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Abstract
The Fels method is a well-known method for assessing the

skeletal maturity from hand-wrist X-ray images. This method es-
timates the skeletal maturity age by manually grading multiple in-
dicators for different hand-wrist bones. Due to the large number
of indicators that need to be measured, this is a time-consuming
task, especially with large databases of X-ray images. Further-
more, it can be a very subjective task that depends on the observer.
Therefore, the need for automation of this process is in high de-
mand. In this study, we have proposed a semi-automatic method
to grade a sub-set of Fels indicators. This method is composed of
four main steps of pre-processing, ROI extraction, segmentation,
and Fels indicator grading. The most challenging step of the al-
gorithm is to segment different bones in the Fels regions of interest
(wrist, Finger I, III and V ROIs) which have been done using lo-
cal Otsu thresholding and active contour filtering. The result of
segmentation is evaluated visually on a subset of Fels study data
set.

Introduction
In pediatric patients, skeletal maturity or bone age is an im-

portant tool for detection of hormonal, growth, or genetic disor-
ders. Different methods, such as GP [1] and TW2 [2] methods,
have been developed to assess the bone age from hand X-ray im-
ages. In GP, bone age is assessed by comparing the X-ray image
with a set of reference normal images. On the other hand, in TW2,
the maturity level of each bone is scored and then the overall score
is calculated which corresponds to the bone age. Although GP is
used more frequently because of its simplicity, the reliability of
TW2 is slightly better than GP [3].

The Fels method [3] is one of the gold-standards for visual
assessment methods that is reported as being more accurate than
the above mentioned methods in the population of children from
the United States. Furthermore, this method is the only one that
provides the confidence limits of each assessment. In this ap-
proach, the skeletal age (and its confidence limit) is estimated by
grading a subset of 98 skeletal indicators in the left hand-wrist
radiographic (X-ray) images. At Wright State University, a lon-
gitudinal study based on the Fels method is currently performed
with the first data sets dating back around 100 years resulting in
an enormous data set that has to be analyzed.

Figure 1 illustrates the diagram for the wrist bones of the
left hand. The Fels indicators are extracted from the Metacarpals
(MET), Distal Phalanges (DP), and Proximal Phalanges (PP) of
finger I, III and V, i.e. the thumb, middle finger, and little finger.
Also, Middle Phalanges (MP) indicators are measured for finger
III and V. No indicators are assessed for finger II and IV because
of redundancy. In the wrist region, different indicators are cal-
culated for Radius (R) and Ulna (U) bones. These are the long

Figure 1. Left hand-wrist bones diagram from [3]

bones in the wrist and every long bone is composed of two main
parts: the diaphysis and the epiphysis [4]. Diaphysis is the main
cylindrical shaft of a bone, whereas epiphysis represents the tips
of the bone which are separated from diaphysis at the beginning
of the growth process and then later ossifies over time forming the
metaphysis that eventually fuses the diaphysis and epiphysis [3].

Generally, Fels indicators can be classified into three main
groups of (1) the status of ossification, (2) the ratio of bone widths,
and (3) diaphyseal-epiphyseal fusion.

Since the assessment of the Fels indicators are performed
visually, the precision of this method is highly subjective and de-
pends on the observer. Furthermore, visual assessment of a large
number of images and indicators requires extra time and effort
and may affect the accuracy of the results due to, for example, fa-
tigue. Therefore, there is a high demand for making this process
semi-automatic or even automatic where possible.

The objective of this study was to develop a semi-automated
computer program for the assessment of skeletal maturity using
the Fels indicators [5]. Our proposed method is composed of four
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Figure 2. Block diagram of the semi-automated bone age assessment

main steps of pre-processing, ROIs extraction, segmentation, and
Fels indicator grading which will be explained in the next section.

Segmentation is the most challenging part of this study or
any other study that attempts to assess the skeletal maturity from
X-ray images using any of the aforementioned methods. Several
methods have been used in the literature to segment different hand
bones. Some references within the literature used dynamic thresh-
olding [6] and edge and model-based [7] approaches to segment
the carpal bones. Anam et al. segmented the bones in the fingers
using a knowledge-based texture analysis (fractal dimension) [8],
whereas Sotocaa et al. deployed statistical point distribution and
active shape models [9]. Han et al. used watershed transform and
an active contour model to perform the segmentation [10]. In the
proposed approach, a combination of local thresholding and ac-
tive contour model segmentation methods was used to extract the
bones in the wrist, finger I, III and V regions. The carpal bones
have not been assessed in this study. The proposed segmentation
method is evaluated visually on a subset of Fels study data set that
includes hand-wrist X-ray images.

The proposed method was preliminary evaluated in two steps
which have been discussed in the Results section. First, the seg-
mentation results are evaluated visually and then, the graded indi-
cators are compared to the ones graded manually by an expert on
a set of representative images.

Methods
The proposed algorithm, which is illustrated in Figure 2, is

composed of four main steps of pre-processing, ROI extraction,
segmentation, and Fels indicators grading. In the following sub-
sections, these steps are explained in detail.

The input to the proposed method is the hand-wrist X-ray
image, and the output is a subset of graded Fels indicators. These
indicators can be integrated to assess the skeletal age of the pa-
tient.

Pre-processing
The automatic bone age assessment is a challenging task be-

cause of poor contrast, noisy background, and hand position vari-
ation. These factors can effect the accuracy of the segmentation
and bone age assessment negatively. Therefore, a pre-processing
step is needed to tackle these problems before further processing.
In this study, we have used a three-step pre-processing scheme
that is shown in Figure 3.

First, we have analyzed the histogram of the image to decide
whether the image has poor contrast. Then, the CLAHE (Contrast
Limited Adaptive Histogram Equalization) [11] method is used
to enhance the contrast of the image. Figure 4a and Figure 4b
show the input image with poor contrast and the enhanced image,
respectively.

Second, the noisy background is removed in two steps. A
global threshold based on the mean intensity of the image is ap-
plied to the image. Then, a set of mathematical morphologi-

Figure 3. Block diagram of the pre-processing step of the proposed method.

(a) Input image (b) Contrast enhanced image (c) Extracted hand silhouette (d) Output of pre-processinge step
Figure 4. Pre-processing step of the proposed method.
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(a) Original image (b) Output of pre-processing step (c) r1 detection (d) r2 and r3detection

(e) Extracted fingers, carpus and
wrist ROIs

(f) Thinned image (g) Extracted finger I, III, and V
ROIs from Fingers ROI

Figure 5. ROI extraction step of the proposed method.

cal filters are administered to the image in order to remove the
background noise and anything around the hand by selecting the
largest region in the image. This yields the extracted hand silhou-
ette as the output. Figure 4c shows the extracted hand silhouette.

Finally, if the image is not in the standard left hand X-ray
protocol view, it is reoriented, i.e. rotated, before further process-
ing. This has been done by fitting a center-line to the extracted
hand object using the least square fitting method. Then, the im-
age is rotated to align the center-line with the vertical axis.

Figure 4d and 5b show the outputs of the pre-processing
steps for the inputs shown in Figure 4a and 5a, respectively.

Region of Interests (ROIs) Extraction
The next step of the proposed method is to extract Fels ROIs

from the pre-processed image. These regions of interests (ROIs)
narrow down the area in which image processing algorithms have
to operate to determine the grade for each Fels indicator. Specif-
ically, the ROIs for the Fels method are the carpus, wrist, fingers
I, III, and V. The method used for this purpose takes advantage of
the prior knowledge on the standard hand protocol, i.e. the fact
that the hand at this point is in a known orientation and location.

To determine the Fels ROI, the extracted hand silhouette is
scanned row by row from the proximal end to the distal end until

the last row r1 with two zero crossing is detected (see Figure 5c).
Based on our experiments, this is usually located at the middle of
the metacarpals.

Then, the sum of the intensities in every row from r1 toward
the proximal end is calculated on the output of the pre-processing
step. The rows r2 and r3 with the maximum and minimum sum
of the intensities are detected (see Figure 5d). These rows are
usually located at the proximal end of metacarpals and distal end
of Radius, based on our experiments. The region that is limited
by r2 and r3 is selected as carpus ROI. The row between r2 and r3
defines the upper edge for wrist ROI, and lower edge for fingers
ROI. Figure 5e shows these ROIs.

Next, the ROIs for finger I, II and V are extracted from the
previously extracted fingers ROI. This has been done by finding
the finger tips using morphological thinning operators (Figure 5f)
followed by the following steps to extract finger I, III and V.

Finger I ROI

For finger I, the fingers ROI is rotated to align the center-line
of the finger with the vertical axis. The center-line of the rotated
image will be used as the left-side edge for finger I ROI.
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(a) Radius ROI (b) Local thresholding (c) Morphological op-
erations

(d) Using prior knowl-
edge

(e) Active countour (in
red color)

Figure 6. Segmenting radius bone from its ROI.

(a) Wrist ROI (b) Wrist-Ulna ROI (c) Segmented Ulna (d) Wrist-Radius ROI (e) Segmented Ra-
dius - Diaphysis

(f) Segmented Ra-
dius - Epiphysis

Figure 7. Segmentation process of the proposed method.

Finger V ROI
The fingers ROI is rotated to align the center-line of finger

IV with the vertical axis. Then, the the center-line of finger IV is
used as the right-side edge of finger V ROI.

Finger III ROI
In this case, the fingers ROI is rotated to align the center-line

of finger III with the vertical axis. Then, maximum width of the
hand silhouette is detected. This is usually wider than the sum of
the width of all five fingers. Hence, this can be used as a rough
estimate of the width of each finger, w f ing. The right and left
edges of the finger III ROI are selected at the w f ing

2 distance from
finger III center-line.

After extracting finger I, III, and V ROIs, these are rotated so
that the center-line of the corresponding finger is aligned with the
vertical axis. Figure 5g shows the the extracted finger I, III and V
for the sample input.

As was mentioned before, the Fels indicators for the carpus
region were not measured yet in this study. Hence, the current
approach only utilizes the wrist and fingers I, III, and V ROIs.

Segmentation
In this step, the corresponding bones in each ROI are seg-

mented. Figure 6 shows the segmentation process for a sample
radius ROI.

The following segmentation process has been applied to each
extracted ROI as determined in the previous step: First, the Otsu
thresholding [12] segmentation method is applied locally to the
ROI (Figure 6b). Then, a set of morphological operations are uti-
lized to fill the bone objects and remove the soft tissues around
the bones (Figure 6c). After that, prior knowledge of the expected

bones in the corresponding ROIs and their location is used to
detect those bones and remove any other bones within the ROI
((Figure 6d). An active contour segmentation [13] is used to
smooth the edges of the segmented bones. Figure 6e illustrates
the smoothed boundaries in red color comparing to the bound-
aries from previous step in blue color.

The prior knowledge used in this step for each ROI is as
follows:

Wrist ROI
In this region, there are two main bones that need to be seg-

mented: radius and ulna. In the left wrist-hand protocol, radius
and ulna are located on the right and left side of the wrist ROI.

Based on Roche et al. [3], the epiphysis of radius and ulna
begins to ossify usually when a child reaches 1 year of age. There-
fore, in younger children, there is usually no visible epiphysis.
Then, the epiphysis appears as a round object and starts to in-
crease in size as the child grows. Eventually, the epiphysis fuses
with the diaphysis. Therefore, in the wrist ROI, two long bones
and possibly two separate round/oval shaped objects just above
the long bones are expected.

Figure 7 shows results of the the segmentation process for a
sample wrist ROI shown in Figure 7a. Figure 7b and 7d shows the
radius and ulna ROIs. The segmented ulna is shown in Figure 7c.
Examples of a segmented diaphysis and epiphysis of the radius
bone are shown in Figure 7e and 7f.

Finger I ROI
The finger I ROI is composed of three main bones (from the

proximal end toward the distal end): metacarpal I (MET-I), prox-
imal phalanges I (PP-I), and distal phalanges I (DP-I). The epi-
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(a) Finger I ROI (b) Segmented bones
Figure 8. Segmenting bones in the Finger I ROI.

physis of MET-I forms at the proximal end of its diaphysis and
eventually fuses with it. The same pattern occurs with PP-I and
DP-I. Therefore, in this region, it is expected to find three cylindri-
cal bones (diaphyses), and possibly additional one to three round
or oval-shaped bones (epiphyses).

Figure 8a and 8b show an example of the Finger I ROI and
segmented bones (DP-I, PP-I and MET-I), respectively.

Finger III ROI
The finger III ROI, on the other hand, is composed of

four main bones (from the proximal end toward the distal end):
metacarpal III (MET-III), proximal phalanges III (PP-III), middle
phalanges III (MP-III), and distal phalanges III (DP-III). The epi-
physis of the metacarpal in finger III begins to form at the distal
end of its diaphysis and eventually fuses with it. On the other
hand, the epiphysis of the MP-II forms at the proximal end of its
diaphysis and fuses with it eventually. PP-III and DP-II bones
are similar to MP-II. Hence, in the finger III ROI, it is to be ex-
pected that four cylindrical bones (diaphyses) and possibly addi-
tional one to four round, oval, or wedge-shaped (epiphyses) can
be detected.

Figure 9a and 9b show a sample Finger III ROI and seg-
mented bones (DP-III, MP-III, PP-III and MET-III), respectively.

(a) Finger III ROI (b) Segmented bones
Figure 9. Segmenting bones in the Finger III ROI.

(a) Finger V ROI (b) Segmented bones
Figure 10. Segmenting bones in the Finger V ROI.

Finger V ROI
Finger V includes four main bones (from the proximal end

toward the distal end): metacarpal V (MET-V), proximal pha-
langes (PP-V), middle phalanges V (MP-V), and distal pha-
langes V (DP-V). The prior knowledge for this region used within
the algorithm is similar to the one described in Finger III ROI
subsection.

Figure 10 shows the sample input and output of this step for
a sample Finger V ROI.

Fels Indicators Grading
In this step, different indicators are graded for every bone.

As it is mentioned before, these indicators can be categorized into
three main groups: (1) the status of ossification, (2) the ratios of
bone widths, and (3) diaphyseal-epiphyseal fusion. These groups
and the way they are measured is described in the next subsec-
tions.

Group 1 Indicators
The first group of indicators is graded using the segmented

epiphysis bone. If the epiphysis is absent, no object was found
in the segmented image, and the indicator is graded as Grade 1
and if it is present, the indicator can be Grade 2 or 3 based on the
shape of the epiphysis. These indicators are:

• R-1 indicator: for the Radius bone, if the epiphysis is cir-
cular or elliptic, the indicator is graded as Grade 2. If it
is present and ovoid or its proximal margin is flattened or
concave, the indicator is Grade 3. The distinction between
Grade 2 and Grade 3 is decided based on the shape of the
segmented epiphysis bone which is performed by calculat-
ing and comparing its diameter and analyzing the slope of
the proximal edge of the bone.

• MET-I-1 indicator: If the epiphysis is present and round, the
indicator is graded as Grade 2. If it is present and elliptic
and its proximal margin is smooth, Grade 3 is assigned to
this indicator.

• MET-V-1, PP-I-1, PP-III-1, PP-V-1, MP-III-1, MP-V-1,
DP-I-1, DP-III-1, and DP-V-1 indicators: These bones are
graded as Grade 2 when the center for the epiphysis of the
metacarpal V is ossified.

As an example, for the Radius bone shown in Figure 11a,
Grade 3 is assigned to the R-1 Indicator because the epiphysis
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(a) Radius ROI (b) Radius-Diaphysis (c) Radius-Epiphysis
Figure 11. Segmenting bones in the Radius ROI.

(Figure 11b) is present and its proximal margin is concave.

Group 2 Indicators
The second group of indicators are the ratio of epiphysis

width to the metaphysis width:

Ratio =
E piphyseal Width

Metaphyseal Width
(1)

The maximum width of metaphysis and epiphysis are measured
at the right angle to the long axis of the bone. This indicator
is not measured in case of completed fusion or absent epiphysis.
So, if the algorithm could not segment the epiphysis as a separate
bone, this indicator will not be graded. These indicators are R-
2, U-2, MET-I-2, MET-III-2, MET-V-2, PP-I-2, PP-III-2, PP-V-2,
MP-III-2, MP-V-2, DP-I-2, DP-III-2, and DP-V-2.

For measuring this group of indicators, first, the center-line
of the long shaft of the bone (diaphysis) is aligned with the vertical
axis. Then, the maximum metaphysis and epiphysis width are
calculated for the segmented epyphysis and diaphysis of the bone.
Finally, the ratio is computed.

Figure 12 shows the measured epiphysis and diaphysis width
from the segmented bones on the radius ROI for calculating the
R-2 indicator.

Group 3 Indicators
The third group of the indicators are related to the

diaphyseal-epiphyseal fusion. Grade 1 is assigned to this group
of indicators in case there is no fusion yet. If the fusion is in-

Figure 12. Measured epiphysis and diaphysis widths for R-2 indicator.

complete the indicator is Grade 2, and Grade 3 once the fusion is
complete. These indicators are R-8, U-3, PP-I-5, PP-III-5, PP-V-
5, MP-III-5, MP-V-5, DP-I-4, DP-III-4, and DP-V-4.

Note that these groups of indicators will be graded if the epi-
physis of the segmented bone is present (the corresponding Group
1 indicator is not Grade 1). For these indicators, Grade 1 is as-
signed when the fusion is absent and epiphysis is segmented as a
separate bone. In this state, a radiolucent strip is present in the
whole diaphyseal-epiphyseal junction. The assignment of Grade
2 or 3 will be based on the analysis of the intensity changes be-
tween epiphysis and diaphysis. If the intensity decreases in some
areas in the diaphyseal-epiphyseal junction (radiolucent strip is
present partially in the diaphyseal-epiphyseal junction) then the
indicator is Grade 2. In case of no radiolucent strip in the junc-
tion, Grade 3 is assigned to the indicator.

For the Radius ROI shown in Figure 11a, Grade 1 is assigned
to the R-8 indicator because the ephiphysis is segmented as a sep-
arate bone and a radiolucent strip extends for the whole length of
the the diaphyseal-epiphyseal junction.

Results
The proposed method that is described in the previous sec-

tion is implemented in MATLAB 9.2 (Release 2017a, The Math-
Works, Inc, Natick, MA, USA) and tested on a subset of the Fels
study data set. The data set includes hand-wrist radiographic im-
ages of children in the range of ages 0 to 20 years. These images
were stored as 16-bit digital images.

The first three steps of pre-processing, ROIs extraction, and
bone segmentation are tested and evaluated visually on a subset
of the available data sets including 25 X-ray images. If these
steps result in the accurate segmented bones in each region, the
measured indicators will be precise. This will lead to an accurate
skeletal age.

In the pre-processing step of the proposed method, the hand
object is extracted correctly in 21 images. In the 4 remaining
images, the user is provided with an interactive GUI to set a proper
threshold that results in a correct hand object boundaries. This is
explained in the Discussion section.

The ROI extraction for wrist, finger I, III and V are visually
evaluated to make sure that they include the bones in the corre-
sponding region. In this step, the success rate for automatic ex-
traction of the ROIs was 88%.

The most challenging part of this study is to segment dif-
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(a) Radius (b) Ulna
Figure 13. Visual evaluation of the segmentation step for radius and ulna.

ferent bones accurately. If this task is performed precisely, then
indicators will be graded correctly, and the resulted estimation of
the skeletal maturity age will be correct. We have evaluated the
segmentation step of the proposed method on images with correct
extracted ROIs (22 images) by overlaying the boundaries of seg-
mented bones on the actual image. Figure 13 shows examples of
this evaluation for segmented radius and ulna using the proposed
method. The success rate of this method in segmenting wrist, fin-
ger I, III, and V bones are 91%, 82%, 91% and 73%, respectively.
The lower success rate of segmenting finger V bones is due to the
fact that the distal and middle phalanges of finger V have very
poor contrast in younger children in some images which makes
the segmentation task very difficult.

The graded subset of the Fels indicators are compared with
the reference values provided by well-trained specialists and ex-
amples provided in the Fels method textbook [3]. There was
general agreement between the algorithmically determined grades
and the ones provided by the specialists and textbook.

The time required to apply the proposed method on the input
image varies between 1 to 3 minutes depending on the size of the
image and the required pre-processing operations needed for that
image.

Discussion
Automated skeletal age assessment is a challenging task be-

cause of the hand position variation and non-uniform background
of the images as well as a significant amount of noise in some
images. To overcome these challenges, we have used a pre-
processing step to reduce the level of noise and enhance the con-
trast in the images. However, in some cases with very poor con-
trast or other objects around the hand, the algorithm fails to extract
the correct hand silhouette (Figure 14a). For this reason, the al-
gorithm asks the user to verify the extracted hand silhouette. If
the user confirms the extracted hand silhouette the program pro-
ceeds to next step. Otherwise, the program allows the user to set
a proper threshold value manually that extracts the correct hand
silhouette (Figure 14b).

In this study, we have graded a subset of the Fels indica-
tors for the bones in the wrist, finger I, III, and V regions. In
future studies, additional Fels indicators can be graded to make
the bone age assessment more accurate. Overall, the algorithm
was successful in determining the correct grade for the majority
of cases. This results in a considerable reduction of workload for

(a) (b)
Figure 14. X-ray image with very poor contrast and the a. automatically

and b. manually extracted hand silhouette boundaries.

the specialist to analyze and grade the Fels indicators in hundreds
if not thousands of X-ray images. While it is very difficult for a
computer algorithm to replace the expertise and experience of a
specialist, our approach can, in addition to processing large data
sets in a shorter amount of time, assist non-specialists to obtain
the skeletal age for comparison with the actual age of a patient.

Conclusion
In this study, we have proposed a semi-automated method

to assess the skeletal maturity age from X-ray images by grading
Fels indicators. This is a challenging task because of the poor
contrast, hand position variation, and non-uniform background of
the X-ray images. Therefore, our proposed method starts with a
pre-processing step to overcome these challenges. Next, the ROIs
including the bones of interests are extracted. Then, the expected
bones in each ROI are segmented using a local thresholding and
active contour segmentation methods. Finally, a subset of Fels
indicators are graded for the segmented bones. The segmenta-
tion method was evaluated visually on a subset of Fels data sets
to determine the accuracy of the segmentation step as well as the
grading of the Fels indicators based on input from domain spe-
cialists. The algorithm was generally successful in grading these
indicators accurately in the majority of cases leading to a signifi-
cant workload reduction for the domain specialist.
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