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Abstract. We introduce a web-based visual comparison approach
for the systematic exploration of dynamic activation networks across
biological datasets. Understanding the dynamics of such networks in
the context of demographic factors like age is a fundamental problem
in computational systems biology and neuroscience. We design
visual encodings for the dynamic and community characteristics of
these temporal networks. Our multi-scale approach blends nested
mosaic matrices that capture temporal characteristics of the data,
spatial views of the network data, Kiviat diagrams and mirror
glyphs that detail the temporal behavior and community assignment
of specific nodes. A top design specifically targeted at pairwise
visual comparison further supports the comparative analysis of
multiple dataset activations. We demonstrate the effectiveness of
this approach through a case study on mouse brain network data.
Domain expert feedback indicates this approach can help identify
trends and anomalies in the data. c© 2017 Society for Imaging
Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2017.61.6.060404]

INTRODUCTION
Recent neuroscience research indicates that cognitive opera-
tions are performed not by individual brain regions working
in isolation, but by networks consisting of several discrete
brain regions which act in synchrony.1 These networks
share ‘‘functional connectivity,’’ meaning that activity in
these regions is tightly coupled—in the sense of a statistical
association or dependency among two or more anatomically
distinct time-series events. Functional connectivity between
brain regions can change rapidly over time,2,3 giving these
networks a highly dynamic characteristic. Abnormalities
in functional connectivity have been linked with various
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degenerative and developmental affections. Evidence sug-
gests, for example, that Alzheimer’s disease spreads from
one brain region to a non-adjacent region within a specific
network, which is ‘‘activated when a person is recalling
recent autobiographical events.’’1 However, even for simple
networks, the subtle dynamics of these networks are not fully
understood. Therefore, techniques that are able to extract the
dynamics of functional connectivity from brain imaging data
have high potential value to the neuroscience community.

At the same time, advances in imaging technology
allow, at increasing pace, the comparative investigation of
functional connectivity dynamics at multiple scales, both at
the temporal level (time series, trials) and at the space level
(neurons, neurons grouped in pixels, regions of interest).
In computational neuroscience and computational systems
biology, each imaging snapshot captures one activation
pattern in the temporal behavior of a biological system.
The connectivity is then extracted from these images,
in the form of networks with large numbers of nodes
(over 20,000). Next, computational models are employed
to calculate the functional network dynamics. In order to
study the mechanisms of disease or aging, the process of
imaging andmodeling is performed repeatedly overmultiple
subjects, specimens or conditions, leading to a rich tapestry
of spatio-temporal imaging and computing data that need to
be analyzed. Visual analysis of such complex neuroimaging
data can help domain experts understand temporal features
along with their spatial references.

In this work, we present the design and implementation
of RemBrain, a novel visualization tool for the compara-
tive analysis and exploration of dynamic brain activation
networks. RemBrain (named after the intrepid Pixar rodent
Remy) is a multi-scale web-based application that supports
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Figure 1. Data processing. (a) Neuroscientists collect time series of biological imaging data (in this instance, mouse brain slices). Bright spots in each
image indicate activated (firing) neurons. (b) We use the Pearson correlation method to construct, from these images, an equivalent time series of correlation
networks (top, abstraction). The correlation networks (bottom, image overlay) correspond to three time steps; blue dots encode the active nodes and green
edges encode the links between correlated pairs. (c) We apply CommDy to these networks to infer dynamic communities (top, abstraction). Four communities
(blue, green, orange, red) are overlaid on mouse brain images, for three time steps, in the bottom image.

the tracking of temporal network behaviors. Responding to
the novel data characteristics above, RemBrain integrates
interactive, multi-scale 2D visualizations of imaging data;
displays network connectivity data for each activation
snapshot; captures the temporal behavior of a subregion of
nodes using novel encodings; and supports pairwise visual
comparison ofmultiple activations. This work, a follow-up to
the award-winning Swordplots4 (published in JIST), enables
the exploration and comparison of different activations at
multiple levels in dynamic biological networks. The main
contributions of the paper are:

• A description of the domain data and problems in
comparative neuroscience dynamic network analysis.
• Anovelmulti-scale visual representation, which enables
the exploration of networks at multiple levels: overview,
regional, detail. Aggregate Slices (overview), Mosaic
Matrices (regional), and Mirror Glyphs (detail) track
community dynamics over time.
• A flexible workflow for comparative visual analysis,
which supports the pairwise comparison of activations.
• An application to dynamic neurobiology mouse brain
data, developed in collaboration with domain experts.
• A demonstration through a case study and a summary
of the feedback provided by domain experts.

BACKGROUNDAND RELATEDWORK
Domain Background
In a typical project that seeks to analyze dynamic biological
networks, data is collected through time-series imaging of
the biological system as the system is stimulated in someway.
Bright spots in the imaging data indicate neurons (or cell
components) that are activated at that time step (Figure 1(a)).
Correlation networks can be automatically constructed from
these bright spots; over the time series, the correlation
networks change dynamically (Fig. 1(b)).

Algorithms—many originally developed for dynamic
social network analysis5,6—can then be applied to the
network data to infer groups of neurons that act as a
community over time (Fig. 1(c)). In the context of brain

network analysis, a ‘‘community’’ is analogous to a neural
assembly,7 which we define as a group of neurons that are
functionally connected and have similar temporal behaviors.

Brain Connectivity Visualization
Many techniques exist for visualizing brain connectivity
at either macroscopic (region level)8–12 or microscopic
(neuron) scale.13–17 In this work, we design a neural
encoding inspired by the Swordplots of Ma et al.4 However,
to the best of our knowledge, no other visualizations exist for
multi-scale biological connectivity data.

Our data further blends spatial and non-spatial features.
Marai18 identified two prevalent paradigms for integrating
spatial and non-spatial features: overlays andmultiple linked
views. In neuroscience studies, an overlay approach8,19,20
is commonly used when the non-spatial feature represents
only functional connections. However, as the non-spatial
data becomes more complex (activation levels, connectivity,
clusters, dynamic characteristics, and other statistics), the
linked-view paradigm15–17,21 becomes the default choice.
Nowke et al.14 use a hybrid approach that consists of
both overlays and linked views. We follow a similar hybrid
approach to support the exploration of dynamic biospatial
networks.

Dynamic Network Visualization
In static network visualization, the most common visual
representations are node-link diagrams22 and matrix-based
visualizations.23 Several projects24–26 use a hybrid approach
that combines both representations.

Dynamic networks and graphs are usually visualized
using either animation or a timeline-based representation.27
Several projects28–31 use animation to represent networks
with temporal components. To display dynamical changes
of networks into a single static view, Greilich et al.32
placed a sequence of graphs onto a timeline. Several other
projects33–35 use timeline-based representations to visualize
the evolution of communities in dynamic networks. Rufiange
and McGuffin36 presented a hybrid approach for visualizing
dynamic networks. In addition tomapping the time to the 2D
space, Bach et al.37 developed a Matrix Cube representation
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based on the space–time cube metaphor. The Matrix Cube
shows the network structure using the 2D matrix and maps
time to a third dimension. However, their technique is only
scalable to networks that consist of a few nodes across short
periods.

While, as shown above, a large number of visualization
techniques exist for static brain connectivity, as well as for
dynamic non-spatial networks, to the best of our knowledge
this novel domain is the first to require visualizing and
integrating both types of data.

Multi-scale and Comparative Visualization
In the visual analysis of neuroscience data, VisNEST14 and
NeuroLines16 integrate data at macroscopic level with mi-
croscopic level.We similarly adopt amultiple views approach
for different levels using both focus+context and details on
demand.Visual comparison of brain spatial–non-spatial data
is a relatively new research problem in neuroscience. Only
a few tools38,39 can be found. Maries et al.38 introduced
a comparative framework for mining brain geriatric data.
Lindemann et al.39 presented a comparative visualization
system that explicitly encodes changes of brain tumor
segmentation volumes in shape and size before and after
treatment. Outside the application domain, Gleicher et al.40
proposed a general taxonomy that groups visual designs
for comparison into three categories: juxtaposition (side by
side), superposition (overlay) and explicit. Because of the
complexity of our data, in our approach we use side-by-side
linked views.

DATA AND TASK ANALYSIS
Data Analysis and Processing
The input data consists of flavoprotein autofluorescence
imaging data collected, in this case, from mice brain
specimens captured in the TIFF format. A pixel contains
roughly 100 neurons, and the image acquired at a specific
time step has dimensions of 172× 130, leading to a file size
of 24 KB. One activation cycle lasts about 100 time steps.
Fig. 1(a) shows an example of a time-series data collected
from mouse brain slices. The raw imaging data has two
critical features: the pixel (node) signal value—pixel intensity
(gray) value, which indicates the activation level, and the
pixel (node) spatial location in the brain slice. This imaging
data is processed in three steps: (1) infer a network model,
(2) perform dynamic community analysis, and (3) compute
community metrics.

Network Model Creation
To create a network model, we associate each pixel in
the image with one network node. To capture internode
interaction, we compute all pairwise correlations for the
172 × 130 nodes over a given window using the Pearson
product-moment correlation coefficient (PCC)41—a mea-
surement of the strength of the linear relationship between
signals of two nodes. This process leads to a weighted
correlation network, represented by a list of weighted edges
that connect pairs of nodes.Weighted edgesw(X,Y) represent

the linear correlation coefficient between any pair of two
nodes (X and Y) over a time window t (Eq. (1)).
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1
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By repeating the computation of correlation while
shifting the window one time step for each iteration
over the entire timeline T, we obtain a time series of
weighted and thresholded correlation networks. Fig. 1(b)
bottom shows an example correlation network at three
time steps; blue dots represent active nodes and green
edges represent links between pairs of correlated nodes.
Summarized characteristics of each node, e.g., the node
degree, can yield insight into mechanisms underlying system
growth.42

To determine the appropriate time window and corre-
lation coefficient thresholds for applying dynamic network
analysis to brain imaging data, we tested the system with
an analysis window size of 25, 50, 100 and 200 frames.
The 50-frame window successfully yielded high temporal
resolution while not introducing spurious correlations, and
consequently was chosen for analysis.

Dynamic Community Analysis
In network analysis, a cluster or community is formed by a
group of nodes that have eithermore or stronger connections
with each other. Nodes belonging to different communities
have few and weaker connections. Community analysis can
be applied to a variety of fields from social networks to
biological networks.43

Because networks change their topological structure
dynamically, a dynamic community identification method
is needed. For example, a node may belong to a specific
community most of the time (Home community), but
also join temporarily a different community (Temporary
community), as shown in Figure 2. In brain network analysis,
neurons that belong to the same community likely have
similar functionality. Neurons visiting or joining another
community may indicate a change in their functionality.

We use the Dynamic Community Interface (CommDy)
method5,44–46 to analyze how the interactions and structures
of communities change over time in the dynamic brain
networks. CommDy produces two identification codes: a
Home community that identifies the community the node
belongs to by default, and a Temporary community that
identifies the community the node currently visits. The
visiting behavior means the node leaves its own community
temporarily but will return back very soon. Fig. 1(c) top
shows an example network of five nodes across three time
steps. In this illustration, the color of the inner circle
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Figure 2. Illustration of CommDy on an example data set that includes
five members, shown here over five time steps t1–t5.13 Colors encode
communities (circles for the Home community, and squares for the Visiting
community, if different). Members 0 and 1 stay permanently in the pink
community. Members 2 and 3 alternate their Home memberships from
the pink/green community to green/pink twice (at t2 and t5). Member
4 temporarily visits the pink community at t3, but maintains a Home
membership to the blue community.

represents the Home community identification code of the
node, and the square surrounding the circle represents the
Temporary community.

Fig. 1(c) bottom shows the dynamic community analysis
results of the example networks in Fig. 1(b) bottom. Because
imaging noise can introduce small spurious communities of
2–3 nodes, domain experts keep for analysis only the ten
largest communities identified by the CommDy algorithm
(where size is averaged over the entire timeline).

Note that spatial relationships between nodes are
not considered when detecting communities, to avoid the
potential introduction of biased assumptions about the
relationship between structural and functional connectivity.

Metrics Computation
Finally, the dynamic community characteristics are used
to generate metrics that summarize the behavior of active
nodes. CommDy quantitatively describes the characteristics
of the inferred networks, at both node and structural level,
based on network analysis theory.47 We use 10 relevant
metrics to describe the interactions between nodes. These
metrics include the average time spent by a node in
a community, the number of jumps across communities
executed by a node, the fraction of node peers who were
its peers in the previous time step and so on. All these
characteristics are normalized to a value within the range of
0–1. Table A.1 summarizes the full list and definition of the
nodemetrics. Based on the results produced from the current
datasets, the number of active nodes varies with different
activations of different subjects from approximately 5000 to
nearly 10,000.

Task Analysis
Based on several interviews with a domain expert, we
identified the following tasks for the comparative analysis of

brain activations, and in particular for understanding how
aging impacts the auditory cortex (AC) of mice:

• Task 1: Explore the community spatial distributions at
multi-scale. Brain imaging data contain thousands of
nodes. Neuroscientists need to get an overview of the
entire dataset, but also to observe a subregion or even
an individual node in detail.
• Task 2: Track temporal changes at multiple levels. Be
able to observe the evolution of communities over
a user-defined time window, compare the temporal
behaviors of nodes in the same subregion, or track the
behavior of a particular node across the entire time
period.
• Task 3: Explore relationships between functional con-
nections and spatial structures. An interesting and
expected finding would be that specific nodes located
in different regions of the brain have similar temporal
behaviors.
• Task 4: Compare the differences in temporal and spatial

behaviors between young and aged animals at multiple
levels.

These tasks map to three groups in the visual data
analysis taxonomy:48 Explore: Task 1, Task 2, Task 3 and
Compare: Task 4.

Visual Design
The spatio-temporal datasets and comparison tasks captured
above are particularly complex. Furthermore, they feature
a mix of spatial and non-spatial data, and the experts
lack familiarity with complex visual encodings. Because of
these combined reasons, we follow a coordinated multi-view
top-level design, which has been shown to assist in visual
scaffolding.18 In this design, a set of multiple views at
different scales provides guidance to the domain expert when
exploring the data. In addition to the exploration tasks,
pairwise comparison is supported by side-by-side views
(Task 4).

Figure 3 shows the interface of RemBrain, which consists
of four main visual components: (1) an overview spatial
panel (Fig. 3(a) and (b)) that nests subregion temporal
information through a mosaic-matrix encoding; (2) an
individual behavior panel (Fig. 3(e) and (f)) that includes
a novel Mirror glyph to display in detail the dynamic
attributes for a particular node, and a Kiviat diagram for
the summarized characteristics of the corresponding node;
and (3) a timeline representation (Fig. 3(c) and (d)) that
controls the spatial panel and the mosaic-matrix view. These
multi-scale views are linked through interaction. Two sets of
each panel are placed side by side for visual comparison.

The side-by-side comparison design, in conjunction
with the multi-scale views, supports Task 4. The slice-based
panel displays the community distribution in space and thus
explicitly supports Task 3. The individual behavior view
enables exploration at the level of individual nodes (Task 2).
The mosaic matrix enables exploration at the level of
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Figure 3. RemBrain implements a visual approach for the analysis of spatio-temporal brain network data. Two aggregate panels (a) and (b) encode
the spatial distribution of neuron communities in mouse brains, overlaid with the medical imaging data. mosaic-matrix views (top left of panels) encode
temporal changes in a selected subregion. Two timeline views (c) and (d) show the number of active nodes over time; (c) shows that the activation has
8387 active nodes at time step 50, and (d) shows the activation has 6890 active nodes at time step 48. Two mirror glyphs and Kiviat diagrams (e)
and (f) allow tracking dynamic changes over time at a single node level. A control panel (g) enables filtering of node communities; colors are mapped to
community IDs.

subregions (Task 2,Task 1). The three views work together to
support Task 1 through Task 3. Below we describe in detail
each visual component. The web-based visualization tool is
implemented in JavaScript using the D3 data visualization
library.
Aggregate Slice Panel
The slice-based view shows the community distributionmap
overlaid upon the brain slice image. In this distribution
map, nodes are color-coded by their Home community ID.
To enable multi-scale temporal analysis (Task 2), instead
of displaying the community information at a single time
point, we aggregate over a user-selected time period and
color the active nodes by their most common community
during that time period. We assign to each of the 10 largest
communities a unique color (Fig. 3(g)) from a qualitative
colormap from ColorBrewer2.org. Nodes colored in gray are
either inactive or belong to a community not in the top ten.
A control panel filters which communities are shown. The
view is automatically updated according to the selection in
the timeline widget (Fig. 3(c) and (d)).
Individual Panel: Mirror glyphs and Kiviats
The aggregate slice-based view shows the spatial distribution
of communities. However, it is also important to display
the temporal distribution of communities, along with other
temporal attributes. To this end, the individual behavior

panel combines in a novel design time-dependent numerical
and categorical data. This detail view allows users to explore
in detail the dynamic behavior of individual nodes through
a timeline-based representation. The panel (Fig. 3(e) and
(f)) integrates a mirror glyph for analyzing the temporal
node data and a Kiviat diagram for visualizing multiple
summarized characteristics.

Mirror Glyph
The mirror glyph supports tracking the characteristics of
a particular node over time. These dynamic characteristics
include raw signal values, node degrees, and two community
identification codes over time, the Home community and
the Temporary community (Table A.1). A preliminary
illustration of dynamic community analysis results is shown
in Fig. 2, in which circles are individual nodes labeled with
their identification numbers, and rectangles correspond to
communities. Communities are identified throughmatching
colors. However, this visual encoding does not scale well to
a large number of nodes. Additionally, it is hard to track an
individual’s community behavior over a long time period,
and there is no reference to the spatial location of the nodes.
Because a timeline-based representation was an intuitive and
simple way to track temporal changes, we design a mirror
glyph to visualize an individual node’s temporal behavior
(Task 2).
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Figure 4. Mirror glyph showing a node that belongs predominantly
and consistently to the green community, as its signal increases over
time, without much visiting or switching. The only temporary visiting event
happens at t1, when the node briefly visits the blue community. Two
switching events happen at times t2 and t3, when the node joins the
orange community, followed by the blue, just as the node signal is about
to peak (middle trunk). The node degree (chart height and content) is
almost symmetric: the Temporary community (upper chart) almost mirrors
the Home community (lower chart).

Each mirror glyph (Figure 4) has three components:
middle black trunk, upper bar chart, and a mirror-like
lower bar chart. The height of the upper and lower
bar charts represents the node degree over time, because
domain experts indicated the degree evolution over time
was the important quality in this context, next to the Home
and Temporary IDs. The upper chart color encodes the
Temporary community while the lower chart color encodes
the Home community. The color of bars in the charts
indicates the community ID of the node over time. Mouse
interaction further shows the type of community represented
by a bar. While the upper and lower charts are often
almost symmetric (hence the ‘‘mirror’’ aspect), they can also
be asymmetric. Frequent horizontal color changes in this
composite glyph indicate node instability. Similarly, a vertical
asymmetry between the upper and lower charts indicates
high instability.

The line plot in the middle black trunk of the mirror
glyph encodes the variation in raw signal intensity over the
activation period, from 0 to 100, which is the maximum
number of time steps in our datasets. The trunk’s gray
segment highlights the user-selected time period. The
vertical axis indicates the maximum node degree during
the entire timeline. Fig. 4 illustrates how this composite
glyph can capture dynamic node behaviors. The end mirror
glyph result captures a high temporal resolution of the node
behavior. The spatial location of the corresponding node is
highlighted in the aggregate slice-base view.

We converged toward this streamlined mirror glyph
design through parallel prototyping with multiple iterations;
some prototypes were completed on paper, and some in
software. Driven by the experts’ preference for clarity over
compactness, the glyph design converged toward this dual
layout, as opposed to stacked graphs or a non-flipped layout.
To this end, we note that the data itself was extremely
complex and that detecting brief community visits was
relevant to the tasks. Similarly, the raw signal intensity and its

Figure 5. Kiviat diagrams for two nodes that reside most time in the
green, respectively blue community. The Kiviat shapes indicate that the
green node has longer activation duration, stays in particular communities
for longer periods, and is more consistent with its Home community.
Conversely, the blue node switches its Home communities and visits other
communities more often. Note the details on demand and index indirection
dictated by real-estate constraints.

evolution over time in relation to the community distribution
and degree were task-relevant. In this case, the trunk design
favored the signal charts that the experts were familiar with.

Kiviat Diagram
To encapsulate the 10 summarized attributes (e.g., observed,
time span, switching, etc.) shown in Table A.1, either parallel
coordinates or star plots are natural choices. However, in the
parallel prototyping stage, PCPs were overruled due to low
visual literacy among the domain experts and to their less
compact appearance. The experts’ specific goals, in this case,
were detecting significant differences and similarities in the
data, to be later analyzed quantitatively (as opposed to precise
visual comparison). In fact, one of our two experts remarked
on the imprecise nature of measurements computed at
the single node scale. Because the experts further favored
legibility over precise comparison, we converged toward a
star-based Kiviat diagram encoding (Figure 5), as opposed to
a line-based star plot, or simple dots on axes. Nevertheless,
the Kiviat representations can be optionally superimposed
(with transparency) to better support comparison. Each axis
of the Kiviat diagram represents one of the ten node metrics.
The most common community of a node is encoded in the
color of the Kiviat diagram.

Mosaic-Matrix View
The aggregate slice-based view shows the community spatial
distribution at an overview level with high spatial resolution,
but low temporal resolution. On the other hand, the
individual panel shows the community temporal distribution
per node with high temporal resolution but low spatial
resolution.While each of these representations has strengths,
our task analysis indicates that visual exploration at a level
with both reasonable temporal and spatial resolution was
important. To support this type of analysis, we design a
mosaic-matrix encoding. The encoding captures temporal
and regional changes and integrates them into the commu-
nity spatial distribution map.

Because nodes are densely located in brain slices, using
1D timeline-based representations was not feasible. Instead,
we adopt a compact two dimensional layout to encode
time-dependent behavior. The layout is composed of a set
of cells that define a mosaic matrix. The set corresponds to
a node region, and each cell encodes the temporal behavior
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Figure 6. Integration of temporal community characteristics into the brain slice of an aged mouse, across 64 time steps.

of an individual node in that region (Figure 6). Each cell, in
its turn, is a 2D dense pixel layout that wraps time into 2D.
The sub-cells encode with color the set of communities that
node belongs to during the selected time period. Figure 7
shows two mosaic matrices for a subregion of 9 nodes
across 33 time steps (top), respectively 64 nodes across 12
time steps (bottom). Fig. 6 further demonstrates the nesting
of community temporal information across 64 time steps
into the brain slice of an aged mouse. The selected area
highlighted in the black circle is a region of 9 nodes. Each
of the nine nodes within the selected region is represented in
the mosaic matrix as a cell. The 64 (8× 8) sub-cells encode
temporal behavior, with time increasing from left to right and
top to bottom.

However, the integrated temporal features may not
be easily observed when displaying the entire brain slice.
Additionally, zooming into a small region loses the relevant
spatial references. Therefore, we enabled a detailed region
view without losing the context of the slice. The resulting
mosaic-matrix view is composed of several sets of cells.

Fig. 7(a) displays the temporal behavior across 33 time
steps, while Fig. 7(b) displays 12 time steps. In Fig. 7(a),
the node in the top-left corner of the mosaic matrix is
initially part of the green community, then moves to the
orange community, and finally joins the pink and blue
communities in the last two time steps. Unlike the traditional
timeline-based (one dimension) visualization for time-series
data, the mosaic-matrix view allows us to effectively nest the
temporal features into the spatial structures.

Users can both interactively translate a selection lens in
the slice-based view and drag the zoom size slider in the
control panel (Fig. 3(g)) to adjust the region size (number
of nodes) selected. The mosaic matrix can flexibly capture
from one node to 100 nodes, as well as from one to 100 time

(a)

(b)

Figure 7. Two mosaic-matrix views representing two regions (at different
zoom levels) across different time periods: (a) a region of 9 nodes across
33 time steps; (b) a region of 64 nodes across 12 time steps. In (a), the
node in the top-left corner of the mosaic matrix is initially part of the green
community, then moves to the orange community, and finally joins the pink
and blue communities in the last two time steps. In (b), the mosaic captures
instability (frequent changes) in the region selected.
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steps, the length of the entire timeline in this study. Because
in this study more than half of the brain slice was inactive at
all times, we overlay the mosaic-matrix view on the top half
of the slice, to efficiently use space. In cases where the image
activation data may become obscured by the mosaic-matrix
view, the mosaic-matrix window can be moved by dragging
the upper gray bar.

Timeline Widget
The timeline widget enables navigation over time in the
slice-based view andmosaic-matrix view. Using the widget, a
user can click and drag to select the time window. To further
help identify the time window during which each slice is
most active, the timeline widget also encodes as a plot the
total number of active nodes over time (Fig. 3(c) and (d)).
Two dashed lines mark peak activity—the time step with the
largest number of active nodes.

Synchronization and Comparison Support
To support the pairwise comparison of activations (Task 4),
we adopt a coordinated side-by-side dual layout (Fig. 3(a)–
(f)). This layout integrates multiple views at different levels:
two slice-based views, two timeline views, twomosaic-matrix
views, and two individual behavior panels. In our experience,
because of the data complexity and a large number of
differences in the datasets that are typically compared, the use
of juxtaposed views effectively reduced visual clutter when
compared to superposition. Moreover, the domain experts
valued raw data and strongly objected to the superposition
of brain slices (via registration) from different specimens.
Although the individual behavior panel does lend itself
to superposition, and we do support Kiviat overlays, the
designers and the domain experts converged to a side-by-side
layout for all views, in order to maintain consistency. As
in other studies that involve domain scientists and require
visual scaffolding,18,38 we found that design clarity and
consistency principles take precedence over expressiveness.

Because domain experts perform the comparison in
both the spatial and temporal domain, we implement two
default options for synchronization: a timeline synchro-
nization (timeline widget) and a region synchronization
(aggregate slice view). However, when comparing different
specimens, the activations and spatial structures may not be
completely aligned. Because of this constraint, we provide an
asynchronization option as well, which allows the domain
experts to manually align temporal or spatial features.

RESULTS ANDDISCUSSIONS
We evaluated RemBrain through a combination of multiple
demonstrations and case studies (real data, real tasks, real
users) with our collaborators: an established neuroscientist
researcher (DL) who specializes in computational biology,
neuroimaging and neurobiology, and a senior researcher
in sensory-motor performance (RK), who has a broad
background in studying the adaptation of motor systems and
imaging data from physiological systems. Both experts have
been working together on dynamic brain network analysis
for several years. Throughout the evaluation process, we used

a ‘‘think-aloud’’ technique,49 which asks users to verbalize
their thoughts as they interact with the system, and we
collected feedback at the end.

Here we report a case study performed separately by the
two scientists, in separate sessions. In this study, the domain
experts seek to understand the impact of aging on the AC in
mouse brains. To this end, they had collected imaging data
from a young mouse and an old mouse. Brain slices from
each specimen were artificially stimulated, and the resulting
activation levels were imaged as a time series. The case study
and verbiage reported below have been simplified for a lay
audience.

Case Study: Aging analysis in mouse brains
The domain experts wished to investigate how aging relates
to auditory processing changes, through the comparison of
network activity in the AC from young and aged mice, at
multiple scales (Task 1 through 4). Each expert started by
loading the dataset of the first activation of young mouse
No.40 (5.5 months) and the dataset of the first activation of
agedmouseNo.38 (22months) in the two side-by-side views.

Overview spatial, multi-scale in time exploration
The analysis started at the high overview level of the
entire AC. The community distribution differences were
immediately noticed in the slice-based panels (Figure 8(a)
and (b)): over the same time window, the young mouse
AC features an additional community, shown in green.
The young mouse AC (Fig. 8(a)), in particular, featured
a ring-type structure of community distributions. That
structure was stable even as the experts translated and
scaled their time window selection in the widget (Task
T2, T4). In contrast, the community distributions in the
aged mouse AC (Fig. 8(b)) were less structured. In fact, the
neuroscientist expert noted that no contiguous region in
this brain image was associated with one single community.
The second expert noted that in the timeline views the
activations from the two specimens decayed at different rates
after reaching their peak. The timeline also captured a higher
total number of active nodes for the younger specimen,
which was expected. The domain experts concluded that the
connectivity between neurons diminishes with age, which
‘‘probably correlates with a particular receptor [decay].’’

Regional Spatial, Multi-scale Time Exploration
Themulti-scale analysismoved next smoothly to the regional
scale captured by the mosaic-matrix views (Task T1, T3,
T4). For this analysis, the experts disabled synchronization,
and manually selected two regions (marked by red boxes)
in roughly the same area of each AC. The difference
in the dynamic community behavior between the two
regions was striking. The cleaner and predominantly blue
mosaic-matrix view in Fig. 8(a) captured a homogeneous
dynamic behavior in the young mouse AC region. Most
nodes in this brain region spend their time in only one
community, blue. In contrast, the mosaic matrix for the
aged brain in Fig. 8(b) indicates significant instability, which
revealed the heterogeneity of the aged mouse AC. Only a few
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Figure 8. Case Study: Aging Analysis. The slice-based views (a) and (b) capture a difference in the community spatial distributions between young and
aged mice. The mosaic-matrix views in (a) and (b) present both the spatial and temporal features of communities in two similar regions of young and
aged mice. The timeline views (c) and (d) show a higher total number of active nodes for the younger specimen. While the (a) (d) views compare the
two specimens at a high and regional level, the individual behavior views (e) and (f) allow for comparison at the individual node level, both spatially and
temporally.

nodes stayed in a single community during the user-selected
time. Furthermore, the aged AC network was significantly
more fragmented over time, especially as the experts enlarged
the time window size. The experts moved their attention
repeatedly between the regional scale and the overview scale.

Individual Spatial, Multi-scale in Time Exploration.
In the final analysis stage, the dynamic behavior at the
scale of a single node was taken into consideration, in
addition to the previously examined spatial scales (Task
T1, T4). In several iterations, the experts selected specific
cells in the mosaic matrix, one at a time, and examined
them through the individual panel (Fig. 8(e) and (f)). The
nodes examined in this figure are located in the bottom left
corner of the mosaic-matrix views. Surprisingly, both young
and old nodes exhibited symmetric behavior with respect
to their Home and Temporary distribution. However, the
node degree over time was almost double for the young
neuron, when compared to the old. Furthermore, the mirror
glyph encoding quickly showed, for example, that sample
nodes in the young mouse brain featured few major changes
in dynamic communities over the entire time window. In
Fig. 8(e), the selected node switches only twice closed to the

start of the window, from green to blue and from blue to
purple. In contrast, the aged mouse node shown in Fig. 8(f)
switches much more frequently at the start of the activation.

The difference noted above was reinforced by the Kiviat
diagrams, where the two Kiviat shapes were notably similar
in many respects. In the example shown, both nodes score
along the normalized average time span of communities
(axis 1), but only the aged neuron has a non-zero normalized
switching cost (axis 2). Furthermore, the agedmouse also had
a shorter activation time (axis-0), and fewer connections than
the young mouse. At this point, the neuroscientist expressed
interest in seeing the raw signal data. To this end, the experts
examined the raw signal plots in the behavior mirror glyphs,
and discovered that the old mouse rising time is generally
slower and that the curve during the rising time is less
smooth for the old mouse.

Case Findings
This multi-scale analysis indicated that aging is associated
with a series of changes in node metrics, such as community
size and switching cost, and also with temporal changes in in-
dividual behavior, such as dynamic community distribution.
These changes are consistent atmultiple spatial and temporal
scales. Together, the domain experts hypothesized that those
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aging-related changes at multiple scales might be related
to changes in intracortical connectivity (Task T4). Using
the insight from the multi-scale visual exploration, they are
designing methodology to capture and quantitatively report
these correlations.

Domain Expert Feedback
The domain expert feedback included comments such
as ‘‘very cool, interesting tool,’’ ‘‘fantastic,’’ and ‘‘useful to
generate hypotheses.’’ Since everything in biology is ‘‘so tied
to spatial location,’’ the experts found that the integration
of the spatial layout and non-spatial network attributes was
far more useful than analyses based only on the non-spatial
data. In addition, the mosaic matrix provided the ability
to explore temporal relationships between nodes with close
proximity in the same region, and thus preserved a useful
spatial context. While originally unfamiliar to the experts,
the mirror glyphs and Kiviats were later praised for their
potential to drive hypotheses at the neuron level, once
crisper node data become available through the next imaging
project. Overall, the experts found that RemBrain augmented
their ability to analyze the heterogeneous and multifaceted
datasets common in dynamic bionetwork analysis.

Compared to prior analyses of the data, whichwere done
directly with data files and relied on the experts’ mental
model of the node location within an image, our visual
approach succeeded in communicating the spatial findings
to others. Also, the experts noted that interactively exploring
the imaging data to identify an interesting time step was
far more efficient than manually searching an image from a
repository.

DISCUSSIONS
Meeting the Original Goals
The case study and expert feedback demonstrate the
effectiveness of this multi-scale visualization approach to
the comparative exploration of dynamic activation networks
across multiple brain imaging datasets at multiple levels.
Experts were able to find new, interesting patterns in datasets
they had explored using different tools before. They both
are eager to adopt the tool for research purposes, both in
an exploratory setting and in an explanatory setting (for
publication purposes).

The overall design was successful at supporting com-
parative analysis in a variety of dataset combinations. We
note that few guidelines exist in visual comparison design.
In most instances in our design we favored juxtaposed
(side-by-side) layouts, to attain better clarity and consistency,
and to circumvent alignment issues. One exception is the
star panel, where the lack of a physical structure supports
superposition. Overall, we found that a hybrid approach best
supported the tasks revealed by the domain analysis.

The experts considered the inclusion of the spatial con-
text a most valuable feature, and reported the approach was
far more useful than analyses based only on the non-spatial
data. The chosen visual encodings showed complementary
strengths in supportingmulti-scale spatio-temporal analyses.

When coupled with a coordinated multi-view approach,
these encodings enabled visual analysis across the entire
pipeline for dynamic bionetwork data analysis: raw data,
network results (node degree), dynamic community analysis
based on the results of dynamic networks, and summarized
node metrics based on the dynamic community analysis.
The experts were able to navigate smoothly betweenmultiple
scales in both space and time.

Novelty
The mirror glyphs and the embedding of temporal features
in a spatial context through the mosaic-matrix views
are novel contributions. The composite mirror glyphs,
in particular, are not restricted to the presentation of
dynamic node behavior in neuroscience. These glyphs can
also be applied to general temporal data with multiple
variables that include both numerical (height) and cate-
gorical data (color). Such datasets exist in other domains
where symmetric/asymmetric time-dependent behavior is of
interest, for instance in the analysis of spectrograph data
in astronomy,50 in the analysis of financial data, or in the
analysis of Electronic Health Records. The mosaic-matrix
nesting approach may find application in other spatially
dense temporal datasets.

The combination of visual encodings in a tool to handle
multivariate data in dynamic bionetwork analysis and the
side-by-side multi-scale design that supports pairwise com-
parison for spatio-temporal data are also novel. The approach
has direct application to the analysis of other spatially
dependent dynamic biological networks, for instance in
computational systems biology.

Design Lessons and Issues
One of the most important lessons from this work relates
to limitations arising from increasing model scales and
complexity. As scientific models move from static to
dynamic, and single model analysis shifts to the comparison
ofmultiplemodels with spatial and non-spatial features, even
known integration paradigms break down with scale: one
cannot keep track effectively of tens of coordinated views.
Overlaysmay similarly fail, and in some instancesmay not be
applicable (in our case, due to domain restrictions related to
alignment and the importance of raw data). In the approach
illustrated here, we have successfully nested the time-driven
behavior into spatial structures and used overlaying and
details on demand where possible, to overcome space
limitations. Still, the resulting interface is information-dense;
on a large tiled display, there was still too little space to attach
legible Kiviat labels directly to axes. As the range of data
acquisition instruments keeps expanding, these issues will
only become more stringent in the visualization field.

The second important lessons arising from this expe-
rience relate to the necessity of visual scaffolding18 when
dealing with domain experts who are not familiar with
sophisticated visual encodings. In our design experience, the
application of HCI principles such as clarity and consistency,
and the careful consideration of the overall application gestalt
were particularly important. For instance, the final design
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includes dual views for all representations, even though we
do support superpositions where possible. We furthermore
found success by building upon domain-specific encodings,
such as the slice-based views and the timeline widgets. Using
those familiar encodings within a linked-view framework
served as a visual scaffold, allowing the domain experts to
harness and expand their previous analysis experience.

Limitations
In terms of limitations, one of our two domain experts
noted that interpreting individual node behavior could be
too daring given the current imaging done on the datasets.
Nevertheless, he did see the future utility of the behavior
glyphs in the context of their next imaging project, whichwill
capture node identity more crisply. Another limitation is that
RemBrain can currently be used only as a post hoc analysis
tool, due to the data preprocessing load. The dynamic
correlation networks computation for each activation costs
roughly ten hours. Depending on the size of such networks,
the computation cost of dynamic communities identification
and network metrics analysis is between one and two hours.
This limitation is due primarily to the network metric
computation load. Last but not least, matching precisely
communities between different experiments (beyond the
size proxy for the ten largest communities) is an open
research issue, not just in this work, but in dynamic
community analysis in general. This limitation is mainly
because dynamic analysis methods currently do not consider
the spatial relationship of nodes in different experiments. In
this case, the domain experts are well aware of and willing to
accept this current limitation.

CONCLUSION
In conclusion, we have presented a web-based visual
comparison approach for the systematic exploration of
dynamic activation networks across biological datasets. As
part of this work, we have proposed visual encodings
for the dynamic and community characteristics of these
temporal networks. Our approach blends multi-scale, nested
overviews of the biological data and their temporal behavior,
mirror glyph descriptors of network metrics for describing
node behaviors, and widgets which detail the temporal
behavior and community assignment of specific nodes. A
case study on mouse brain network data and the domain
expert feedback indicate our approach is effective in the
comparative visual analysis of dynamic excitable bionet-
works. Last but not least, we have characterized the novel
and complex data arriving from the application domain and
summarized the lessons learned from visualizing these data,
which are spatio-temporal and multi-scale. We believe these
lessons transfer across application domains. Futureworkmay
apply this multi-scale visual approach to imaging data that
has higher spatial resolution, e.g., calcium imaging, or extend
these techniques to other biological or geospatial networks.
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APPENDIX

Table A.1. Data descriptors for dynamic bionetwork analysis.

Static/Dynamic Node Attribute Attribute Descriptors

Static Spatial Location Coordinates in the grayscale image of a brain slice
Dynamic Signal Value Pixel (node) intensity value: 0–255 (8 bit)
Dynamic Node Degree Number of connections a node has
Dynamic Home Community The community a node belongs to
Dynamic Temporary Community The community a node currently visits
Static Observed Number of time steps a node is active or observed (normalized by the entire time steps)
Static Time Span Average span of the communities (the last time step minus the first time step of the communitys existence) with

which an individual is affiliated (as a member or absent)
Static Switching Number of community switches made by an individual (normalized by the entire time steps)
Static Absence Number of absences of an individual from a community (normalized by the entire time steps)
Static Visiting Number of visits made by an individual to another community (normalized by the entire time steps)
Static Homing Fraction of individual’s current peers, at each time step, who were peers in the previous time step
Static Avg Group Size Average size of group of which an individual is a member
Static Avg Community Size Average size of community of which an individual is affiliated (as a member or absent)
Static Avg Community Stay Average number of consecutive time steps an individual stays as a member of the same community (normalized

by the entire time steps)
Static Max Community Stay Maximum number of consecutive time steps an individual stays as a member of the same community

(normalized by the entire time steps)
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