding etc. For the Friendster graph, we can feel a little delay 
in interactions with BGS using distributed memory mode for such 
a large graph. It takes some time to generate crossover edges when 
expanding clusters.  

In summary, BGS achieves our desired goal. Specifically, 
users can visualize graphs through hierarchy view and graph view 
while using BGS, and get some meaningful insights from the 
exploration. 

Discussion 
Since BGS provides two view modes and two visualization 

mode, when we apply BGS to various graphs, there will be four 
combination modes. Generally, Minimum mode has constantly 
efficiency. In Add-Up mode, efficiency gradually decreases with 
expanding more clusters. Local-Memory mode has high efficiency, 
but is only fit for small graphs. Distributed-Memory mode is fit for 
large-scale graphs, but its visualization efficiency is not as good as 
Local-Memory mode. This principle can guide users to choose 
proper combination mode in graph visualization. Proper view 
mode and visualization mode not only can enhance readability but 
also improve visualization efficiency. 

Apart from the above merits, BGS also has some limitations. 
First, clustering on vertices must be performed before visualization 
can take place. Second, BGS is highly dependent on the hardware 
on which it runs and requires a great deal of memory in order to 
load the hierarchical structure of a large graph. Finally, in 
visualization, the response time is dependent on the number of 
crossover edges generated between different levels when 
expanding clusters in graph view, so when expanding a cluster 
with a large number of neighbors and children it may take some 
time to check whether it needs to generate crossover edges before 
visualization.  

Conclusion and Future Work 
In this paper, we propose a scalable graph visualization 

system that aims to visualize large-scale graphs efficiently. BGS is 
developed on Spark, R, RStudio, and Shiny. Spark is a distributed 
computing framework which acts as backend in BGS working on 
clustering and visualization. This architecture brings BGS great 
improvement on scalability and efficiency.  

In visualization, BGS has hierarchy view and graph view. 
Hierarchy view shows a series of high level abstractions, which 
aids users to seek the correct clusters to expand in graph view. In 
hierarchy view, we can do hierarchy expansion, hierarchy search, 
and hierarchy selection. Likewise, graph view has graph 
expansion, graph search, and graph selection. In both views, some 
useful decorations and interactions are provided.  

In addition, BGS has two view modes and two visualization 
modes. We provide a summary of four combination modes in 
Table 4, which offers us a guideline to opt for proper mode in 
application.  

Graph Clustering Loading Visualization Delay Visualization Mode

Facebook 49 s 1 min  1-3 s Local Memory

Flight
__

50 s  1-3 s Local Memory

Friendster 4.2 h 3 min about 20 s Distributed Memory

* Flight data is clustered by geographical location
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This paper conducts three case studies, which cover the scope 
of small graph, large graph, attributed graph, and non-attributed 
graph. The study shows that BGS can satisfy our needs in graph 
visualization in terms of efficiency and effectiveness. 
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