
High-Quality Volume Rendering of Dark Matter Simulations

Ralf Kaehler; KIPAC/SLAC; Menlo Park, CA, USA

Abstract
Phase space tessellation techniques for N–body dark matter

simulations yield density fields of very high quality. However, due
to the vast amount of elements and self-intersections in the result-
ing tetrahedral meshes, interactive visualization methods for this
approach so far either employed simplified versions of the volume
rendering integral or suffered from rendering artifacts.

This paper presents a volume rendering approach for
phase space tessellations, that combines state-of-the-art order–
independent transparency methods to manage the extreme depth
complexity of this mesh type. We propose several performance
optimizations, including a view–dependent multiresolution repre-
sentation of the data and a tile–based rendering strategy, to en-
able high image quality at interactive frame rates for this complex
data structure and demonstrate the advantages of our approach
for different types of dark matter simulations.

Introduction
N–body dark matter simulations are an important tool to

study the formation of the large–scale structure in the Universe.
In this numerical approach, the dark matter distribution is sam-
pled by a set of particles of equal mass, whose positions are up-
dated over time, according to the overall gravitational potential
[26, 11, 27]. Many methods for analyzing dark matter simulations
rely on the computation of accurate mass densities, for example,
to identify features of the cosmic web or to predict dark matter
annihilation signals. There exist various techniques to interpolate
the mass at the discrete particle positions to generate a density
field defined everywhere in the computational domain; e.g. re-
sampling approaches using auxiliary grid structures [14, 5, 23] or
SPH techniques that superimpose kernel functions centered at the
particle positions [22]. However, these methods are often subject
to artifacts due to sampling noise, which is problematic for many
applications.

An improved density computation technique for N–body
simulations, introduced in [24, 2], uses the particles to construct a
tessellation of the 3–dimensional dark matter sheet, which is em-
bedded in the 6-dimensional phase space. A well–defined density
field is obtained by projecting the tessellation into configuration
space and adding the mass density contributions of all elements
that overlap the same spatial location. This method has been suc-
cessfully applied in many applications, for example, to reduce
numerical artifacts of N-body simulations [12, 13], or to create
smooth maps of gravitational lensing potentials around dark mat-
ter halos [3].

A drawback of the phase space tessellation approach, in par-
ticular for visualizations, is the complexity of the resulting tetra-
hedral meshes, due to the large number of elements and the ex-
cessive amount of self-intersections – often in the order of 104

cells overlap in overdense regions. Previous methods to visualize
dark matter simulations using this technique were either based on
versions of the volume rendering integral without absorption [19],
subject to high–frequency image noise [17] or did not achieve in-
teractive frame rates [18]. This paper presents a volume rendering
approach for phase space tessellations, that

• combines the advantages of a single–pass k–buffer approach
with a view–adaptive voxelization grid,

• incorporates several optimizations to tackle the unique prob-
lems arising from the large number of self–intersections and
extreme depth complexity,

• proposes a view–dependent level–of–detail representation
of the data that requires only minimal preprocessing

• and thus achieves high image quality at interactive frame
rates, enabling an artifact–free visualization of subtle, thin
features like complex caustic structures in overdense re-
gions.

Related Work
There exists extensive work on the visualization of point–

based datasets resulting from N–body and SPH simulations.
GPU–assisted hierarchical splatting, via spatial clustering, was
presented in [15, 16]. An interactive rendering approach for very
large N-body datasets, proposed in [10], employed a continuous
level-of-detail particle representation and a hierarchical quanti-
zation scheme to compress the particle coordinates and data at-
tributes. GPU-assisted voxelization for SPH, using an adaptively
discretized viewing volume, has been proposed in [9] and, more
recently, in [33]. However, in contrast to our work, all the above-
mentioned approaches assume that the mass is concentrated at the
particle positions, which can lead to image artifacts, as for exam-
ple demonstrated in [19].

There is also a vast amount of literature on the visualiza-
tion of data on tetrahedral grids. Cell–projection methods usu-
ally employ the Projected Tetrahedra (PT) algorithm, that decom-
poses each tetrahedron into a set of triangles and assigns scalar
values for the entry and exit points of the viewing rays to each
vertex [25]. A GPU–assisted method for decomposing the tetra-
hedra into triangles using the PT algorithm was presented in [31].
An artifact–free PT rendering approach using a logarithmically
scaled pre–integration table was proposed in [20]. Other GPU–
assisted raycasting methods for tetrahedral grids have been dis-
cussed in [29, 8]. Phase space meshes differ from common tetra-
hedral grids by the excessive amount of self–intersections, while
the above–mentioned approaches assume that the grid cells can
be processed separately, in a view–consistent order.

An alternative method to render tetrahedral grids is to remap
the data to grid structures that are better supported by current

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 333-1

https://doi.org/10.2352/ISSN.2470-1173.2018.01.VDA-333
© 2018, Society for Imaging Science and Technology

graphic hardware architectures, using cartesian grids [30] or oct–
tree data structures [28]. These approaches are problematic in
our case, as can miss thin tetrahedra that fall between consec-
utive sampling slices. These are particularly important in the
phase space element approach, as they sample caustic structures
of extremely high density in overdense regions of the domain. A
voxelization approach for large phase space tessellations on GPU
clusters has been presented in [18]. However, in contrast to the
method proposed in this paper, it did not support view–adaptive
depth layering at interactive frame rates.

An alternative strategy to deal with semi–transparent self–
intersecting geometry, is adopted in order–independent trans-
parency (OIT) techniques, which sort the rendering primitives
on a pixel–pixel basis. The A–buffer approach [6] first captures
lists of all fragments for each pixel, which are then sorted and
blended in a second step. Recently added graphics hardware fea-
tures, like fast atomic counters and writable GPU buffers, allow
hardware implementations of the A–buffer, like per–pixel lists
(PPL) [32, 21]. However, due to the extremely high depth com-
plexity of phase space tessellations, a direct application of these
approaches to extract and combine all fragments, would result
in prohibitive memory requirements. A hybrid volume render-
ing method for phase space tessellations that reduces this mem-
ory overhead was proposed in [17]. In this multi–pass approach,
pixels with low depth complexity are rendered exactly via an OIT
method, whereas the depth range of pixels with high depth com-
plexity is quantized using a binning approach. This enables in-
teractive frame rates, but even for moderately sized dark matter
simulations, only a small fraction of the pixels meets the crite-
rion for the exact OIT method. The binning approach however,
can lead to high–frequency image noise, since the density contri-
butions of thin tetrahedra, whose front–, and back–faces fall into
the same density bin, cancel each other out exactly. This is, for
example, problematic for displaying thin, but nevertheless impor-
tant features like caustic structures, whose superpositions gener-
ate overdense regions.

We propose a single–pass rendering solution that is not af-
fected by image noise and extracts the depth range close to the
viewpoint using a variant of the k–buffer approach [4], and vox-
elizes distant tessellation elements onto a viewport aligned 3D
grid.

The Phase Space Element Approach
In this section, we briefly review the main ideas of the phase

space tessellation method [24, 2], that are most relevant for this
paper. N–body simulations follow the motion of dark matter in the
Universe using point-like mass sources, also called tracer particles
or just tracers. Their positions are updated according to the over-
all gravitational forces, assuming that the mass is concentrated at
the tracers’ positions. At the simulation’s initial time step, the
tracers are aligning with the vertices of a regular grid, referred to
as Lagrangian grid in the remainder of this paper. Since all these
cells have the same volume, in the phase space tessellation ap-
proach an equal amount of mass is assigned to each of them. The
logical grid connectivity is kept fixed over time, whereas the spa-
tial locations of the vertices vary according to the actual positions
of the tracer particles, causing a deformation of the embedding of
the logical rectangular Lagrangian grid in configuration space.

Given the constant mass per cell, its time-dependent volume

provides an estimate of its local density. However, instead of di-
rectly using the hexahedral cells to compute the volumes, it is
computational more efficient to first tessellate them by tetrahedra,
as these are always convex, independent of the relative positions
of their vertices. We will follow the tessellation choice using 6
tetrahedra, as for example used in [19]. So, with m denoting the
constant mass per tetrahedron and ∑i Vi(x, t) the total volume of
all tetrahedra that cover the spatial location x at time t, the total
mass density at x and t is given by

ρtot(x, t) = m∑
i

1
Vi(x, t)

. (1)

The Volume Rendering Algorithm
Our approach consists of the following steps: First, the par-

ticle positions are uploaded to the GPU, where the vertex coor-
dinates for each cell are sampled, the associated tetrahedra are
constructed and their mass densities are computed. Next, for each
pixel, we generate a depth-sorted list of the first k depth layers,
given by the intersection points between the viewing ray and the
tetrahedra closest to the camera. The density contributions of ray-
segments beyond the first k fragments are sampled and accumu-
lated using a view–adaptive 3D voxel grid. Finally, the resulting
densities are mapped to colors and opacities, which are blended
in a front–to–back order. We will discuss implementation details
and optimization strategies for each part of this approach in the
next subsections.

Geometry Construction
The particle positions are stored in an RGB floating–point

3D–texture, sorted by their logical indices on the initial La-
grangian grid. In an instanced rendering call – one instance per
cell – the cell’s 8-vertices are sampled and passed to a geome-
try shader, where the 6 tetrahedra are constructed and their vol-
umes are computed. Only the front-facing triangles, as well as
the normals of all tetrahedra’s faces, are generated at this stage
and passed to the fragment shader, where the viewing ray’s entry
point into the tetrahedra, as well as the length of the ray intersec-
tion, are computed.

K–Buffer Construction
Graphics hardware vendors recently added support for

atomic operations on 64-bit integer data types [1], which enables
the generation of correctly depth-sorted fragment lists in a single
rendering pass, as for example demonstrated in [7].

For the single-pass k–buffer construction, we allocate a
buffer of k unsigned 64-bit integers for each pixel and initialize
it by setting all bits to 1. In the fragment shading stage, the den-
sity of each tetrahedron, as well as the depth of the ray’s entry
point, din, are encoded in the lower, respectively upper 32-bits of
a 64-bit integer. The data item is inserted into the pixel’s frag-
ment list by looping over the k-entries, atomically exchanging it
with stored entries, if its depth is smaller. In case the data was
inserted, i.e. if it was at least closer to the camera than the last
fragment in the list, a corresponding data item encoding the ray’s
exit point at depth dout , along with the negative density −ρ , is
generated and tested for insertion, starting at the next larger list
position. The pseudocode for this is outlined in Algorithm 1.

The result is a depth-sorted list of the viewing rays entry and

333-2
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

Algorithm 1 Single-Pass k-Buffer Construction
1: function INSERT FRAGMENT(depth, ρ , search start)
2: new data← convert (ρ , depth) to 64-bit uint
3: test data = new data
4: insertion pos = search start
5: for i← search start,k do
6: old data← atomicMin(k buffer[i], test data)
7: if hi32(old data) == 0xFFFFFFFFu then
8: break
9: end if

10: test data = max (old data, test data)
11: if (test data == new data) then
12: ++insertion pos
13: end if
14: end for
15: return insertion pos
16: end function
17:
18: function FRAGMENT SHADER MAIN()
19: (din, dout , ρ)← compute intersection parameters
20: search start = INSERT FRAGMENT(din, ρ , 0) + 1
21: if search start < k then
22: INSERT FRAGMENT(dout , −ρ , search start)
23: end if
24: end function

exit points for the k closest tetrahedra faces, along with the tetra-
hedra’s density ρ at entry points and −ρ at the exit points, see
Figure 1.

View–Adaptive Voxelization
In order to capture the density contributions of tetrahedra

that extend beyond the depth interval of the elements in the k–
buffer, we employ a voxelization via a view–adaptive grid with
logarithmic depth spacing, see Figure 1. We, therefore, allocate
a viewport–aligned, floating–point 3D–texture with nx ∗ ny ∗ nd
texels, where nx ∗ ny is the viewport resolution, and nd indicates
the number of depth layers for each pixel. In principle the total
depth interval, spanned by the voxel grid at each pixel, depends
on the depth of the last item in the pixel’s k–buffer and the max-
imal depth of all geometry at that pixel – information we could
record during the construction of the k-buffer.

However, this would require two separate rendering passes,
one for the k–buffer construction and another one for the voxeliza-
tion of the remaing tetrahdra, impacting the overall performance
due to the duplicated geometry and density computation. Instead,
we generate the k–buffer and the voxelization grid in the same
rendering pass, simultaneously inserting tetrahedra contributions
to both. This results in some amount of redundant information for
the first layers of the voxelization grid, but the overhead is low,
since the depth interval spanned by the k–buffer is usually small.

In the fragment shading stage, after updating the k–buffer as
described above, we atomically add contributions of

ρT ∗ (dlT ∩dli),

to the grid. Here ρT denotes the density of the tetrahedron T , and
dlT ∩dli is the length of the intersection between the ray segment

+𝞺
+𝞺1

-𝞺1

+𝞺2

-𝞺2

𝞺2
𝞺1

depth

depth

K-Buffer Domain Voxelization Domain

Figure 1. Combined k–buffer and voxelization grid: In this example, two el-

ements close to the camera result in four fragments, that are inserted into the

depth–sorted k–buffer. Front–facing fragments contribute positive densities,

whereas back–facing fragments contribute negative densities. Depth layers

beyond the first k–fragments fall into the voxelization domain. The resulting

densities at each location are shown in green in the lower part of the image.

inside T and the depth layer i of the voxelization grid. Note that
these contributions have the unit mass per area, and we need to di-
vide the final values of each cell by the layer’s depth interval dli,
to transform them back to density units. Also note that our method
is capable of capturing the contributions of thin tetrahedra, whose
front-, and back-facing fragments fall into the same depth layer,
which is crucial for correctly displaying caustic structures inside
overdense regions, like dark matter filaments and halos, that con-
sist of thousands of very thin phase space elements, as shown in
Figure 2.

Color Mapping and Blending

In the last step, we combine the densities in a view–
consistent order, which is straightforward in our case, since the
k–buffer and the voxel grid are already explicitly, respectively im-
plicitly sorted by depth.

Thus, we render a screen-filling quad and simply loop over
the entries in the k–buffer, accumulate the density contributions at
each buffer item, map the current density at each interval to col-
ors and opacities, while taking into account the corrections due
to the varying interval lengths, see Figure 1. The colors are com-
bined using the standard front-to-back blending equation. Analo-
gously, the densities stored in the view–adaptive voxelization grid
are sampled, mapped to colors and opacities and blended, taking
advantage of the fast interpolation and caching support for 3D tex-
tures on current graphics hardware. As discussed above, the first
layers of the voxelization grid overlap the depth range covered by
the k–buffer, and thus we start the accumulation at a depth corre-
sponding to the last entry in the k–buffer, and rescale the grid’s
density value at that layer based on the overlap with the buffer’s
last depth interval. Finally, the resulting colors and opacities for
each pixel are stored in the global framebuffer.

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 333-3

Figure 2. Comparison between the hybrid rendering approach presented in [17] (on the left) and our method (on the right), using the same number of depth

layers. The failure to capture many caustics consisting of thin tetrahedra in the central halo, results in high–frequency noise in the left image, whereas our

method correctly displays these regions.

Optimizations for Phase Space Tessellations
In this section, we will describe performance optimizations

to the above-mentioned approach, that take advantage of special
features of phase space tessellations.

Tiled Rendering
Subdividing a high-resolution image into smaller tiles is a

well-known strategy to increase the number of depth layers that
can be extracted with the limited amount of GPU memory, and
also helps to avoid problems related to rendering large amounts
of semi–transparent primitives, like GPU overdraw. A straight-
forward tiling approach is problematic in our case, since the gen-
eration of the tetrahedra in the geometry shader takes up a no-
ticeable fraction of the whole rendering time and would add a
constant overhead to each pass, since the culling of geometry out-
side the view–frustum is performed in later stages of the rendering
pipeline.

In order to avoid the generation of geometry outside the tile’s
viewing frustum, we subdivide the position texture into smaller
cubical blocks of cells that share a layer of texels at adjacent
faces, and pre-compute the partially overlapping, axis–aligned
minimum bounding boxes (AABB) spanned by the particles of
each block. Only blocks whose AABB intersect the current frus-
tum are rendered, as depicted in Figure 4.

For our examples, a choice of 83 cells per block resulted in a
high fraction of culled geometry, but produced in the order of 105

blocks. Rendering that many blocks via separate high–latency
CPU draw calls would have introduced a performance overhead,
and we therefore decided to perform the entire intersection com-
putation on the GPU, utilizing two compute shaders. The first
one determines the blocks’ bounding boxes and offsets on the La-
grangian grid, and stores them in a GPU buffer. This buffer is
kept on the GPU and accessed during the rendering pass for each
tile from a second compute shader, which detects the intersections
between the blocks and the current view–frustum. For each inter-
section, an atomic counter is incremented and used as an offset
into a separate GPU buffer that stores the IDs of the blocks that
overlap with the frustum. Once the intersection computation is
finished, the final value of the counter determines the total number

of instances required for the tile’s single instanced draw call. In
the following vertex shader, the instance IDs determine the block
number and cell offset within the block.

Multiresolution Rendering
The partition of the particle grid into smaller blocks also al-

lows for an efficient view–dependent multiresolution representa-
tion of the phase space tessellation. For blocks that intersect the
current view frustum, we compute the screen space extensions of
their AABBs. The size of the projections determines the blocks’
resolution levels, which are encoded in the highest bits of the
block IDs and stored in the list of active blocks for the actual
viewpoint, as described above. On the CPU, the IDs are inserted
into different lists - one for each resolution level. The lists are
bound to the GPU and for each of them, a separate instanced draw
call is issued, with the number of instances given by the resolution
and the block size in cells. The data for each resolution level is
obtained by downsampling from the next higher resolution, aver-
aging each vertex position with its nearest 8 neighbors. Note that
this requires adapting the mass assigned to each tetrahedron sam-
pled on level r by a factor of 23r, which is done in the geometry
shader when the densities are computed.

K–Buffer Construction
By construction, the k–buffer is always sorted, and thus in-

serting new elements via a binary search is usually beneficial. Of
course, this approach works best if the geometry is rendered in
an almost depth-sorted order, since in this case, the buffer con-
verges to its final form earlier, allowing to avoid vast amounts of
atomic operations for later fragments. As discussed above, an ex-
act sorting of the tetrahedra is infeasible, due to the tessellation’s
large amount of self-intersections. However, since dark matter
particles usually move only fractions of the whole computational
domain, relative to their initial position on the Lagrangian grid,
there is a high correlation between their logical grid index (i, j,k)
and their actual position at later times. We exploit this by sorting
the block IDs in the lists based on their center’s distance to the
camera and by sampling the cells of each block in an order based
on the major viewing direction. So if, for example, the viewing

333-4
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

Figure 3. Comparison between the density projection rendering approach [19] (left) and the volume rendering method proposed in this paper, that takes

absorption into account (right). The depth ordering between features, like the two twisted filaments on the bottom, or the top filament and the central halo,

become much clearer in the image on the right.

Figure 4. 2D illustration of the optimization for tile-based rendering: (A)

shows a Lagrangian grid texture with 5× 5 particles, which is subdivided

into 4 blocks. (B) The axis–aligned minimum bounding boxes, spanned by

the particles of each block, are computed and only blocks that overlap the

current tile, part of the black array of cells in (C), are rendered at each pass.

direction is mainly along the positive x–axis, cells with smaller
i–coordinate are processed first, this way increasing the probabil-
ity that geometry closer to the camera is inserted early into the
k–buffer.

Results and Discussion
We conducted our performance measurements on a Red Hat

Enterprise Linux 6 operating system, equipped with a Nvidia
GeForce GTX 1080 Ti (graphics driver version 384.90), with
12 GB of graphics memory and a 2.27 GHz 8-core Intel Xeon
E5520 CPU. The algorithms were implemented in C++, OpenGL
and the OpenGL Shading Language. We used two datasets with
different characteristics: a warm dark matter (WDM) simulation
of a single, highly resolved central halo with detailed caustic
structures, shown in Figures 2 and 3, as well as a cold dark matter
(CDM) simulation, capturing the halos and filaments of the cos-
mic web in a region about 350 million light year across, see Fig-
ures 9 and10. The datasets consisted of 2583, respectively 2563

dark matter particles, resulting in phase space tessellations with
about 108 tetrahedra. We used a viewport resolution of 750x500
pixels for all of our measurements.

Figure 5 states the rendering time for the different optimiza-
tion strategies, i.e. the block–based view–frustum culling, the
view–dependent cell–sorting, as well as the screen-projection-

based multiresolution representation (with a threshold of one
tetrahedron per pixel). Each different column adds another op-
timization level, starting with the basic rendering approach on the
left. We used 5× 4 image tiles, a block size of 83 cells and 100,
respectively 1000 depth layers for the k–buffer and the voxeliza-
tion grid. The performance numbers show that the view–frustum
culling using the block–based approach reduced the rendering
times by more than 50%, by drastically reducing the overhead
of the geometry construction of tetrahedra that do not contribute
to the current image tile. The view–aligned processing order for
the Lagrangian cells improved the rendering performance for the
CDM data by almost 40%. The effect was less pronounced for
the WDM simulation, where a large fraction of the particles accu-
mulated in the central halo region, resulting in a lower correlation
between the indices of the vertices on the logical rectangular La-
grangian grid and their positions in actual world coordinates.

Adding the level-of-detail rendering approach, enabled in-
teractive frame rates for both datasets. A detailed comparison in
terms of rendering performance versus image quality for different
multiresolutions settings is given in Figures 6 and 7, respectively
in Figures 10 and 11. A threshold of about one (projected) tetra-
hedron per pixel results in almost no loss of image quality com-
pared to rendering the full resolution data, while it increased the
performance by about 300%. Lower thresholds of two and three
tetrahedra per pixel resulted in further performance gains, but led
to a higher image error in high–frequency domains of the data,
for examples at the boundaries of the domain, or at the caustics,
as shown in Figures 10 and 11.

Dataset basic approach blocks cell-sorting LOD

WDM 4.2 2.0 1.8 0.5
CDM 10.1 4.5 2.7 0.9

Figure 5. The rendering times (in seconds) for the two datasets and the

different optimization approaches.

The effects on the image quality of different sizes for the k–
buffer and the voxelization grid are demonstrated in Figure 9. We
increased the number of layers for the k–buffer from 0 to 300,

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 333-5

Figure 6. Performance improvement using the LOD approach for the CDM

dataset.

Figure 7. Performance improvement using the LOD approach for the WDM

dataset.

while the slabs in the voxelization grid were reduced by the same
amount, starting with 1000, thus keeping the overall memory bud-
get constant. As shown in Figure 9, using the k–buffer with 100
layers substantially reduced visible banding artifacts, while the ef-
fect of adding additional layers to the k–buffer resulted only in mi-
nor improvements. However, the rendering performance dropped
by about 50% for each additional set of 100 layers in the k–buffer,
indicating that the rendering time is dominated by the k–buffer
construction and a choice of 100 resulted in a good tradeoff be-
tween image quality and rendering performance for our examples.

Conclusions and Future Work
We presented a high quality, order–independent single–pass

volume rendering approach for N–body simulation data, based on
a phase space tessellation technique. By combining a single–pass
k–buffer approach to extract the first depth layers and a view–

Figure 8. Rendering performance for increasing k-buffer sizes.

adaptive voxelization for distant depth intervals, it achieves inter-
active frame rates, while still capturing important features, like
thin caustic structures, with significantly improved image quality
compares to previously published methods. We proposed sev-
eral optimization techniques, including an efficient multiresolu-
tion representation of the data, that take advantage of the logical
structure of the tessellations and demonstrated the usefulness of
our approach with datasets, whose phase space tessellations re-
sulted in complex, self–intersecting meshes with 108 tetrahedra.

As future work, we plan to extend our algorithm to support
higher–order interpolation inside the tetrahedral elements and also
apply it to support dark matter velocity data. We would also like to
investigate the feasibility of extending our approach to distributed
GPU–cluster environments.

Acknowledgments
The dark matter simulation datasets were provided by Tom

Abel and Oliver Hahn. We would also like to thank Ziba Madhavi
and David Stricker for their help with hardware purchases used
for this publication.

References
[1] OpenGL Extension 455. https://www.khronos.org/

registry/OpenGL/extensions/NV/NV_shader_atomic_

int64.txt.
[2] Tom Abel, Oliver Hahn, and Ralf Kaehler. Tracing the Dark Matter

Sheet in Phase Space. Monthly Notices of the Royal Astronomical
Society, 427(1):61–76, 2012.

[3] Raul E. Angulo, Ruizhu Chen, Stefan Hilbert, and Tom Abel. To-
wards noiseless Gravitational Lensing Simulations. Mon. Not. Roy.
Astron. Soc., 444(3):2925–2937, 2014.

[4] Louis Bavoil, Steven P. Callahan, Aaron Lefohn, João L. D. Comba,
and Cláudio T. Silva. Multi-fragment Effects on the GPU using the
k-Buffer. In Proceedings of the 2007 Symposium on Interactive 3D
Graphics and Games, I3D ’07, pages 97–104, New York, NY, USA,
2007. ACM.

[5] Charles K. Birdsall and Dieter Fuss. Clouds-in-Clouds, Clouds-in-
Cells Physics for Many-body Plasma Simulation. Journal of Com-
putational Physics, 3:494–511, 1969.

[6] Loren Carpenter. The A-buffer, an Antialiased Hidden Surface
Method. In Proceedings of the 11th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’84, pages
103–108, New York, NY, USA, 1984. ACM.

[7] Christoph Kubisch. Order Independent Transparency in
OpenGL 4.x, GPU Technology Conference 2014. http://

on-demand.gputechconf.com/gtc/2014/presentations/

S4385-order-independent-transparency-opengl.pdf,
2014.

[8] Rodrigo Espinha and Waldemar Celes. High-Quality Hardware-
Based Ray-Casting Volume Rendering Using Partial Pre-
Integration. In Proceedings of the XVIII Brazilian Symposium
on Computer Graphics and Image Processing, pages 273–,
Washington, DC, USA, 2005. IEEE Computer Society.

[9] Roland Fraedrich, Stefan Auer, and Rudiger Westermann. Efficient
High-Quality Volume Rendering of SPH Data. IEEE Transactions
on Visualization and Computer Graphics, 16:1533–1540, November
2010.

[10] Roland Fraedrich, Jens Schneider, and Rüdiger Westermann. Ex-
ploring the Millennium Run - Scalable Rendering of Large-Scale

333-6
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_atomic_int64.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_atomic_int64.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_atomic_int64.txt
http://on-demand.gputechconf.com/gtc/2014/presentations/S4385-order-independent-transparency-opengl.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4385-order-independent-transparency-opengl.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4385-order-independent-transparency-opengl.pdf

Figure 9. Image quality for different sizes of the k–buffer and the voxelization grid: the number of depth layers in the k–buffer increases in steps of 100, starting

with 0 on the left, while the number of layers in the voxelization grid is reduced by the same amount, from an initial value of 1000. The upper row shows the

visualization results, while the lower row displays the relative pixel differences between the image above and the previous one to the left.

Figure 10. Renderings of the CDM dataset using different level-of-detail settings. From left to right: the full resolution data and results for refinement thresholds

of one, two and three pixels per tetrahedron. The lower row shows the relative errors between each image and the full resolution rendering.

Figure 11. Renderings of the WDM dataset using the same level-of-detail settings as in Figure 10.

IS&T International Symposium on Electronic Imaging 2018
Visualization and Data Analysis 2018 333-7

Cosmological Datasets. IEEE Transactions on Visualization and
Computer Graphics, 15:1251–1258, November 2009.

[11] Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel,
Adrian Pope, and Katrin Heitmann. Hacc: Extreme scaling and
performance across diverse architectures. In Proceedings of the In-
ternational Conference on High Performance Computing, Network-
ing, Storage and Analysis, SC ’13, pages 6:1–6:10, New York, NY,
USA, 2013. ACM.

[12] Oliver Hahn, Tom Abel, and Ralf Kaehler. A new approach to sim-
ulating collisionless dark matter fluids. Mon. Not. Roy. Astron. Soc.,
434:1171, 2013.

[13] Oliver Hahn and Raul E. Angulo. An adaptively refined phase space
element method for cosmological simulations and collisionless dy-
namics. Mon. Not. Roy. Astron. Soc., 455(1):1115–1133, 2016.

[14] Roger W. Hockney and Joseph W. Eastwood. Computer Simulation
Using Particles. Taylor & Francis, Inc., Bristol, PA, USA, 1988.

[15] Matthias Hopf and Thomas Ertl. Hierarchical Splatting of Scattered
Data. In Proceedings of the 14th IEEE Visualization 2003, pages
57–65, Washington, DC, USA, 2003. IEEE Computer Society.

[16] Matthias Hopf, Michael Luttenberger, and Thomas Ertl. Hierarchi-
cal Splatting of Scattered 4D Data. IEEE Comput. Graph. Appl.,
24:64–72, July 2004.

[17] Oleg Igouchkine, Nick Leaf, and Kwan-Liu Ma. Volume rendering
dark matter simulations using cell projection and order-independent
transparency. In SIGGRAPH ASIA 2016 Symposium on Visualiza-
tion, SA ’16, pages 8:1–8:8, New York, NY, USA, 2016. ACM.

[18] Ralf Kaehler. Massively Parallel Computation of Accurate Densities
for N-body Dark Matter Simulations using the Phase Space Element
Method. Astronomy and Computing, 20:68 – 76, 2017.

[19] Ralf Kaehler, Oliver Hahn, and Tom Abel. A Novel Approach to
Visualizing Dark Matter Simulations. IEEE Transactions on Visual-
ization and Computer Graphics, 18(12):2078–2087, 2012.

[20] Martin Kraus, Wei Qiao, and David S. Ebert. Projecting tetrahedra
without rendering artifacts. In Proceedings of the conference on
Visualization ’04, VIS ’04, pages 27–34, Washington, DC, USA,
2004. IEEE Computer Society.

[21] Stefan Lindholm, Martin Falk, Erik Sunden, Alexander Bock, An-
ders Ynnerman, and Timo Ropinski. Hybrid Data Visualization
Based on Depth Complexity Histogram Analysis. Computer Graph-
ics Forum, 34(1):74–85, 2015.

[22] Joseph Monaghan. An Introduction to SPH. Computer Physics
Communications, 48:89–96, January 1988.

[23] Mark C. Neyrinck. ZOBOV: A parameter-free Void-finding Algo-
rithm. mnras, 386:2101–2109, June 2008.

[24] Sergei Shandarin, Salman Habib, and Katrin Heitmann. Cosmic
web, multistream flows, and tessellations. Phys. Rev. D, 85:083005,
Apr 2012.

[25] Peter Shirley and Allan Tuchman. A Polygonal Approximation to
Direct Scalar Volume Rendering. In Proceedings of the 1990 work-
shop on Volume visualization, VVS ’90, pages 63–70, New York,
NY, USA, 1990. ACM.

[26] Volker Springel. The Cosmological Simulation Code Gadget-2.
Monthly Notices of the Royal Astronomical Society, 364, 2005.

[27] Michael S. Warren. 2hot: An Improved Parallel Hashed Oct-tree
N-body Algorithm for Cosmological Simulations. In Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’13, pages 72:1–72:12, New
York, NY, USA, 2013. ACM.

[28] Manfred Weiler and Thomas Ertl. Hardware-software-balanced re-

sampling for the interactive visualization of unstructured grids. In
Proceedings of the conference on Visualization ’01, VIS ’01, pages
199–206, Washington, DC, USA, 2001. IEEE Computer Society.

[29] Manfred Weiler, Martin Kraus, Markus Merz, and Thomas Ertl.
Hardware-Based Ray Casting for Tetrahedral Meshes. In Proceed-
ings of the 14th IEEE Visualization 2003 (VIS’03), VIS ’03, pages
44–, Washington, DC, USA, 2003. IEEE Computer Society.

[30] Ruediger Westermann. The rendering of unstructured grids revis-
ited. In EG/IEEE TCVG Symposium on Visualization (VisSym ’01),
2001.

[31] Brian Wylie, Kenneth Moreland, Lee Ann Fisk, and Patricia
Crossno. Tetrahedral Projection using Vertex Shaders. In Pro-
ceedings of the 2002 IEEE Symposium on Volume Visualization and
Graphics, VVS ’02, pages 7–12, Piscataway, NJ, USA, 2002. IEEE
Press.

[32] Jason C. Yang, Justin Hensley, Holger Grün, and Nicolas Thibieroz.
Real-time concurrent linked list construction on the gpu. In Proceed-
ings of the 21st Eurographics Conference on Rendering, EGSR10,
pages 1297–1304, Aire-la-Ville, Switzerland, Switzerland, 2010.
Eurographics Association.

[33] Tobias Zirr and Carsten Dachsbacher. Memory-efficient on-the-fly
voxelization of particle data. In Proceedings of the 15th Eurograph-
ics Symposium on Parallel Graphics and Visualization, PGV ’15,
pages 11–18, Aire-la-Ville, Switzerland, Switzerland, 2015. Euro-
graphics Association.

333-8
IS&T International Symposium on Electronic Imaging 2018

Visualization and Data Analysis 2018

