
A Step Towards Automatic Visual Analytics Pipeline Generation
Benjamin Karer, Inga Scheler, and Hans Hagen
University of Kaiserslautern, Germany

Abstract
Automatic generation of data visualizations allows to quickly

deploy data visualizations. In visual analytics, the combination
of automatic and human analysis increases the effort necessary
to achieve similar effects substantially. Where automatic visual-
ization only needs to map the data, in visual analytics the whole
data preparation and processing pipeline has to be considered.
The user is interested in representations reflecting certain inter-
pretations of the data, for example the idea that different groups
represent different clusters in the data. In this paper, we prove
that an information-driven automatic design of visual analytics
pipelines is feasible. To this end, we prove that the ability of an
analysis system to derive and visualize data supporting inquired
information is decidable – at least for real-world applications.
Having overcome this major obstacle, we outline a general algo-
rithm scheme that can be implemented on a wide range of data
and information models.

Introduction
Combining automatic data analysis with human reasoning

based on visualization, visual analytics has become an integral
component of modern data analysis applications. While individ-
ual advances in visualization, data mining, and machine learning
contribute this success, the key element of visual analytics is the
efficient combination of the different techniques to obtain solu-
tions fostering the derivation of new insight. However, even today,
more than ten years since visual analytics emerged as a field, this
integration can still be quite challenging. While tools have been
developed to support the efficient generation of data preparation
and processing pipelines, finding a combination of algorithms that
reveals the insight an analyst is aiming to obtain still depends on
the analyst’s understanding of the algorithms’ effects on the data
and experience in their application.

Towards a more efficient process of generating data prepa-
ration and processing pipelines for visual analytics, we propose
a partial automatization of the process. The key idea is to let the
computer reproduce information inquired by the user. To achieve
this aim, it needs to find a sequence of transformations that de-
rive data supporting the inquired information from the available
raw data. Yet, there is a twist. The algorithm would necessarily
decide whether it is actually possible to derive this information as
the interpretation of the result of a sequence of transformations
applied to the raw data. This is an instance of the halting problem
– and therefore impossible. Fortunately, there are special cases, in
which a restricted version of the problem is decidable. A second
problem is that by information, we do not mean data but its inter-
pretation with respect to the analysis question. An example would
be treating distance as an indicator for neighborhood. Therefore,
the user can only query for information that is already to be found
somewhere in the deduction system – and thus already known. As

it turns out, the trick is to specify the characteristics of the results
of data analysis and visualization algorithms. The analyst then
asks for a view on the data that has specific properties and for in-
terpretations that are explicitly associated with the results of data
transformations as properties of the transformation’s algorithm.
Ideally, this view allows an efficient evaluation of conjectures and
hypotheses against data but can still be explored easily.

In this paper, we introduce an approach to the automatic de-
sign of visual analytics pipelines driven by the information asso-
ciated with the results of data transformations. To this end, we
investigate under which conditions it is decidable whether some
information can be derived from the raw data by sequences of
data transformations. The actual algorithm treats the transforma-
tion procedures as building blocks in a directed graph of possi-
ble transformation sequences. We show how this graph can be
generated from a schematic description of the data transformation
and the resulting change of information associated with the data
taking place in each transformation procedure. In particular, we
claim the following contributions, along which we also structure
the discussion below:

1. We prove that the problem whether it is possible to derive
information from raw data is in general undecidable but can
be decided for special restrictions which are typically the
case for real world applications.

2. We extend this model to visualization and derive the con-
ditions for the ability of a visualization system to present
inquired information.

3. We outline an algorithm scheme for the automatic genera-
tion of visual analytics pipelines covering the whole span
from raw data to visualization.

Related Work
To put our work in context, we rely on a classification of el-

ements of visualization theory [16]. The authors describe three
branches of possible foundations of a theory of information vi-
sualization. In particular, they differentiate between three cat-
egories: A data-centric predictive theory allowing to character-
ize visualization by how well they are suited to present different
types of data, an approach based on information theory concerned
with visualization content and its communication, and two kinds
of descriptive formal models describing the user’s interaction and
a constructive model of visualization design. Indeed, these three
categories apply quite well to classify visualization theory which
we show by applying it to describe the general context of the other
related work.

What we present in this paper remarkably falls between
the categories. Our findings are based on a derivation structure
transforming raw data gradually into a visualization and there-
fore clearly being a constructive model. However, the findings

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 377-1

https://doi.org/10.2352/ISSN.2470-1173.2018.01.VDA-377
© 2018, Society for Imaging Science and Technology

we make when applying this technique are not about visualiza-
tion design but about visualization content, interestingly deriving
the information content from a data-centric formalism defining
information as interpretations of data. We also propose to let the
user ask for data representations based on the properties of avail-
able visualization techniques – a data-centric approach steering
the composition of visualizations by the expected quality of their
elements. As a side node, we conclude that maybe these fields are
not quite as different as expected.

Taking a closer look at automatic generation of visualiza-
tions, we of course have to mention Jock Mackinlay’s seminal
work on a presentation toolkit [12]. Mackinlay was among the
first researchers to interpret visualization systems as formal lan-
guages generated by grammars. Other authors followed this idea,
although focusing on various different aspects, like covering dif-
ferent types of data [22], a strong focus on tasks [4, 17], a focus on
the content of linked data [19], or perception-oriented embedding
[6], to mention only a few examples. Our aim is not to reinvent the
wheel. Instead, we are interested in how to combine models for
automatic data analysis and visualization design to deliver optimal
data representations to the user. All of the models listed here are
of a constructive nature, describing the structure of visualization.
All of them can be combined with our method to cover different
aspects of the properties the user needs the representation to have
– if we assume we have a set of visualization techniques available
that have been evaluated on the data-centric level beforehand, so
we can make the proper quality predictions.

Indeed such systems exist. VisIRR, for example, is a semiau-
tomatic visualization toolkit for information retrieval [5]. Being
heavily data-centric, it lets the user query for data and propose
visualizations hat are predicted to provide good quality presen-
tations. A similar approach, although more on the construction
side, is followed by the idea of a form-semantics-function coming
from the field of visual data mining [18]. Here, the composition
of visualization systems is derived from the semantics of the data
to be visualized. This approach is quite appealing as it attempts
to steer the visualizations shape by the information it is meant
to convey. Again, our intention is not to automatically define
the visualization but the whole data preparation and processing
pipeline. However, we also intend to apply information models to
steer this process.

From this content-oriented point of view, interesting work
has been done composing visualizations by the semantics of the
visualization’s elements rather than the data to be visualized [13].
Very appealing is the idea to let the user define search queries
based on examples. By the focus on semantics, the user can spec-
ify a query based on content based similarity, i.e. a user can lit-
erally ask for “something like this” and point at some data. Per-
haps the most popular technology in this domain is the semantic
web [1] along with its data exchange format RDF [10], provid-
ing a simple, graph based representation of basic facts about the
relations between data. An example for a more sophisticated for-
malisms for ontologies based on the semantic web is the web on-
tology language (OWL) [11]. From the perspective of our work,
the semantic web would be a well-suited candidate to represent
the information associated with data and algorithms. Leveraging
a combination of SPARQL [15], a query-language for the seman-
tic web based on pattern matching in RDF-graphs, and VOWL
[14], an interactive visualization for OWL-ontologies, we may be

able to interactively navigate the space of investigable informa-
tion during explorative analysis. Our focus, however, is not on
querying for existing data and semantics but for information sup-
ported by data that can be algorithmically derived from the data
we have. In essence, we do not have the data we ask for, we only
have some tools at hand that might be helpful in getting it. Now,
our question is whether the toolset we have is capable of provid-
ing us with the information we seek. Our intention is to find ways
to automatically provide views on the data of which we know that
if the information we seek can be derived from the data, it must
be contained in the visualization we show the user. Therefore,
inference tools from the semantic web or other domains are not
directly applicable to the question we ask in this paper.

Since we are interested in the design of visual analysis
pipelines, we need to investigate their shape. Fortunately, there
is a recent well-written survey on the development of visual ana-
lytics pipelines that up to specializations, Daniel Keim’s original
model of the visual analytics pipeline is well established [21, 8].
We therefore opt to follow the same approach in the principal
construction, visualizing data either directly or after being trans-
formed by data mining, or machine learning procedures. We de-
liberately allow machine learning methods to be incorporated due
to its great potential and increasing influence in the field which is
well described in a recent survey [7]. Concerning the definition
of data transformation pipelines to be executed prior to analysis,
graphical languages like the one offered by KNIME [2] have been
developed to control the process. Such languages can be applied
by the user to steer or correct the automatic approach we pro-
pose if necessary. An example workflow using some of the tools
mentioned here could be to define the transformation paths in a
graphical language like the one provided by KNIME and load the
result into AutoVis [22]. Once set up, the pipeline is executed
automatically. Yet, there still is some space left for further autom-
atization. Our algorithm for automatic pipeline generation would
attempt to derive a complete cover of the information inquired by
the user as some formal representation of the analysis goals.

Data and Information
In this section, we explain the basic concepts we apply in

this paper with a focus on the connection between data and in-
formation. When speaking about data, we refer to qualitative or
quantitative variables which we assume can be obtained through
measurement or otherwise provided. We distinguish between raw
and refined data, the former being the data provided “as is”, the
latter the result of data transformations. In general, we will as-
sume the data to be related to an observation in the sense that the
data is about the observation. Information is an interpretation of
data, typically but not necessarily with respect to the observation.
We assume information to be a composition of atomic facts that
can be collected in sets. We also demand the atomic facts to be
comparable within the same set of information, i.e. it is decid-
able whether two atomic facts are equal. The representation of
information is often based on logics, predicate logic to be pre-
cise. However, the details are domain- and application specific.
For example, modal logic can be applied to model systems with
several alternatives and (linear) temporal logic allows to model
processes. Another way to represent information is the semantic
web [1], where data semantics are modeled in terms of a graph
given as a set of triples encoding edges between graph nodes. To

377-2
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

establish a relationship between data and information, we further
require the existence of two partial maps establishing that connec-
tion. Given a set of data D and a set of information I, we define the
interpretation ∆ : D ⊆ D→ I ⊆ I as a partial function from the
data to the atomic elements in the information and the anchoring
α : I ⊆ I→ D ⊆ D as the partial inverse of ∆. We say that some
data D ⊆ D supports some information ι if ι ∈ ∆(D) ⊆ I. From
here on, we refer to D and I as global objects demanding that they
contain all data and all information that is either directly available
or can be computed or otherwise obtained from other data and in-
formation. In contrast, D and I refer to sets of known data and
information.

For the following discussion, we do not need a more thor-
ough specification in the definitions of data and information.
These details are application specific whereas the results we are
interested in are of a more general nature. Hence, for the sake
of generality, we do not make further assumptions to the struc-
ture of data and information. There is, however, one last concept
we need to introduce. The question of containment is a natural
consequence of organizing information in sets. For finite sets, de-
cidability of set containment follows trivially since we required
the atomic elements of information to be comparable and thus
can be checked for equality. Concerning the possibility to de-
rive certain information from the raw data, the situation is quite
a bit more complex: We have not defined a map between sets of
information so far and refrain to do so in order to preserve gen-
erality and allow a wide range of information models. Instead,
we apply an indirect approach. Let τ : δ0 → δ1 be a transforma-
tion transforming some data δ0 ∈ D into some data δ1 ∈ D. The
change of data resulting from the application of τ can result in a
change of the associated information – although this is not nec-
essarily the case. We can thus define an indirect mechanism for
information transformation by following the data: Let ι0 and ι1
be the information associated with δ0 and δ1 respectively. Since
in this case the relation between data and information is explicit,
we know that the anchoring and interpretation operations are de-
fined in both directions and cover the respective sets completely
as inverses. Therefore, we can bind the transformation σ : ι0→ ι1
of information ι0 ∈ I into ι1 ∈ I to the transformation of data and
express it indirectly by σ(ι0) = ∆(τ(α(ι0))). Since data trans-
formations (if applicable to the data) can be chained, we can now
define derivability of information by the existence of a sequence
of data transformations from the source data to some data whose
interpretation covers the target information. That is, information
ι is derivable from some data if and only if there is some transfor-
mation σ∗ := ι0→∗ ι , such that there is a sequence of data trans-
formations τ∗ α(ι0)→∗ α(ι), i.e. we have ∃τ∗.ι =∆(τ∗(α(ι0))).
Extending this notion to the derivability of information I from
some data D, we obtain that I is derivable from D if and only if
for the elements δk ∈ D, we have

∃Σ.
(
∀δk ∈ D.

(
∃σ∗k .

(
σ∗k (ι0) = ∆(δk)

)))
For single elements, data transformations and σ∗ are transitive,
the latter being a direct consequence of the former. The upward
closure of contained information I↑ is thus all information that
is directly assigned with or can be derived from some data D,
we know that for some information I = ∆(D), I↑ is precisely the
transitive hull of the information associated with the data along
every transformation path starting in D = α(I). By the construc-

tion, some information ι is derivable from I if and only if ι ∈ I↑.
Of course, the question remains whether containment in I↑ is ac-
tually decidable. The answer to this question determines under
which conditions we can prove information to be derivable from
raw data and thus available for visualization.

Derivability of Information
The idea of a visualization system in which we can prove the

containment of information is quite appealing. Not only would it
allow to infer the completeness and correctness of depicted infor-
mation for solving a given task but it could also enable the user
to specify information patterns that would be derived automati-
cally by the system. Unfortunately, it turns out that information
derivability is, in general, undecidable. However, there are cer-
tain special cases where it is indeed possible to prove information
derivability – and even to do so automatically. In the following,
we discuss the details about these observations.

Foundational Considerations on Decidability
In principle, the proof that information can be derived from

some data is simple. One may just stop searching if a solution is
found. Unfortunately, it is in general not possible to prove that
some information cannot be derived from a data set. Intuitively
speaking, if the inquired information cannot be derived from the
data, a data analyst blessed with infinite creativity could literally
spend eternity trying to figure out a solution with no way to prove
that the effort is ultimately futile.

Theorem 1: Information derivability is undecidable.

Information I is derivable from some data D if there is a con-
tinuous path of transformations linking the data of the source with
some data whose interpretation function supports I. If our inten-
tion is to check algorithmically whether this is the case, allowing
arbitrary transformations to be applied would allow us to apply
a potentially infinite set of operations to assess whether I can be
derived directly from the raw data. Hence, the general problem
of deciding whether information is derivable is an instance of the
halting problem and thus undecidable [20]. �

Still, we can at least achieve partial success. If an algorithm
finds a transformation path generating data that supports the in-
quired information, it terminates and returns a correct result.

Lemma 2: Derivability is positively semi-decidable.

For the proof, consider an algorithm that simply tries every
possible transformation and checks whether the result supports
the inquired information. Since information containment is decid-
able, a positive result will be identified correctly once it is found.
If the information is derivable, such a result exists and the algo-
rithm will eventually find and correctly return it. �

Restricting the problem to a limited set of finitely many
transformations, things become a lot easier. Since we have only
finitely many decisions which transformation to apply to each set
of data, the tree of all transformation sequences can only branch
finitely in any node. By König’s Lemma [9], this tells us that if
the tree should be infinite, there must be a branch of infinite depth.
However, along such an infinite path, at least one transformation

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 377-3

Figure 1. Automaton of transformation sequences. This finite state automa-

ton links the applicable transformations t by the data formats they exchange

when being executed sequentially. Every state is an accepting state. Thus,

given any sequence of data formats recognized by the automaton, the se-

quence of transformations generating the last data entry can be read from

the nodes along the path.

has to occur twice because the number of available transforma-
tions is less than the path length. In fact, by the same argument, at
least one transformation has to occur infinitely often. The execu-
tion chains of transformations define a regular language. Assum-
ing we know the possible combinations, we can easily construct
an automaton linking each transformation to its possible succes-
sors. Every state in this automaton is accepting. An example
of such an automaton is shown in Figure 1. In automata theory,
there is a construction extending regular language to words of in-
finite length called a Büchi Automaton [3]. It recognizes words
that pass a certain state in the automaton infinitely often. For the
transformation sequences, this means that some transformation
occurs infinitely often which is the case if and only if we have
an infinite transformation chain. Hence, Büchi automata decide
whether infinite paths occur. From here, we obtain:

Lemma 3: The following properties hold for the restricted
problem of information derivability with only a limited number
of applicable transformations:

1. It is decidable whether transformation chains of infinite
length can occur.

2. If no transformation chains of infinite length are possible,
information derivability is decidable.

3. If such chains can occur, the problem is still semi-decidable.

The third proposition is probably the easiest to prove since
it follows trivially from the semi-decidability of the general prob-
lem. Where infinite sequences are concerned, the possibility of
such a chain does not even require the full power of the Büchi
Automaton. Because we are only interested in the existence, it
suffices to check the finite state automaton of transformation se-
quences for the presence of loops. If no loops occur, the automa-
ton is a directed acyclic graph which we can turn into a tree by
separating joins of paths into different branches. Since we only
have chains of finite length and only a finite number of transfor-
mations to branch in each node, by König’s Lemma, the tree must
be finite. If so, an algorithm simply needs to follow all transition
chains and check whether the data corresponding to the respec-
tive nodes supports the inquired information which is required to
be decidable by definition. �

Figure 2. The transformation graph. Black nodes indicate starting states.

Every state is accepting. This automaton provides the data and therefore the

information passed when executing a sequence of transformations. The data

transformation or information derivation graph is the dual of the automaton

of transformation sequences with the additional condition the state’s data

format must now be compatible with the transformation’s for the edge to be

allowed in the graph. Data D and, by the interpretation function, information

∆(D) are derivable from the raw data D0 if and only if a path in this graph

connects the raw data node D0 with the node for D.

As it turns out, not allowing any cycles at all is restricting
the problem a little too far. Recall that in the definition we bind
transformations directly to the data they are applicable to. Let
us integrate this restriction into our language of possible transfor-
mation chains. The resulting automaton is sketched in Figure 2.
Loops can now only occur if the data admits it. At a first glance,
this renders the problem harder since some of the infinite trans-
formation chains that before necessarily were loops are now open
paths. However, we can still detect these open paths in the non-
constrained automaton. Considering that the description of a loop
is a finite sequence of transformations, we can even distinguish
them from the ones in the constrained construction by comparing
the transformation sequences. From here, we only need to require
that cycles must be compatible with the data.

Theorem 4: If, in a graph of transformation sequences, the
applicability of a transformation is determined by compatibility
with the data in the source and target of a transformation, infinite
sequences are either open paths or closed loops. For graphs with
no infinite open paths, the restricted information derivability
problem is decidable.

For the proof, it suffices to show that we can contract cycles
into a single state merging all the cycle’s states into a single one
that is also the combined source for all transformations leaving
the original cycle and the target for all transformations reaching
any node in the original cycle. To see this, consider an arbitrary
node in the cycle, let D be its data and I its associated information.
Whether some Information J is derivable from D can be assessed
by attempting to find J in I↑, the upward closure of I, containing
all information derivable from D. Obviously, every node in the
cycle is reachable via transformations starting at D. Therefore, I↑

contains the information of every data node in the cycle. Indeed,
it even contains every upward closure of these information sets.

377-4
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

Since this applies to every node in the cycle, I↑ is identical for all
of them. Therefore, we can contract the cycle into a single node
that serves as a unified source and target for all transformations
entering or leaving the original cycle and represent the contained
information by either computing the upward closure of the infor-
mation contained in any of the cycle nodes or by computing the
union IC ⊆ I↑ of the information sets of the nodes along the orig-
inal cycle. From the latter, the complete upward closures can be
computed by following the original cycle’s outgoing edges. �

Theorem 4 is indeed quite remarkable because we can still
cover these cases if we limit the length of transformation se-
quences after contraction of every cycle in the graph. The idea
behind contracting cycles is illustrated in Figure 3. Within an up-
per bound to the length of transformation sequences, the derivabil-
ity problem is decidable with respect to the bound. We can thus
restrict the further consideration accordingly. In the next section,
we develop an automatic solution to assess derivability of infor-
mation and return proper transformation chains to compute the
data supporting this information.

Figure 3. Contraction of cycles (upper) and fork-chain-structures (lower).

Cycles are contracted into a single node holding their internal structure and

their individual knowledge and access to transformations internally. The

same applies to fork-join-structures with the essential difference that the ac-

tual fork and join nodes remain unchanged. Figure 4 shows a complete run

of the contraction procedure on an artificial example.

Automatic Extraction of Information
Our aim is to find an algorithm enabling the automatic ex-

traction of information from available raw data. To this end, it has
to assess whether the inquired information can be derived from
the data and to transform the data into a form supporting the in-
formation. Having observed that this is decidable if the maxi-
mum number of consecutive transformations and there is only a
finite number of transformations available for application. For
real-world applications, both requirements can safely assumed to
be met. Applying too many transformations to the data is infea-
sible, especially for large data sets and the number of applicable
transformations is limited by the functionality offered by the anal-
ysis software. Even if additional custom algorithms can be imple-
mented on demand, the number of applicable transformations is
still finite for any given point in time. However, we want to in-
clude iterative procedures converging towards asymptotic results,
e.g. as a solution towards optimization problems. The procedures
executed along an iteration define a loop. If the information to
be represented by the data is chosen properly, the change of data
along the iteration does not affect the information. In this case,

the upward closure I↑ of the information associated with any state
of the data along such an iteration cycle is finite. Recall that by I,
we denote a subset of known interpretations which in real-world
applications would have to be provided by some ontology and
typically have to be mapped to the data a priori.

In this work, we assume that the partial map ∆ : D→ I inter-
preting any data we may find during the process to some subset in
the possibly infinite set I of information hypothetically derivable
from D, is already defined for the data states we know. We further
assume that a set of transformations T ⊆ {τ|τ := D→ D} link-
ing differently formatted sets of data is known beforehand. T is
a finite subset of the set of all hypothetically possible data trans-
formations on D. T induces a graph G = (D↑ ⊆ D,T), where D↑

is the set of all results of transformation sequences τ∗ ⊆ T ap-
plied to a set D0 of raw data that is to be analyzed. If we restrict
the length of the sequences τ∗ to some k ∈ N and contract the
cycles in G as described in the proof of Theorem 4, it is decid-
able whether some information can be derived from the raw data
within an upper bound of k steps. In the following, we introduce
a simplification procedure enabling efficient algorithms to assess
derivability and infer proper transformation sequences.

Simplification by Contraction
In the proof for Theorem 4, we have already seen a simpli-

fication procedure contracting cycles in the graph into a single
node representing all the contained states and associated informa-
tion. Of course, when we apply this type of contraction, we need
to keep track of the transformation paths within the cycle. How-
ever, if we label each transformation with a unique identifier, this
is trivial to achieve. The procedure itself is illustrated in Figure
4. Once all cycles have been removed from the graph, there are
two other useful contraction mechanisms. The second step is to
contract forks and joins of paths into a single node given that all
transformation paths branching from a given node (the fork) meet
in the same target node (the join). Fork-join-structures can easily
be assessed by applying cycle detection interpreting the graph’s
edges as undirected after all cycles in the directed graph have been
contracted. Any cycle detected this way is a candidate for being
part of a fork-join-structure. Of course, one still has to check
whether all branches actually meet the join node. Therefore, it
makes sense to start with small contract fork-join-structures and
gradually increase the size during contraction. By reducing the
branching within nested fork-join-structures, this also reduces the
task’s overall complexity. The result of applying these steps is
a tree rooted in a single starting node representing the raw data.
Note that a simple union of data structures into a single object
can create this node in the case the raw data stems from multiple
sources. Therefore, we can assume the raw data to always be rep-
resented by a single data node. The last step, although optional, is
to contract the simple paths between branching nodes. Since we
restricted the interpretation map ∆ to map the data Dk represented
by any node to finite sets Ik of information, the unions IC

k ⊆ I↑k of
information sets computed as part of the contraction procedures
are also finite sets. Therefore, information containment is decid-
able and we can assess derivability by traversing the resulting tree
and checking containment for the information sets associated with
each individual node. Performing the assessment for each element
of a set of inquired information also directly provides the percent-
age of how much inquired information can indeed be derived from

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 377-5

the data.

Figure 4. Example of a contraction procedure applied to a transformation

graph. Starting with the smaller cycles the algorithm first contracts two cy-

cles in the initial graph (a), followed by a third cycle containing one of the

previously contracted nodes (b). Now that no cycles are found anymore, a

fork-join-structure is identified and merged (c). The result of the contrac-

tion procedure (d) is a directed acyclic graph of nodes that cannot be further

contracted by either of the definitions provided in Figure 3.

Assessing Derivability
In principle we can directly assess information derivability

from the upward closure I↑0 =
⋃

Dk∈D↑0
∆(Dk) of the information

contained in the raw data. However, in order to obtain an effi-
cient procedure to obtain transformation sequences to be applied
to transform the data into a form supporting the inquired informa-
tion, we should keep track of the applicable transformations for
each node in the original graph G = (D,T) of data and transfor-
mations. This is exactly what we do during contraction.
When contracting data and computing the union IC of information
assigned to the corresponding nodes in the original graph, we can

associate each subset I that has been merged into IC with the trans-
formation path needed to derive it from some starting point in the
data. For cycles, this set is the same for every node and since for
every node Dk in the cycle, all nodes are in D↑k , we can just pick
any node as the starting node. For fork-join-structures, the start-
ing point is he fork, and for simple paths, the starting point is the
path’s first point. After the simple paths have been contracted, we
have a hierarchy of derived information. The edges are labelled
with transformation sequences and the data is associated with tu-
ples of information and the further transformations that need to be
applied to obtain this information. Instead of collapsing this tree,
we directly apply it as the data structure in which we infer infor-
mation containment. If we implement the sets of information as
lists, we can connect the list of each remaining data node, provid-
ing us with one large set of information which is exactly I↑0 , the
set of all information derivable (within k steps) from the raw data.
Assessing the derivability of information from the raw data with
respect to the available algorithms therefore reduces to checking
whether the inquired information is contained in I↑0 . Since we
still have the tree structure, we can infer the transformation paths
by following the tree’s edges backwards until the root is reached
once the information has been found. The actual transformation
sequence is then a concatenation of the tree’s edge labels. The re-
maining transformations to be applied to obtain the actual shape
as it was prior to contraction are stored in each node along with
the corresponding set of data.

The algorithm terminates and returns the correct information
and transformation if a solution is found. If not, the algorithm also
terminates since we restricted the length of transformation paths
to be checked. However, the result obtained in general is only
whether it was possible to derive the information from the raw
data in up to k transformation steps. A negative answer is reliably
correct if and only if the original structure does not permit infinite
chains of consecutively applied transformations. Fortunately, this
is decidable since as we have seen in the discussion of Lemma 3,
such infinite paths map to infinite words in a regular language and
can thus be recognized by a Büchi Automaton. Therefore, if we
encountered such a situation, we need to inform the user about the
unreliability of a negative result.

Considerations on Runtime Complexity
Where runtime complexity is concerned, we need to distin-

guish three categories of algorithms. The first one is the com-
putation of the actual transformations. This is highly specific to
the data and the applied algorithm and thus not in the scope of
this work. It should be noted, however, that the procedure can
be rather time consuming, especially if translations between data
structures have to be applied before the subsequent algorithm can
be executed.

The second category is the assessment of derivability and the
inference of the corresponding transformation path. Finding the
correct path actually depends on the length of the longest branch
in the tree obtained from the contraction procedures. Considering
that before contraction the maximum path length was bounded
either by a number k ∈ N or, in presence of infinite open paths,
limited to k, this is an upper bound for the tree depth. Since the
format of information and therefore the equals-relation depends
on the application, we cannot make any assumptions on the run-

377-6
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

time needed to compare two sets of information and just assign it
the funtion R. In the worst case, every transformation is applica-
ble to every data set and yields data with globally unique informa-
tion. In this case, the derivation graph with respect to n applicable
transformations becomes an n-ary tree of depth k. We observe
that even for comparably small chains of applicable transforma-
tions the runtime complexity skyrockets if we provide powerful
toolsets for the analysis. The worst case runtime complexity for
assessing information derivability is O(kn ·R). Even for only 10
algorithms and an upper bound of five consecutive transforma-
tions, even if we search only one information item and the largest
set contains only five items, this amounts to the comparison of
500,000 individual information elements. As it seems, the worst
case upper bound quickly skyrockets to ridiculous amounts of
runtime complexity even for comparably simple examples. How-
ever, this is unlikely to happen, especially since we are concerned
with visualization. While there are algorithms like sorting and
searching that may be almost universally applicable, the major-
ity of the algorithms is not. For example, in a visualization sys-
tem, a wide variety of visualization techniques may be offered.
However, these options are applied only once, drastically reduc-
ing te complexity. Let us assume that our hypothetical example is
a classification task offering two filters for outlier detection as pre-
processing, two distance measures, two classification techniques,
one color map showing the ground truth, and three different visu-
alization techniques. To solve the classification task, data must be
preprocessed, compared, classified, colored, and rendered to the
screen – a total of five steps. Counting the possibilities, the five
consecutive computations yield 24 different states for the worst
case runtime. Note that we still have a maximum path length of
five and ten applicable transformations. If we again assume the
user to compare one information item to sets of five items, we
need to perform only 100 comparisons.

From the considerations on the hypothetical visualization
task, we conjecture that in real world applications, we can safely
assume the derivation graph to be rather sparse and the upper
bound of runtime complexity to be far from being met in ac-
tual applications. Note that this claim is more bold than it may
appear at a first glance. While, for example, a human program-
mer will usually not invoke a sequence of several sorting algo-
rithms immediately after each other, a computer only looking at
the compatibility of data formats will definitely consider this a
valid option. Therefore, the information about what kind of trans-
formations should be combined with each other should be added
to the system, probably as part of the information associated with
the transformation itself. From the hypothetical example we learn
that grouping of the algorithms into steps and implementing rules
for their proper combination can already reduce the theoretically
possible complexity tremendously.

The last category are the algorithms for contraction. Con-
traction consists of three steps: contracting cycles in the directed
graph, contracting fork-join-structures, and contracting the re-
maining simple paths. The runtime complexity of connecting
the linked storing of the remaining information sets is negligi-
ble since connecting to linked lists can be performed in O(1) and
the other steps’ complexity is more than linear in the number of
graph nodes. Towards the detection of cycles in the graph G, re-
call that the graph actually models D↑0, i.e. all data sets D that can
be computed from the raw data D0 by transformations τ ∈ T . We

can therefore detect cycles by computing the topological ordering
of the nodes starting in the node representing the raw data D0. If
the derivation graph is not acyclic, the algorithm will eventually
detect a cycle to be contracted. Since the topological order can be
established using depth-first search (DFS) , it can be established
in O(|D↑0|+ |T |), i.e. the computation is linear in the number of
graph node and edges. Note that if the graph contains cycles, the
number of edges can be significantly larger than for an acyclic
graph. Note that in general, |D↑0|+ |T | � kn. Because the actual
sparsity of the derivation graph depends on the domain and appli-
cation, we cannot make any restricting assumptions without sac-
rificing the generality of our discussion. Since DFS logs visited
nodes as part of its execution, the transformation paths describ-
ing cycles are obtained together with the cycle. Hence, contract-
ing a cycle is linear in the number of its nodes since the union
of their information sets can be computed by concatenating the
linked lists storing the sets of information. If a cycle is found, it
is immediately contracted and the DFS is continued from the new
node, dropping the results of the former search. The procedure
is continued until no cycles are left. In the worst case, the data
is aligned along a long line where D0 is a starting node and DFS
identifies the first cycle as being the cycle containing the tree’s
single leaf and its immediate parents. If the new node is again
part of a cycle of two nodes, this cycle is also merged. Contin-
uing this procedure up to the root requires as many steps to go
down until the leaf is reached as it requires to contract the cycles
on its way back up. The worst case is therefore linear in the num-
ber of nodes and we obtain an upper bound of O(|D↑0|+ |T |). For
the detection of fork-join-structures, the procedure is similar but
we need to either apply breadth first search (BFS) or interpret G to
be an undirected graph. While the latter method is again based on
cycles and can apply the same algorithm as before, it requires an
additional reconstruction step to obtain the actual paths contribut-
ing to the structure. BFS not only reveals these paths directly but
also covers complex branching situations. The runtime complex-
ity is the same as for the contraction of cycles.

After contraction, we are down at a tree structure again and
the remaining upper runtime bound for assessing derivability in
the graph is, again overestimated, O(kn ·R). Contraction thus al-
lows to asses derivability of information more efficiently, speed-
ing up the process especially in applications like business intelli-
gence or process control monitoring.

Automatic Pipelines for Visual Analytics
In 1986, Jock Mackinlay published his seminal paper on the

automatic design of visualizations of relational information [12].
He describes data visualizations as the words and sentences of a
graphical language describing the behavior of the applied visual-
ization technique in terms of predicate logic. The connection be-
tween the elements of the visualization and the data they represent
is achieved by an encoding relation. Defining predicates using the
encoding relation, a hierarchy can be defined, defining structures
like the points in a scatterplot or the arrangement of scatterplots in
a matrix. This establishes an implicit connection between graphi-
cal elements in the visualization and the information they support.
Mackinlay proposes and automatic visualization design process
based on the notions of expressiveness and effectiveness. Expres-
siveness denotes the fact that a graphical language – and therefore

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 377-7

a visualization technique – is available, that can depict the in-
quired information, demanding the existence of a sentence within
the language that encodes exactly the data to be visualized. Effec-
tiveness is an empirical value of visualization performance which
is applied to select the optimal visualization if among available
alternatives. In this section, we extend Mackinlay’s technique to
an automatic tool for the design of visual analytics pipelines.

Derivation and Inference in Visualizations
If we relax the expressiveness criterion to only demand that

the visualization should represent the information I = ∆(D) asso-
ciated with data D to be best extent possible and avoid to incor-
porate more data than necessary, Mackinlay’s expressiveness is
equivalent to our notion of derivability. We claim, however, that
in case we do not have the tools available to extract and visualize
the whole information we inquire, we should still try to visualize
the information to the best extend possible and to inform the user
about what is missing in the visualization. Inspired by Mackin-
lay’s work, we model graphical languages and thus visualizations
using our derivation graphs. Technically, describing the visualiza-
tion as a set of transformations to be applied to data is the same
as implicitly defining a graphical language using predicate logic
constraints. To establish compliance with our annotation, we ex-
tend the Encodes-relation to relate an element of the visualization
(graphical sentence) not only to the data but also to the informa-
tion associated with this data. The data to be visualized is the raw
data of visualization technique’s transformation graph. Because
expressiveness determines whether some information can be vi-
sualized within a graphical language or not, we can say that the
capability of a visualization to depict certain information depends
on whether this information is derivable from the raw data and
that it is contained in the upward closure of the information di-
rectly associated with at least one visualization element. Since
we consider visualization systems that only offer finitely many
options to represent data and we allow to restrict the number con-
secutive transformations, this setup satisfies the preconditions for
Theorem 4. A direct consequence of this is:

Lemma 5: Let V be a visualization system with k algorithms
for data representation or transformation. The ability of V to
represent certain information after a sequence of not more than n
consecutive data transformations is decidable.

Derivability is a necessary condition for the ability of a vi-
sualization system to represent inquired information. However, it
is not sufficient since not all derivable information is necessarily
encoded by some visualization element that is actually rendered
to the screen. There are two cases of such non-explicit informa-
tion derivability in visualization systems which in this work we
refer to as intrinsic and extrinsic inferability. Intrinsic infer-
ability does not expose the information to the user. Typically the
user is shown a consequence of the actual information. A triv-
ial example for this case is a progress bar. Although the system
does no expose to the user what action it is currently performing,
the consequence, namely the progress made so far, is visualized
and provides the user with useful information. Likewise, extrinsic
inferability involves the user into the process. This information
is indeed encoded by visualization elements but not by the basic
ones. Hence, it is not presented explicitly and the user has to infer

it from the data context. This is typically the case when the infor-
mation is encoded by a history of states or by relations between
explicitly depicted items. Examples are the trajectory of a driving
car or tasks where the user has to infer abstract properties from
Gestalt principles.

Interchangable Pipeline Blocks
Now that we know we can seamlessly integrate visualization

into the theory developed so far, we are able to define building
blocks of dynamically adjustable visual analytics pipelines. If we
define transformation graphs for each technique to be applied dur-
ing data preparation and for data visualization, we can construct
pipelines by highlighting not only the raw data nodes but also
distinguished output nodes marking data that is exposed to the
outside. If we now connect the output of one graph to the raw
data input of another, this effectively concatenates the applica-
ble transformation paths and thus merges the information stored
in both graphs. For example, we can attach a visualization tech-
nique to a data preparation step like Figure 5 demonstrates it for
the visualization of a projection obtained from principle compo-
nents analysis (PCA) as points in a scatterplot.

Figure 5. Results of Principal Components Analysis (PCA), visualized

as a scatterplot. Grey fields indicate an informal representation of the

interpretation-function where entries are of the format (data:information).

The output of PCA is a set of points in a plane which are passed to the

scatterplot visualization module. This determines the scatterplot’s raw data

and thereby applies the visualization to the computed data. The diamond

shape is a blank node used as a shortcut for functions taking multiple input

parameters.

Towards more sophisticated analysis, consider an example
where an analyst tries to identify and highlight clusters in some
multivariate data set. Using parallel coordinates, the analysis ex-
pert infers discriminating features based on the distribution of
lines along the different axes and projects the data to these dimen-
sions. Using some distance measure, the analyst runs a clustering
algorithm, subdividing the data into k subsets in an iterative proce-
dure. Feeding the cluster distribution back into the original data as
an additional dimension, a new axis indicates the clusters which
proves that in this setup, a parallel coordinate plot is capable of
visualizing the inquired information which data item belongs to

377-8
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

which cluster. However, the addition of an additional axis makes
it hard to infer the clusters when scrolling sideward through the
diagram. Therefore, the analyst chooses to extend the visualiza-
tion by a color coding for the classes. The whole interaction and
the corresponding transformation graphs are shown in Figure 6.

Figure 6. Parallel Coordinates plots can visualize class membership. To

prove that a visualization is possible, it does not suffice to provide the exam-

ple – one has to prove the information is actually there. Here, we need the

plot and an arbitrary clustering method, e.g. k-means. For the proof, we feed

the clusters back into the visualization system as part of the raw data. This

is equivalent to adding another table entry to the original data and thus inter-

preted by the plot as an additional axis. With the new axis the visualization

supports the inquired information about (computed) class compositions.

In the example, the algorithms behind the different opera-
tions are simplified and much information is hidden in the trans-
formations. However, it would be unsound to model every de-
tail of the procedure, especially the sequential parts. Apart from
the fact that this would not provide any further information, the
sequences would be consumed by contraction anyway. In the
example, we deliberately did not apply contraction yet to show
the algorithms in detail. We observe that the whole graph actu-
ally consists of four blocks, namely the parallel coordinates as
the applied visualization technique, the projection, the cluster-
ing procedure, and the color map. These blocks are essentially
independent of each other with the only restriction that blocks
can only be connected if the output data format of the one block
fits the raw data format of the other. We can assume this to be
the case for real world applications of visual analytics suites – or
achievable through the invocation of translation procedures. For
example, there are tools to define data preprocessing pipelines by
graphical programming like KNIME [2] in which this obviously
has to be the case. Otherwise, the constructed pipeline would
not be executable. The major difference between our approach
and these tools is that we actually do not intend to ask the user
to define the paths manually. Instead, the user asks for nontriv-
ial information patterns which the system extracts and visualizes
automatically. Figure 7 shows an example of a more powerful
collection of analysis and visualization techniques. Although the
collection is still rather small, it can already serve nontrivial re-
quests like the demand for a visualization technique which opti-
mally preserves some feature that is only present in derived data,
for example cluster membership or the alignment of scatterplots
in a scatterplot matrix. This is possible because the visualization

blocks hold information not only about their general properties
but also about their applicability and specific advantages.

Automatic Pipeline Generation
Before we define the algorithm, let us summarize the rela-

tionships between the previously obtained results and discuss how
they enable an automatic generation of visual analytics pipelines
which always terminates and provides correct results. We define
a result as correct if it either returns that the inquired informa-
tion is not derivable or it derives the information completely and
correctly and presents it in a suitable visualization with respect
to the information to be conveyed and the user’s additional re-
quirements. In this sense, the algorithm can be understood as an
extension of Jock Mackinlay’s APT to visual analytics.

Since each block is a set with only finitely many data trans-
formations and only a finite number of blocks is available, the
conditions of Theorem 4 apply if we also require a finite upper
bound for the length of sequences of connected blocks. Alter-
natively, we can demand each sequence of blocks to eventually
contain a visualization and the computation to stop there until fur-
ther processing is manually invoked by the user. Since this also
guarantees termination of the computation, Theorem 4 still holds.
Likewise and derivability of information is decidable. Since this
implies that Lemma 5 also holds, the system’s ability to visual-
ize information – be it explicitly or by intrinsic inference – is
also decidable. Note that extrinsic inference is never decidable
since it depends on the user’s understanding of the data. The
fact that it is possible to infer the correct information does not
necessarily prevent misinterpretation. Since functionality can be
wrapped into blocks which can be aligned in transformation se-
quences, we can compute a variety of different views on the data.
Theorem 4 and Lemma 5 trivially hold across execution blocks if
one chooses to connect the blocks by sets of identity transforma-
tions. Since the amount of data is finite, the transformations also
terminate. Since every visualization block supports information
about its own applicability and quality, the algorithm terminates,
is capable of deriving the visualization correctly, and to visualize
it with the most proper available method. The final piece in the
puzzle is the contraction procedure. Being applied to each block,
it ultimately reduces the representation to the form of the system
shown in the upper left corner of Figure 7, representing each pro-
cess by a single node after abstracting away the implementation.
Therefore, we can apply existing software suites to actually com-
pute the transformation sequences obtained by the algorithm – as
long as we provide correct descriptions of the information being
derivable in the respective modules.

For a visualization system with a set of data transformation
blocks and a set of visualization blocks, the algorithm first com-
putes the contraction for each of the transformation graphs consti-
tuting the several blocks. In a second step, it establishes the links
between the blocks by checking for each pair of blocks whether
the information in the output nodes is contained in the information
of the other block’s input node. The algorithm assumes that data
formats are compatible if the information matches. The resulting
graph is exposed to the user as a means to communicate the trans-
formation paths applied towards visualizing the data. This way,
the procedure is transparent of the user who can manually readjust
transformation paths if needed. This preprocessing is only needed
while setting up the program. As long as no new blocks are added

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 377-9

to the system, its results can actually be saved in a configuration
file. The last preparation step is to execute contraction on the
graph of blocks as illustrated in Figure 7. Recall that contraction
gathers all information in a linked list under a tree of transforma-
tion paths connecting contracted data nodes. To infer the correct
visualization for some set of information, the algorithm first ver-
ifies the derivability of each item in the set using the algorithm
outlined in the section on automatic extraction of information. If
the item is derivable, the corresponding path is also available. For
each of the inferable elements, the corresponding subset of the
linked list is scanned for contained information about visualiza-
tions applicable to this information. Again, the transformation
paths are known since they have been preserved by the contraction
procedure. Traversing the tree, the algorithm finds the sections in
the linked list of information items that correspond to the respec-
tive visualization techniques and traverses them for information
to which kind of data they apply best. With this information, a
ranking is computed which part of the derived data should be vi-
sualized with which technique. Note that if additional criteria on
the visualization have been inquired by the user, the correspond-
ing techniques have already been detected as part of the first steps
and are ranked higher than the remaining techniques. Note that
visualization themselves can also be treated as data allowing for
aligned and nested visualizations if the user requires them. Actual
implementations of the models for data and information, as well
as the ranking procedure are application specific. One solution
for the ranking is to apply the effectiveness criterion Mackinlay
proposes for APT. Some other applicable data and information
models are mentioned in our review of related work.

An Example
For a more intuitive access to how the system works, let

us briefly discuss an example. Assume we are investigating the
well-known Iris flower data set containing measurements of the
petals of 150 Iris flowers of three different species in four dimen-
sions. Let us further assume we are applying the analysis sys-
tem shown in Figure 7. As a preprocessing step, the system’s
graph would be collapsed just like it is shown in the figure. A
first query to the analysis system could now be to ask for a single-
projection overview that minimizes the projection error. The sys-
tem recoginizes that it can load data, does not need to apply any
preprocessing and recognized that among the informaton associ-
ated with PCA as a projection techniques, there is an entry formal-
izing that PCA optimizes variance and minimizes the projection
error. Since the output of PCA is data points, it would then opt
for the scatterplot as the visualization technique of choice. Since
the collapsing collects the transfomation paths and stored them
for each collapsed cell, the computer can retrieve the transfor-
mation algorithms directly. The path obtained by connecting the
blocks would this be exactly the graph depicted in Figure 5. From
this overview we would be interested in investigating local neigh-
borhoods of similar items. Going through the collapsed graph
immediately reveals that we are capable of providing this infor-
mation because we do have neighborhood graphs in our toolset
and node-link diagrams have the information associated that they
can show neighborhoods. The computer selects to compute the k
nearest neighbors for each node since we asked for local neigh-
borhoods and applies the scatterplot from before to position the
graph’s nodes. From this image, we get the impression that there

must be three groups among the flowers. We thus ask to some-
how group the flowers by their similarity. Clustering algorithms
are associated with the information that they group elements, so
the computer attempts to find a suitable path through the deriva-
tion graph containing a clustering algorithm. k-means is chosen
since it is similarity-based and locally. As a result, the flowers are
tagged with their class names and the tags are passed to the scat-
terplot together with a colormap for the groups. We thus identified
the three groups of flowers in the data set. With a more sophisti-
cated system than the one we apply in this szenario, we could for
example ask to refine the clustering based on local cluster out-
liers. Given the necessary information in some nodes, the system
could derive strategies like filtering outliers in each single cluster
and attempt to rematch them to the cluster they best in the best.

Discussion and Future Work
We proposed a general model for the derivation of informa-

tion in terms of interpreted data and investigated the conditions
under which the derivation process can be automatized. The ob-
tained decidability results motivate the outline of an algorithm to
he automatic derivation and visualization of data with respect to
inquired information. Being independent from specific data and
information models, the technique is generally applicable. How-
ever, this comes at the cost of a certain vagueness in the descrip-
tions of the algorithms whenever the data structure or the organi-
zation of information becomes important for the discussion.

We organize the execution of a sequence of data transforma-
tions in combinable building blocks. Each of them is associated
with its own information, allowing the system to leverage this in-
formation to derive insights about the data. Again, keeping the
system general means that this information is not data-specific.
Therefore, in a plug-and-play scenario where some data is passed
to an analyst who then intends to use our system for the investi-
gation, only general information about the respective algorithm’s
effect on the data can be inquired. In contrast, data specific infor-
mation can be added in analysis environments where the informa-
tion associated with data does not change frequently, allowing for
more sophisticated information inquiries tailored to the specific
application. In this work, we avoided the necessity to add addi-
tional information directly to the data since this would require an
information model and thus limit the generality of our approach.
However, the potential of interactive feedback of analysis results
into the data and transformation model should not be underesti-
mated. For example, reintegration of information can help to iter-
atively optimize information derivation procedures or to quickly
reproduce analysis results on other data.

Probably the most important problem of keeping the proce-
dure general is that, as of now, we can provide a detailed inter-
action scheme for the user to invoke the pipeline generation by
inquiring information. In fact, since the information model de-
pends on the application, the ways to query for information will
differ among different implementations. However, due to its de-
scriptive power, we conjecture that the semantic web will be a
good candidate to model the information in many applications.

One weak point of automatic visualization is the ranking of
the different methods to be applied for different tasks. It could
be expected this to become even worse if the automatization is
extended to the whole pipeline, for example when multiple algo-
rithms for clustering or classification are applicable to the same

377-10
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

Figure 7. Collapsing applied to a set of transformation and visualization algorithms. To indicate that the algorithms have already been contracted and to

emphasize their role in the visualization system, we apply different icons for their visualization. The diagram is to be read clockwise; the entries to the left are

the original state and the final state when no further contraction is possible. Determination of fork-join-structures is based on a breadth first search starting in a

given center. Blue edges denote states already covered but without success, yellow denotes paths of the graph that are candidates to which contraction has not

yet been applied due to the orange structures containing less nodes or being closer to the original data. Whenever something changes, the algorithm starts to

check the corresponding entries.

data. Fortunately, this is only partially true. Indeed, problems
occur wherever a ranking of the performance of methods is in-
volved. However, the mathematical toolset applied for automatic
analysis and data preparation can be measured or at least com-
pared relative to the individual algorithms’ performance on rep-
resentative test data whereas the performance of visualization has
to be evaluated based on human perception. We conclude that
in most applications the uncertainty bottleneck in finding optimal
solutions will remain with the identification of the proper visu-
alization technique. In the future, models will have to be found
that allow to integrate the insights obtained from evaluating visu-
alization techniques into the information associated with the algo-
rithms. Instead of having to inquire the optimization of statistical
or numerical properties like “the least amount of clutter” or “best
preservation of distances”, a user of a system equipped with this
information could literally ask for “the best view on my data”.

Making the final transformation procedure transparent to the
user is crucial for the reproducibility of results, especially because
it explains the visualization. We establish this documentation
of the program’s performance by presenting the graph of linked
blocks to the user. The graph also serves as an interface for inter-
action and exploration, allowing to recursively unfold or collapse
the nodes to investigate the transformation procedures they rep-
resent and the transformation sequences chosen by the algorithm.
Interaction for editing or extending transformation sequences al-
low the user to improve and extend the presentation if needed.

There are some open questions left where the implementa-
tion of the algorithm for automatic information derivation is con-
cerned. However, one could also replace the automatic approach
by a semiautomatic one, where the computer only proposes viable
transformation paths rather than deciding between them. Because
the optimal solution depends partly on the user, a semiautomatic
implementation letting the user decide between the alternatives al-
lows to avoid the necessity to provide measures and rankings for

optimal data representation. On the other side, the fully automated
approach is easier to use, especially for novice users. Our main
concern to propose the fully automatic algorithm was to show that
it is actually possible to define a structure of data and its associ-
ated information in which it is – even if further restrictions have
to apply – such that derivability and the ability to visualize certain
facts are decidable. This possibility yields that there is a formal-
ism in which every visualization can be expressed (by its pipeline)
and in which it is decidable or at least positively semi-decidable
for visualizations whether the information they are intended to
convey is derivable and can be visualized. The implication here is
clear: Given formal models for data and for the associated infor-
mation, we can prove the correctness for visualizations.

Conclusion
In this paper, we prove the feasibility of an automatic gen-

eration of data processing and visualization pipelines for visual
analytics based on a user’s query for information being contained
in the data and provided by the visualization. To this end, we
investigate the problem of deriving information from raw data.
Our assumption is that (known) information is given in terms of a
(partial) interpretation function and can be derived from raw data
if the raw data can be transformed such that the inquired infor-
mation is in the interpretations’ range. The resulting reachabil-
ity problem can be solved for almost all real world applications.
Based on these considerations, we outline a schematic for an al-
gorithm for the automatic generation of visual analytics pipelines.
Our results are of a general nature, leaving the definitions of the
applied models for information and data to the implementation.
Especially in systems offering large collections of data transfor-
mations and visualization techniques, generating high-quality vi-
sualizations optimized towards the conveyance of specific infor-
mation will benefit substantially from automatic data processing
pipeline generation.

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 377-11

References
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web

(Berners-Lee et. al 2001). 2001.
[2] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl,

P. Ohl, C. Sieb, K. Thiel, and B. Wiswedel. KNIME: The Konstanz
Information Miner, pages 319–326. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[3] J. R. Büchi. On a Decision Method in Restricted Second-Order
Arithmetic. In International Congress on Logic, Methodology, and
Philosophy of Science, pages 1–11. Stanford University Press, 1962.

[4] S. M. Casner. Task-analytic approach to the automated design of
graphic presentations. ACM Trans. Graph., 10(2):111–151, 1991.

[5] J. Choo, C. Lee, E. Clarkson, Z. Liu, H. Lee, D. Horng, Chau, F. Li,
R. Kannan, C. D. Stolper, D. Inouye, N. Mehta, H. Ouyang, S. Som,
A. Gray, J. Stasko, and H. Park. Visirr: Interactive visual informa-
tion retrieval and recommendation for large-scale document data.
2013.

[6] C. Demiralp, C. E. Scheidegger, G. L. Kindlmann, D. H. Laidlaw,
and J. Heer. Visual embedding: A model for visualization. IEEE
Computer Graphics and Applications, 34(1):10–15, 2014.

[7] A. Endert, W. Ribarsky, C. Turkay, B. W. Wong, I. Nabney, I. D.
Blanco, and F. Rossi. The state of the art in integrating machine
learning into visual analytics. Computer Graphics Forum, 2017.

[8] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and
G. Melançon. Information visualization. chapter Visual Analyt-
ics: Definition, Process, and Challenges, pages 154–175. Springer-
Verlag, Berlin, Heidelberg, 2008.

[9] D. König. Über eine Schlussweise aus dem Endlichen ins Un-
endliche. Acta Litt. ac. sci. Szeged, 3:121–130, 1927.

[10] O. Lassila, R. R. Swick, W. Wide, and W. Consortium. Resource
description framework (rdf) model and syntax specification, 1998.

[11] S. Lohmann, S. Negru, F. Haag, and T. Ertl. Visualizing ontologies
with VOWL. Semantic Web, 7(4):399–419, 2016.

[12] J. Mackinlay. Automating the design of graphical presentations of
relational information. ACM Trans. Graph., 5(2):110–141, 1986.

[13] R. Möller, V. Haarslev, and B. Neumann. Semantics-based infor-
mation retrieval. In In Int. Conf. on Information Technology and
Knowledge Systems. Springer Verlag, 1998.

[14] S. Negru, S. Lohmann, and F. Haag. VOWL: Visual Notation for
Ontologies (Specification of Version 2.0), 2014.

[15] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for
RDF. W3C Recommendation, 2008.

[16] H. C. Purchase, N. Andrienko, T. J. Jankun-Kelly, and M. Ward.
Theoretical Foundations of Information Visualization, pages 46–64.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[17] H. J. Schulz, T. Nocke, M. Heitzler, and H. Schumann. A design
space of visualization tasks. IEEE Transactions on Visualization
and Computer Graphics, 19(12):2366–2375, 2013.

[18] S. J. Simoff. Form-Semantics-Function – A Framework for Design-
ing Visual Data Representations for Visual Data Mining, pages 30–
45. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[19] K. Thellmann, M. Galkin, F. Orlandi, and S. Auer. LinkDaViz –
Automatic Binding of Linked Data to Visualizations. 2015.

[20] A. M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical
Society, 2(42):230–265, 1936.

[21] X.-M. Wang, T.-Y. Zhang, Y.-X. Ma, J. Xia, and W. Chen. A sur-
vey of visual analytic pipelines. Journal of Computer Science and
Technology, 31(4):787–804, 2016.

[22] G. Wills and L. Wilkinson. Autovis: Automatic visualization. In-
formation Visualization, 9(1):47–69, 2010.

Author Biography
Benjamin Karer received his MS in Computer Science from the

University of Kaiserslautern in 2016. Currently he is a PhD candidate in
the Computer Graphics & HCI Group at University of Kaiserslautern.
His research concentrates on foundational aspects of the encoding of
information in data visualizations.

Inga Scheler received her Diploma in Civil engineering from
the University of Kaiserslautern (1999) and her PhD in computer
science from the University of Kaiserslautern (2008). Since then she
has worked in the Computer Graphics & HCI Group at University of
Kaiserslautern and since 2012 as Managing Director in the Regional
University Computing Center at University of Kaiserslautern. Her main
focus is on the development of new visualization techniques supporting
basic infrastructure systems.

Hans Hagen received a BS in Computer Science (1976) and a MS
in Mathematics (1979) from the University of Freiburg and his PhD in
Mathematics in 1982 in Mathematics (Differential Geometry) from the
University of Dortmund. His main research interests are Geometric Mod-
eling and Scientific Visualization. He was awarded the IEEE Visualization
Career Award in 2009, the John Gregory Memorial Award in 2002 and the
Solid Modeling Pioneer Award in 2016.

377-12
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

