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Abstract 

Mutual Information (MI) is emerging as a very strong metric 

for image registration purposes in the literature. It has many 

applications from remote sensing to medical image registration. 

From this wide range of use of MI, images are mostly expressed in 

different numbers of bits (high dynamic range) especially in 

medical and satellite imaging. In such cases, contrast enhancement 

becomes inevitable before MI-based image registration since all 

the images should be in the same intensity range. The change in 

intensities in images will directly affect MI metric.  Contrast 

enhancement methods also have a significant effect on the 

registration performance due to MI metric and this problem is not 

sufficiently addressed in the literature. In this paper, the effect of 

the outstanding contrast enhancement methods is examined on 

image registration performance. For this purpose, high dynamic 

range satellite images were used and Monte Carlo tests were 

performed. They are tried to be aligned with MI and constrained 

optimization by linear approximations (COBYLA) optimization 

algorithm. Consequently, it is found that contrast enhancement 

methods have an effect on MI-based image registration. It is 

concluded that Laplacian of Gaussian unsharp blending masks 

(LoGUnsarp), adaptive histogram equalization (AHE) and 

contrast limited adaptive histogram equalization (CLAHE) 

methods have better registration performance. They can be 

preferred in such registration purposes. 

Keywords — contrast enhancement, image registration, 

mutual information, optimization. 

Introduction 
The main purpose of image registration is to find the most 

appropriate geometric transformation parameters that maximize the 

similarity between two or more images. Two main methods are 

proposed in order to find the optimal parameters; feature and 

region based methods [1]. In feature-based image registration, 

points, lines, edges, curves in the image are considered [2]. On the 

other hand the grayscale properties of images are taken into 

account in region-based methods and a similarity metric is defined. 

This similarity metric can be cross-correlation [3], cross power 

spectrum [4] or mutual information (MI) [5, 6]. In this study, MI 

which is accepted as the state-of-the-art technique [7] is used to 

show the effect of the contrast enhancement techniques on the 

performance of image registration. 

The MI metric has been proposed for aligning two or more 

images in image processing. In cases where the transformation 

between images can be expressed by homography, the objects in 

the images are also aligned by image registration. In this way, 

more detailed analysis can be accomplished in multi-band images 

by examining them simultaneously.  It is possible to define image 

registration algorithms with 3 basic components:  transformation 

matrix, matching metric and optimization algorithm [8]. The 

transformation matrix contains the geometric transformation that 

allows the images to align with each other and is basically 

performed into two ways: rigid and non-rigid [9]. The similarity 

metric provides information about how well the two images 

overlap each other. Nevertheless, optimization algorithms aim to 

find the optimal transformation that gives the best matching metric 

by refreshing the transformation matrix cyclically, in general.  

In recent years, it is clear that MI-based metrics are preferred 

in many studies for the registration of images [5, 10-12]. It has 

promising results in multi-modality image registration [6, 7, 13, 

14]. The study in [6] gives experimental evidence of the power and 

the generality of the MI by presenting registration errors from 

various image modalities involving CT, MR and PET. It states that 

the MI criterion is highly data independent and allows for robust 

and completely automated registration of multimodal images. 

Implicit Similarity (IS) over MI proposed for the registration of 

significantly dissimilar images, acquired by sensors of different 

modalities in [7]. However, it reports that MI outperforms IS. In 

the survey in [13], MI is stated as a successful registration measure 

for many applications including multi-band images and it can 

undoubtedly be adapted and extended to aid in many more 

problems. The algorithm proposed in [16] has accomplished 

registration of multiband satellite images by extending use of MI 

metric with kernel convolution. Multimodal and multiband images 

from different sensor do not always have the same dynamic range. 

For instance, thermal images are usually expressed in 14-16 bits 

while visible band images represented in 8-bits on a single 

channel. This situation makes the step of contrast enhancement or 

tone mapping necessary before image registration. The problem of 

how such techniques affects image registration performance with 

MI metric is not addressed in the literature. In this study, the effect 

of prominent contrast enhancement techniques on MI-based image 

registration is examined and registration quality of them is 

compared. The results reveal the necessity of such an analysis due 

to the observation that contrast enhancement method applied as a 

preprocessing step before MI-based image registration 

significantly affects the registration performance. 

The remainder of the paper is organized as follows:  The MI 

metric is described in section II and the contrast enhancement 

techniques tested are mentioned in section III. The contrast 

enhancement methods followed in this study are presented in 

section IV. Finally, in section V the results are discussed by 

supplying experimental results. 

Mutual Information Metric  
In information theory, the metric that measures the 

relationship between two random variables X and Y is called 

mutual information (MI). This metric actually measures how much 
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a random variable contains the other. MI can be expressed as in (1) 

using Shannon entropy [15].  

𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑌|𝑋) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) (1) 

where H denotes entropy and I is the MI metric between given 

random variables X and Y. Assume that X and Y random variables 

represents two separate images. In this case, H(X) and H(Y) are 

entropy values of first and second image respectively and H(X, Y) 

is the joint entropy value between the two and these are defined as 

in (2) and (3), respectively. Since images are characterized as 

discrete signals, distributions are represented with probability mass 

function (PMF).  

𝐻(𝑋) = − ∑ 𝑝𝑥(𝑖) log (𝑝𝑥(𝑖))𝑖  (2) 

𝐻(𝑋, 𝑌) =  − ∑ 𝑝𝑥𝑦(𝑖, 𝑗)log (𝑝𝑥𝑦(𝑖, 𝑗))𝑖,𝑗  (3) 

In the equations (2) and (3), px is the marginal PMF of the random 

variable X, while pxy denotes the joint PMF of the random variables 

X and Y. Given a set of observations for any random variable X, 

several methods have been proposed for estimating PMF. The most 

common techniques for estimating PMF of images are based on 

histogram [6, 16, 8] and kernel (i.e. Parzen window) [17, 18, 19] 

approaches. In this study, both methods are utilized to evaluate MI 

metric. In histogram based approaches, PMF is taken as histogram 

of the image. On the other hand, in kernel-based approaches, a 

kernel K as in (4) and (5) is used for PMF estimations. 

𝑝𝑥 =
1

𝑚
∑ 𝐾(𝑥𝑖 , 𝑥)𝑚

𝑖=1  (4) 

𝑝𝑥,𝑦 =
1

𝑚
∑ 𝐾(𝑥𝑖 , 𝑥)𝑚

𝑖=1 𝐾(𝑦𝑖 , 𝑦) (5) 

where m represents number of samples and K is the kernel 

function. In this study, well-known method called Parzen window 

[17] is used for PMF estimation. It estimates PMF by taking 

samples randomly from the image. If sample size is too low, then 

estimated PMF will be far away from the actual PMF of the image. 

Thus this value is important for producing accurate MI metric. The 

third MI metric proposed in [16] is the combination of histogram-

based and kernel density estimation methods. It divides the 

samples data all over the histogram bins instead of discretely 

assigning them to a specific bin. This method referred as hybrid-

MI throughout this paper. 

 

  
(a) (b) 

Figure 1. (a) Visible band image and (b) 8-bit thermal image [29] which is 
converted from 16-bit using Min-Max Scaling) 

The MI metric considers the intensity of the brightness values 

of the images as well as the joint probability distribution at the 

same time. The more the X and Y random variables depend on each 

other, the lower joint entropy value is obtained. As the joint 

entropy value gets lower, MI metric will be higher from   (1) when 

H(X) and H(Y) are constant. Therefore, the MI metric is expected 

to produce the maximum value when two images are perfectly 

aligned. Typical visible and thermal band images used in this study 

are shown in Fig. 1. 

In the utilized dataset [29], the images are initially aligned 

(see Fig. 1).  In order to see the effectiveness of MI metric for 

image alignment, thermal image is translated on both x and y-axes 

with 0.5-pixel steps in the range of [-15, +15]. MI between 

translated image and visible image is calculated and the surface in 

Fig. 2 is obtained for all these cases. Bin number is chosen as 64 

for histogram based MI metric. In kernel (Parzen window) based 

MI metric, standard deviation is taken as 0.4 and sample size is 

chosen as 0.05% of image dimensions (width*height). In hybrid 

MI, kernel size is 5, number of observation is 300 and bin width is 

4. Since the images are aligned at the beginning, the maximum MI 

value is occurred at (0, 0). As it is clear from Fig. 2, MI is a 

powerful metric to deduce the quality of image registration. 

 

  

(a) (b) 

 

(c) 

Figure 2. (a) Histogram based and (b) Parzen window kernel based and (c) 
hybrid MI metric distribution generated from translating thermal image in the 
range of ±15 pixels on both x and y-axes over visible 

Contrast Enhancement Techniques 
Details or the information in an image may disappear when 

high dynamic range images represented by more than 8-bits are 

displayed on standard 8-bit screens. For this purpose, it is 

necessary to reduce the number of bits preserving details as much 

as possible by using contrast enhancement techniques. This can be 

accomplished in in two ways in two ways, in spatial [20] and 

frequency domain [21]. In general spatial domain methods employ 

spatial location information of pixels and manipulate them. On the 
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other hand, frequency domain methods utilize Fourier transform of 

an image to enhance mostly edges. The algorithm proposed in [20] 

computes the spatial entropy of pixels using spatial distribution of 

pixel in gray levels. On the other hand in [21], curvelet transform 

is used to enhance edges on noisy images. 

Contrast enhancement is preferred to improve the visual 

quality of the image and the accuracy of computer vision 

applications. This process will affect the MI metric between the 

two images as it changes the brightness values in the image. In this 

study, the effect of contrast enhancement techniques is examined 

on the performance of MI-based image registration. 

Min-Max Scaling 
One of the easiest way to increase the contrast of an image is 

to apply linear min-max scaling as in (6). In this method, linear 

scaling parameters a and b can be found as the parameters that map 

the minimum and maximum intensity values of the image to 0 and 

255 respectively if 8-bit representation is considered. 

𝑦 = 𝑎𝑥 + 𝑏 (6) 

0 = 𝑎𝑥𝑚𝑖𝑛 + 𝑏 (7) 

𝐿 = 𝑎𝑥𝑚𝑎𝑥 + 𝑏 (8) 

where 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 minimum and maximum intensity values in 

given high dynamic range image L is the maximum intensity level 

that image pixel can reach (i.e.255 for 8-bit representation).  

Global Histogram Equalization 
Histogram equalization (HE) is one of the best known 

techniques used to increase contrast in images. It performs good 

results especially in image data with close contrast values such as 

backgrounds and foregrounds that are both bright or both dark. 

Through this adjustment, the histogram of the entire image is 

uniformly distributed in the light and dark intensity levels. 

Histogram equalization can be performed as follows: 

ℎ(𝑖) = 𝑟𝑜𝑢𝑛𝑑 (
𝑐𝑑𝑓(𝑖)−𝑐𝑑𝑓𝑚𝑖𝑛

𝑀∗𝑁 −𝑐𝑑𝑓𝑚𝑖𝑛
) ∗ 𝐼𝑚𝑎𝑥 (9) 

where M, N are the image dimensions, Imax is the maximum 

intensity level (for 8-bit representation it is 255) and cdf is 

cumulative distribution function defined using the following 

relation. 

𝑐𝑑𝑓(𝑋) = 𝑃(𝑥 ≤ 𝑋) =  ∑ 𝑝𝑥(𝑖)𝑖<𝑋  (10) 

Since the probability distributions are calculated in a global 

manner, this technique is called global histogram equalization. 

Adaptive Histogram Equalization 
Adaptive histogram equalization (AHE) is another image 

processing method proposed for enhancing the contrast in an 

image based on histogram equalization; however, it is applied 

locally contrary to global histogram equalization. It computes 

several histograms for each corresponding to a distinct section of 

the image and it transforms intensity using these histograms [22]. 

Although AHE is quite effective, in some cases it has a tendency to 

amplify noise in the image. 

 

 

Contrast Limited Adaptive Histogram Equalization 
Contrast limited AHE (CLAHE) enhances contrast locally 

like AHE and is a variant of AHE. The difference between AHE 

and CLAHE lies in its limitation of the slope of the transformation 

function. AHE has a tendency to overamplify noise while CLAHE 

prevents this by clipping histogram at a predefined value before 

CDF computation; therefore, it limits the slope of CDF [23]. 

Techniques with Unsharp Blending Masks 
Some hybrid algorithms are proposed in contrast 

enhancement literature for concretizing edges in the images. 

Although MI is not a feature based metric, it is also investigated 

whether such techniques have an impact on image registration or 

not. The algorithm proposed in [24] is using GHE and unsharp 

masking based methods (UMBM) together for enhancing local 

contrast in infrared images. This method is called as 

HybirdUMBM in this study. 

Laplacian of Gaussian (LoG) has a wide usage for edge 

detection purposes in image processing. Thus in order to enhance 

local details, LoG is adapted to HybridUMBM algorithm instead of 

UMBM and this method is referred as LoG-Blending throughout 

this study. In this method, image is smoothed with Gaussian kernel 

given in (11) to suppress the noise before using Laplace for edge 

detection. The second derivative of the Gaussian kernel gives LoG 

equation as in (12). 

𝐺𝜎(𝑥, 𝑦) =
1

√2𝜋𝜎2
e

(−
(𝑥2+𝑦2)

2𝜎2 )
 (11) 

𝐿𝑜𝐺(𝑥, 𝑦) =
𝜕2

𝜕𝑥
𝐺𝜎(𝑥, 𝑦) +  

𝜕2

𝜕𝑦
𝐺𝜎(𝑥, 𝑦) (12) 

where 𝜎 refers to standard deviation. 

Experimental Method 
In the study, the effect of 6 different contrast enhancement 

algorithms, mentioned in Section-III, are analyzed in terms of MI-

based image registration. Test images are obtained from NASA's 

official website (https://earthexplorer.usgs.gov) and a section 

covering Aegean and Mediterranean coasts is used. The images are 

16-bit thermal and 8-bit 3-channel (RGB) satellite images of 

Landsat8. The images are initially aligned (see Fig. 1). 

The steps performed in the Monte Carlo test are standard for 

each contrast enhancement method and are mainly as follows: 
I. 8-bit 3 channel visible band image is converted to 

grayscale. 16-bit thermal image is converted to an 8-
bit gray level image with tested contrast 
enhancement method. 

II. Random rotation in the range [-5°, +5°] according to 
image center and random translation in the range of 
[-20, +20] pixels on both x and y-axes are applied to 
the 8-bit thermal image.  

III. The random thermal image obtained in the previous 
step is tried to be aligned with the visible band image 
using constrained optimization by linear 
approximations (COBYLA) algorithm [25, 26] and 
defining MI metric as a cost function.  

IV. Mean square error (MSE) is found between the 
initial thermal image (aligned with the visible band 
image) and the thermal image transformed using the 
estimated transformation matrix.  
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V. Step I has repeated once for each contrast 
enhancement method; II, III, IV are repeated 2000 
times for the current contrast enhancement method. 
For each step, following results are saved for the 
analysis registration: 

a. Randomly introduced rotation and translation 
parameters 

b. Rotation and translations parameters found by 
optimization algorithm 

c. MSE  

d. Run-time in milliseconds 

Image Coordinate Transformation 
The optimization algorithm searches for a coordinate 

transformation that will maximize the MI metric in the search 

space. Although the transformation between the thermal and 

visible band coordinate axes can be expressed by affine or 

homography, an affine transformation is preferred in order to 

express the transformation matrix parametrically [9]. The matrix 

that performs the coordinate transformation contains the rotation 

and translation parameters (i.e. rigid transformation) and can be 

written as in (13) using homogeneous coordinates. 

[
𝑥′

𝑦′

1

] = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 𝑡𝑥

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑡𝑦

0 0 1

] [

𝑥
𝑦

1′
] (13) 

where 𝜃 is the angle of rotation, 𝑡𝑥 and 𝑡𝑦 represent the amount of 

translation in the x and y axes respectively. x, y and x’, y’ are the 

image coordinates before and after the transformation. 

Contrast Enhancement and Optimization 
Parameters 

Some of the contrast enhancement methods utilized in the 

experiments have several parameters. These parameters are 

determined as a result of some subjective tests that seek for the 

most visually pleasant images in terms of the level of details. 

These parameters are summarized in the following table. 

Table 1: Contrast enhancement methods and its parameters 

AHE [22] SigmaS = 10, SigmaR =10 

CLAHE [23] 
Ctx:16, Cty=16, Number Of 
Bins=256, Cliping Limit=0.4 

GHE [30] Threshold: 5.0 

Hybrid UMBM [24] 
Kernel Size =3, Gain=200, 
Alpha=0.2 

LoG-Blending 
(Propsed) 

Laplace Kernel Size: 3 
Gauss Kernel Size: 3 

 

COBYLA is used as the optimization algorithm from the 

open-source NLOpt library [27]. The algorithm is a derivative of 

Powell's implementation [25, 26] and can be utilized to find local 

minimum or maximum. In this study, MI metric (cost function) is 

tried to be maximized as in (14) by updating transformation 

parameters. The library can handle numerical derivative operations 

and therefore there is no need to find the analytical derivative of 

the cost function. Function tolerance of the optimization algorithm 

is set to 1e-8 and maximum number of iterations is adjusted as 

1500. 

𝑝∗ = arg max𝑝  𝐼 (𝐼1, 𝑇(𝐼2, 𝑝))) (14) 

where I is MI between visible image I1 and warped thermal image 

I2. T is transformation function (13) which takes parameter vector 

p composed of rotation (𝜃) and translation (𝑡𝑥, 𝑡𝑦). Finally, p* is 

estimated transformation parameters achieving maximum 

alignment. 

Results and Conclusion 
The aim of this study is to analyze the effect of contrast 

enhancement methods on high dynamic range image registration 

using MI metric. For this purpose, histogram-based MI, kernel-

based MI (Parzen window estimation) and hybrid MI metrics are 

utilized in the tests. In order to compare the quality and 

performance of image registration, random rotations and 

translations, estimated rotations and translations, MSE values and 

run-times are saved for each step. As a result, it is observed that 

contrast enhancement methods significantly affect the quality of 

high dynamic range image registration. 

 

 

Figure 3. Typical registration result with CLAHE method 

Typical registration result for CLAHE method is depicted in 

Fig. 3 in a checkerboard view. Boxplots in Fig. 4 show minimum, 

1st quartile (%25 of samples), median, 3rd quartile (%75 of 

samples) and maximum MSE values from bottom to top for each 

contrast enhancement method respectively. It is also possible to 

make registration quality comparison between various MI types by 

looking at this figure. LoG-Blending, AHE and CLAHE methods 

are top 3 methods that have promising registration quality on each 

MI metric types. Min-max scaling has the worst performance on 

registration quality; however, it has acceptable errors with 15 
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(a) 

 

(b) 

 

(c) 

Figure 4. MSE comparison in boxplot view for (a) histogram based, (b) kernel 
based and (c) hybrid MI-based image registration. AHE, CLAHE, LoG 
Unsharp methods have promising results in all MI type registration 

pixels on average in histogram based and hybrid MI type 

registrations. In kernel-based MI (Parzen), registration quality is 

drastically decreased in some of the steps. The reason for relatively 

bad registration is that Parzen window cost function (see Fig. 2) is 

not as smooth as that of other MI types and has many local 

maximums. Since we have used local optimization algorithm 

(COBYLA), it is fitted to the local maxima in some of the steps in 

the test. If the sample size is increased for estimating PMF in 

kernel-based method, the cost function will be smoother but this 

time running time will increase due to random access to each pixel 

in the image. 

We also save run-time for each registration step to figure out 

whether contrast enhancement methods affect also run-time and 

make registration faster or not. According to mean and variance 

values in Table 2 for running-times, AHE has the best running-

time performance with lowest variance in histogram based and 

hybrid MI-based registration while CLAHE has the best in kernel-

based MI (Parzen window estimation). Note that, tests performed 

on a laptop with following properties: 

• Intel Core i7-4700HQ, 2.40GHz 

• 16 GB of RAM 

• Ubuntu 16.04 64-bit Operating System (OS) 

The sizes of satellite images are 1024x1024. 

Table 2: Average running-time for each contrast enhancement 

method for image registration and their variances. Rows in 

each method belong to histogram based MI, kernel-based MI 

(Parzen window estimation) and hybrid MI respectively 

Method Avg. run-time 
(s) 

Variance 
(s) 

Min-Max Scaling 

19.209 98.075 

12.828 49.042 

28.724 168.497 

GHE 

18.727 83.665 

12.327 38.412 

22.719 113.611 

Hybrid UMBM 

22.636 96.177 

12.654 47.716 

26.539 140.684 

LoG-Blending 

19.777 58.940 

14.261 59.854 

24.061 127.548 

AHE 

15.869 49.912 

13.765 51.815 

19.127 83.492 

CLAHE 

17.864 80.711 

10.128 13.781 

21.050 96.185 

In this paper, the effect of the contrast enhancement 

techniques on MI-based image registration is analyzed using 

satellite images having different dynamic ranges. According to the 

experimental tests performed, contrast enhancement methods have 

an impact on registration quality. LoG-Blending, AHE and 

CLAHE have stable and promising results for all MI types. These 

methods can be preferred for such image registration purposes. The 

worst contrast enhancement method is found as Min-Max scaling 

with the highest MSE values it produced (see Fig. 4). In addition to 

the registration accuracy, the selection of contrast enhancement 

technique affects convergence rate significantly. CLAHE and AHE 

methods have the fastest convergence rate in optimization (see 
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Table 2). It is also noted that histogram based MI and hybrid MI 

outperform Parzen window based MI with provided parameters for 

MI metrics in this study. If the sample size is increased in Parzen 

window estimation, it may produce better results. 
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