

Traffic Camera Dangerous Driver Detection (TCD3)
Vidur Prasad; University of Michigan; Ann Arbor, MI

Abstract
The goal of the TCD3 project is to identify anomalous and

dangerous driving patterns from traffic camera feeds. Successful
execution can improve road safety by assisting law enforcement
catch dangerous drivers, who text while driving or drink and
drive. TCD3—in real time—uses Computer Vision to detect cars
on the road, utilizes Machine Learning algorithms to identify cars
exhibiting dangerous behaviors, and then notifies law enforcement
of suspicious vehicles. The project overcomes several technical
challenges such as detecting vehicles under different lighting
conditions, tracking vehicles in different frames, and
distinguishing random variations in a vehicle’s path due to
normal driving from anomalous variations due to distracted
driving. TCD3’s C++ script runs on a server and receives live
streaming traffic camera feed. A heuristic Computer Vision
algorithm utilizes optical flow analysis, background subtraction,
and feature extraction algorithms to reliably determine vehicle
positions. A proprietary recursive matrix density-based method
was created to clean sensor feeds, sizably improving detection
accuracy, and greatly improving on current morphological
methods. Image registration allows a vehicle’s path to be analyzed
through multiple frames. A test suite of traffic camera footage was
used to evaluate vehicle detection. Frames were doctored and
drunk drivers were simulated to test the Machine Learning system,
the algorithm was found to have an 83% accuracy. Machine
Learning was used for historical and active comparative analyses
of vehicle paths to identify anomaly. The system is contextually
aware and is robust with respect to normal irregularities in traffic
patterns such as from red lights. Permission for large scale testing
of the prototype on actual high fidelity traffic camera footage has
been requested. Upon detection, the relevant video clip will be
extracted and sent to law enforcement for further action. To
increase affordability, processing speed, and scalability, a multi-
node networked Spark-based supercomputing architecture is
being investigated. TCD3 is multi-threaded for maximum resource
allocation. The project website is at drunkdriverdetection.com.

Introduction
The TCD3 project was conceptualized from the growing need

to have automated active analyses of drivers on roads to detect
distracted or drunk drivers. The aim of the project was to use open
source, low-level languages to be create Computer Vision and
machine learning algorithms to actively analyze traffic camera
footage to identify drunk or distracted drivers. This paper will
outline the different foundational algorithms that were used, the
reasoning and justification for their selection, there importance,
and their implementation.

Drunk and Distracted Driving
Drunk and distracted driving is a problem that is growing in

our society, and is a problem that affects us all. The current
paradigm for solving this pressing problem is fundamentally
outdated: convince drivers to not drive drunk or distracted, or use
human resources to identify these drivers. Unfortunately, this

solution is flawed as it has been concretely proven that drunk and
distracted driving is not on a decline, even with the advent of
commercials urging people to drive safely, and with recent law
enforcement budget cuts, it is becoming more difficult to deploy
human assets to observe and find these drivers.

The current push to use technology to solve the problem is
also flawed for two reasons, one, it requires new hardware and
investments to pay for it, and two, many of these methods call for
drivers to manually opt-in to self-monitor, which is not a
permanent nor a viable solution.

There are over 600,000 distracted drivers on the road on any
daylight hour in the United States. There are also over, on average,
300,000 injuries and deaths resulting from just drunk driving
every year.

After analyzing this problem, it is clear that the only long-
term, and financially, as well as technically, feasible solution is to
use existing technology and have a pervasive and active
monitoring system.

Technical Goal
The goal of this project is to create a hardware and software

package that is able to take in live streams of traffic camera
footage and process these streams to determine the position of the
cars in the feed. The cars’ positions are then intelligently analyzed
to determine if the cars are exhibiting anomalous behavior
commonly shown by distracted or drunk drivers. If a car is flagged
as being suspected of being driven by a drunk or distracted driver,
then the clip of video containing the car, and its license plate, is
sent to law enforcement for final validation, and for further
investigation.

This system will help law enforcement target its efforts by
leveraging the current visual sensing infrastructure to identify
suspicious drivers.

Previous Work
TCD3 was initially created using Octave, a language based

on MATLAB, by Mathworks, and used simple blob analysis and
manual background subtraction to identify cars. Morphological
operators were used to refine detects, and the grassfire algorithm
was utilized to identify and register discrete objects. A system to
record the x and y displacement of the coordinates was created to
perform rudimentary threshold to determine when the cars were
moving outside of the normal zone. This work was instrumental in
understanding the complexity of Computer Vision, and developing
a paradigm that is used in the current iteration of TCD3.

Language
C++, long considered the main language to be used for

Computer Vision, alongside Python, was chosen for use for its
broad support with various Machine Learning and Computer
Vision APIs, as well as for its low-level access to optimize
systems. TCD3 is written in C++ as OpenCV, the primary library
used, is natively written in C++, and other versions, such as
Python, operate with wrappers. C++ offered some obstacles in

IS&T International Symposium on Electronic Imaging 2017
Intelligent Robotics and Industrial Applications using Computer Vision 2017 67

https://doi.org/10.2352/ISSN.2470-1173.2017.9.IRIACV-270
© 2017, Society for Imaging Science and Technology

regards to memory leaks when working with larges sets of frames,
but efficient use of pointers and careful memory checking was
able to reduce RAM usage to approximately 2 GB.

OpenCV is a library that contains more than 2500 algorithms
for use in Computer Vision and Machine learning. OpenCV
provides a Matrix data structure that has broad support across
multiple other libraries, such as BGSLibrary. OpenCV, as it is
completely implemented in C++, allows all of its algorithms to be
edited and tweaked for the specific use case.

Phase 1: Computer Vision
Stage 1: Generate Background Model
Step 1: Reading Images

TCD3 reads video files, of standard MP4 or MOV type, and

converts the files into individual frame that are then passed
through the system to be processed.

This architecture allows all frames to be stored once,
reducing RAM load, and allows all frames to be saved only once,
reducing IO usage. Client methods can additionally clone data
from global vector if analysis will edit actual frames. On startup, a
buffer of frames are loaded into the vector, usually around 100,
and the architecture is in place to allow methods to access the
buffer as it is being built to begin initializing their systems.

The buffer is also created to ensure that no systems ever
cause an out of bounds error, as there is sufficient memory. The
size of the buffer controls multiple events as it effects the time it
takes to train, and effects the timing of initialization as many steps
must be completed in sequence, as they cannot be done in parallel,
and proper relational timing is kept to ensure that no matter the
size of the buffer memory, there are no runtime errors. The size of
the buffer, also, as expected, affects the quality of the Background
Detection, as many operations, such as the median background
generator, rely on large data sets to reliably estimate and separate
the background from the foreground objects. An additional vector
of gray scale frames is also maintained, as certain algorithms do
not require color. The raw frames that are read and kept for
conversion are deleted at the end of every cycle, after one frame
has been processed, and are scrubbed to reduce RAM usage and
ensure that there are not memory leaks.
Step 2: Background Model Median

The first background subtraction method that is used is the
median model, or BMM. TCD3 can generate BMMs, and can read
a BMM, stored as an image and containing the median value for
each pixel, and perform analysis. A BMM is generated by
stepping through the entire buffer memory and creating a vector of
integers of every pixel value in history for every specific position,
and calculating the median value.

A mean based model was investigated, but an accurate
reading required a very large buffer memory, and removing
ghosting is impossible, as variations will constantly affect the
learned average. Another pro to using a median based model is

that with advanced sorting methods such as Tim Sort, a median
calculation is highly efficient.

The BMM generation runs on its own thread, and has the
ability to perform simultaneous operations by separate the image
and process using multiple threads to decrease compute time. As
the current testing rig has only 8 cores, further branching of
threads will not increase speed, but it is an option for the future.
The BMM model is generated every 1.5 minutes to account for
changing weather conditions, as well as general lighting changes.
The thread silently works in the background, and does not slow
runtime as the new model is used only when the BMM is
successfully generated.

A sample of a BMM generated model is shown below, at no
point in the test footage was a picture of the road without cars ever
shown, proving that the BMM model is able to effectively
generate a background model. The BMM model shown was
generated with a buffer memory of 100 frames. The image also
shows no ghosting, a common result of background models.

All BMM models are generated in gray scale for speed, as a

RGB model would require 3X time, and as background
subtraction is more efficient and clean using gray scale images.
Step 3: Gaussian Model (Kaewtrakulpong &
Bowden)

Multiple background subtraction methods exist that use
techniques such as BMM, however, these methods, especially
BMM, suffer as a result of lighting changes and are forced to
recalculate a model periodically to remove these changes.

The Kaewtrakulpong & Bowden approach is designed to use
a Gaussian Mixture Model in conjunction with revised model
update equations to allow for more accurate lighting adjustment,
as well as to allow for shadow removal in the model. The
approach, referred to in the OpenCV library as the MOG1
approach, utilizes this approach to reduce the training time to
detect the objects.

TCD3 utilizes MOG1 and trains during run time by feeding
color images to fill the GMM. This model also uses a kernel
estimator for each pixel that allows regular movements, such as in
trees in the image, to be ignored. Other systems utilized by TCD3,
such as Optical Flow Analysis, are also used to further crosscheck
the models, and increase overall accuracy. MOG1 runs on its own
separate thread, and is one of the slowest of the Computer Vision
algorithms used by TCD3 for real time computation.
Step 4: Gaussian Model (Zivkovic)

The second Gaussian approach utilizes recursive equations to
actively update the parameters of the model, such as the number of
Gaussian mixture models, and size of the memory for each pixel.
The Zivkovic approach is referred to as MOG2 in OpenCV. This
adaptive method offers better response to objects such as wildlife
or shadows that normally mess up other subtraction methods.

The primary purpose of running both the Kaewtrakulpong &
Bowden and the Zivkovic approach was to adapt the model to the
conditions, allowing for a system that is able to update and reflect

68
IS&T International Symposium on Electronic Imaging 2017

Intelligent Robotics and Industrial Applications using Computer Vision 2017

the scene as accurately as possible. Running both models also
allows multiple guesses to be made, which increases accuracy.

This model furthers the paradigm that the system should be
able to adapt to any situation with minimal initial input, as it is
able to adapt to lighting and weather changes without requiring
outside sensor input, and increase the chance of a successful
detect. MOG2 runs on its own separate thread, and is one of the
fastest methods for real time computation.
Step 5: Gaussian Mixture Model (GMM)

TCD3 also uses a traditional GMM model, using three
mixtures, to adjust and deal with changes in the lighting
conditions. The traditional GMM model does not work as well as
MOG1 or MOG2 as it is not able to adapt to changing conditions
as well, and is also not able to intelligently develop a GMM.

After multiple tests, it was determined that using a three
mixture model gave the most accurate detect, but due to the
variance in the number of mixtures actually found in the sensor
data, the traditional GMM model has many false-positives. To
help reverse this, the buffer memory for the GMM is tripled.

Of the detection methods, the traditional GMM is weighted
the lowest in the final confidence detector, and future versions will
quite likely stop using the traditional GMM and rely solely on
MOG1 and MOG2 for a GMM based background mode.
Step 6: Background Model ViBe

ViBe is a commercial background subtraction algorithm
designed to perform analysis over multiple frames to create a
background model. ViBe works by analyzing the values of a pixel
over a period and then calculating the probability density function.
This method cause ViBe to require a long training time, about
seven times the buffer memory, to get a proper understanding of
the background model. Through its use of advanced statistical
analysis of pixel histories, ViBe creates a highly accurate model of
the background. Given enough time, ViBe returns a model of the
cars better than both MOG1 & MOG2. TCD3 runs ViBe even
after real-time analysis begins, and continues training ViBe after
an appropriate training period, about seven times the buffer
memory.

Stage 2: Detect Cars
Step 1: Background Subtraction

The next step in TCD3 is to use the generated background
models to perform subtraction with the current frame to determine
the difference, or objects in the frame.

Background subtraction starts with the Median background
frame, which is subtracted from the raw gray scale frame. This
returns a Matrix where the amplitude of the difference correlates
with the actual difference, allowing for thresholds to be applied.
After subtraction, a binary image is generated with every value
above 50, eliminating small differences due to shadows, saved as
one. Using a binary image also greatly decreases compute time.
The various models also generate binary masks that show the
difference, calculated through various methods, to identify objects.
Step 2: Optical Flow Analysis Detection

During the planning stages of TCD3, research work was
conducted to gain an understanding how humans understand
images. One of the main things that was gleaned from this
research was that humans use a multi-faceted approach, using
different “Computer Vision” like methods to create a composite
model, from which a final decision to recognize an object is done.

To emulate this method, TCD3 utilizes multiple background
subtraction methods to understand an image. However, to add
redundancy, an Optical Flow based method was created to detect
objects. The Farneback Dense Optical Flow model was used to
generate a model, for each pixel, that showed its movement frame
over frame. Using this Optical Flow model, a threshold is run to
detect every pixel that has movement. From this, the Sliding
Window Neighbor Detector is used to clean the image, and
develop a complete model of all large motion in the image. This
is an effective method as all the cars, no matter how optically
complex and similar to the background, can be caught through
motion. The Farneback Optical Flow algorithm creates an image
of motion vectors, from which a heat map of motion is generated.

Stage 3: Clean Data
Step 1: Sliding Window Neighbor Detector

Various morphological approaches were tried to attempt to

repair holes and other issues with the results of background
subtraction, but required too much compute time, as well as did
not do a good job. One of the biggest issues was that running
repeated morphological operators degraded the quality of the
detect by causing multiple cars close together to morph into one,
as well as were not adequate at removing noise.

To address this problem, a custom recursive algorithm was
created to read in raw background subtracted day and perform
image cleaning in a manner reminiscent of morphological
operators. The Sliding Window Neighbor Detector, or SWND, is
designed to determine a pixels value based on the density of its
neighbors, and therefore fill holes and remove noise, while
retaining the quality of an outline of a well define object. The
algorithm works by sliding through each pixel while observing the
area around the pixel to determine if the pixel is part of well-
defined object.

A pixel will be determined as existing if over 25% of its
neighbors exist. This ensures that holes inside of images will be
filled, as they will have non-adjacent relatively close neighbors
that cause the SWND to detect a pixel. SWND is also able to
remove noise, as it is able to identify a pixel as being a loner as its
neighborhood does not contain many other pixels.

The property of SWND that makes it powerful, and quite
accurate, is its ability to work recursively by starting with
relatively small sectors to larger and larger sectors that carefully
remove more noise, fill larger holes, and, more importantly,
careful knead the objects into cleaner, more ovular shapes. This
approach drastically reduces noise, and improves object detection.

The SWND is usually run three times with quadrupling
sector size to get a proper detect. SWND is used for all data

IS&T International Symposium on Electronic Imaging 2017
Intelligent Robotics and Industrial Applications using Computer Vision 2017 69

sources, and is one of the primary innovations in the Computer
Vision Phase as it allows for all sensor values to be carefully
analyzed, and equalized as they all pass through the same
processer. Equalization is critical as a single car must keep a
similar detect through its path to ensure that all deviations are
caused by motion, not by inaccurate detects. SWND is optimized
to move through the image in the most efficient path as possible,
and does the minimum movement. SWND also attempts to scrub
temporary variables as quickly as possible to reduce RAM usage.
As SWND is imperative for a detect to be considered finished, it
does not open a new thread, and instead is launched from each
thread running computer vision.
Step 2: Canny Contour Detector

The next step in the process is to take the raw binary images

and determine the center point of all of the cars. To detect the
individual cars as discrete objects, the Canny contour detector is
used to identify just the outlines. A raw threshold is then used to
remove objects too small to be a car. Objects that are on the
outsides, where a complete detect is not yet possible, are thrown
out. This is to ensure that all of the anomaly detection happens
after a proper solid detect is acquired.

After the canny contours are detected, the center points of the
contours are saved into a global vector of points. This method
allows every car detected, through each of the different Computer
Vision methods, to be saved in one vector.

Phase 2: Tracking Machine Learning
Stage 1: Process Coordinates
Step 1: Average Detected Points

After all of the different Computer Vision methods run, a

method to cluster the points was devised. K-Means is the optimal

method, but it requires that one knows the number of cars before
running the clustering algorithm.

The averaging system works by identifying all the points
close to each other, and then averaging them and finding the
center point of the cars. The distance threshold is set so that it is
large enough to detect all points that are within a car, but small
enough to not detect two adjacent cars. The final detected points
are then saved into the same vector of detected points.
Step 2: Learning Area Sector Model (LASM)

One of the central qualities of TCD3 is the ability to be able
to adapt and work in a diverse array of highway situations. One of
the models used is an area sector model, where an image is
divided up into sectors of 7 pixels by the size of one lane’s width.

This requires the number of lanes to be entered into the

system. A grid is created where a car is classified into the lane that
it is traveling in, and then every general area, 7 pixels across, to
have an updated model of where most cars are when they travel
through each sector. This allows the model to continuously update
and become more accurate the longer it is used. This model is
generated so that thresholds can be applied to determine if a car is
outside of the safe range. This model is useful so that scenes with
multiple different roads and different directions and speeds will be
able to intelligently apply correct models to appropriate cars.

LASM will eventually be modified to include angular and
movement data, in addition to position data, for each of the
individual sectors. The LASM is useful as it is an infrastructure
that is able to utilize any metric and save it into sectors. LASM,
and LASM Enforcement, are designed to use raw thresholds, as
well as learned models. LASM & LASME are generated using a
vector of positions that is entered by the user, which shows the
boundaries between each lane, and run on the main thread.
Step 3: Matching Coordinates

70
IS&T International Symposium on Electronic Imaging 2017

Intelligent Robotics and Industrial Applications using Computer Vision 2017

The next step, prior to running deeper analysis, is to
determine the x and y displacement for each car. This is done by
saving all of the coordinates of the cars into a vector of vectors of
coordinates, and the comparing the current frame of detects to the
previous frame of detects. A matching algorithm was created to
allow cars to be tracked frame over frame, and from this, the x and
y displacement of each car was extrapolated.

Stage 2: Movement Property Detection
Step 1: Learning X and Y Normal

The first machine-learning algorithm that is run is a simple

averaging system that accumulates the x & y movements for every
car, and then average by the number of detects, thereby building
an accurate model of the movement. The x & y movements are
useful as they can be used to identify excessive movement, as well
as changes in acceleration, which is a main sign of drunk or
distracted driving. The movement property calculations are all
calculated on the main thread, after Computer Vision.
Step 2: Learning Angular Movement

The second machine-learning algorithm is to determine the
normal range of angular movement that cars exhibit. The angular
movement is calculated by computing the inverse tangent of the x
and y movement. The angular movement is an excellent indicator
to identify anomalous behavior as it gives a clear indication of the
direction of acceleration, and shows if someone is swerving. The
angular movement is learned so that the limit of normal movement
can be learned. It is from this metric that the threshold value for
anomalous behavior can be calculated.
Step 3: Learning Speed

The next step, designed to also perform the job of speed
cameras, is to use the Pythagorean Theorem to calculate total
movement in each frame. The normal displacement, as it is
calculated frame over frame, yields the speed.

Stage 3: Detecting Anomalies
Step 1: Hard Threshold Detection

One method to detect anomalies is to use hard thresholds for
each of the different properties. The hard threshold method is used
to catch anomalous cars even if the learning stage has not created
a reliable model of drivers yet.

The first hard threshold that is set is for the individual x and y
displacement. This is useful to find users making quick swerve
movements. The thresholds are calibrated based on the situation,
and are applied to all of the different paths. The x and y
displacement is calculated with an absolute value, so that it works
for both direction of lanes. In some situations, taking the inverse
of the x and y displacement is useful for some situations that have
roads going in different directions. The issue with the hard
thresholds, and the reason that the learning system is given a
higher weight during actual run, is that it is difficult to craft
thresholds that work for each of the different lanes and parts of the
road. This is one of the primary reasons that LASM is used.

Step 2: Learned Model Detection

The primary method that TCD3 uses to detect anomalies is by

comparing active movement with the learned model. For each of
the metrics, a proportional, as well as absolute distance based
method is used to recognize anomalies. For the proportional
system, if the anomaly exceeds a 25% safety zone, for any of the
metrics, then it is considered anomalous. However, in some cases,
the safety zone may be edited to tune TCD3’s sensitivity.

Any time an anomaly is detected, it is written to a frame of
anomalies. This frame of anomalies is cleared after a set time, the
time it takes for a car to go across the frame, after the first
anomaly is detected. If more than one anomaly is detected in the
same frame, a separate frame of anomalies is opened and saved to.
The confidence of an anomaly detect can also be ascertained by
counting the number of movement properties that exceed limits,
the amount of time that the cars are anomalous, as well as the
amplitude with which the car exceed safe limits.

If these frames have more than the required number of
anomaly detects, usually at least 10, corresponding to 2/3 of
second of anomalous behavior, at 15 FPS, the corresponding video
is tagged as anomalous. This method ensures that one time detects,
or small movements are not considered anomalous, and a long
registered set of anomalies across the life cycle of a cars
movement across the frame is detected. This method ensures that
small variances are not caught, and only large deviations are
caught that occur over an extended period of time. This is critical
in removing false positives, and removing instances where the
system incorrectly identifies one or two movements as anomalous.

A long series of anomaly detects therefore shows, with high
probability that the driver is indeed anomalous. This system runs
on the main thread, and is the final step in the process.

Phase 3: Processing Enhancements
Stage 1: Multi-Threading

One of the main methods used to optimize TCD3 was to
multi-thread the system to spread processing load across multiple
cores. The pthread library is used to open threads, check
successful thread completion, and close threads after the task
finished. For each of the major tasks listed above, a new thread is
opened and global variables are used to pass data into the threads.
All threads poll the same global vector that contains the frames.

The paradigm for processing and controlling the multiple
threads is to utilize thread handlers that each handle a set of
threads and report completion back to the main thread. Each of the
major steps has a thread handler that launches all necessary
threads to finish a step.

A more abstract thread handler then waits for its child threads
to finish, before terminating completion and reporting back to the
main thread, where a while loop executes until all major Computer
Vision steps are complete. This system is designed specifically for
scalability and to be able to add more steps to the system without
increasing compute time. This system of abstraction also makes it

IS&T International Symposium on Electronic Imaging 2017
Intelligent Robotics and Industrial Applications using Computer Vision 2017 71

easier for more methods to be added, allowing the system to be
continually updated, and work with the existing infrastructure.

Stage 2: Saving Models
Efforts were also made to lower compute time by reducing

the amount of things that needed to be calculated every frame, and
therefore allow the system to work faster. Some of the models,
such as the BMM, can be saved and read during run time to avoid
recalculation. This is part of the primary processing paradigm of
TCD3 all steps should be executed in series if and only if there is
no way to perform the steps in parallel. This paradigm has allowed
the system to be optimized as much as possible, and will allow
more powerful hardware to significantly decrease compute time.

Phase 4: Conclusions
Stage 1: Testing

One of the challenges to creating a system such as TCD3 is
that there is a lack of footage to test and see if the system is able to
detect drunk or distracted drivers. To rectify this, it was decided
that drunk or distracted driving footage would be artificially
generated. To do this, iMovie was used to edit in cars with tracks
that emulated drunk drivers. Using the path-editing tool, a car was
edited in to show it swerving through the frame, as well as
speeding through the frame. After creating multiple videos, they
were run through the system to ensure that TCD3 would be able to
detect a variety of anomalous movements accurately. 36 different
anomalous car paths were created, of which 34 were accurately
flagged by the system, with an additional 4 false positives.
Therefore, 30/36 tests showcased accurate results, with an
accuracy rate of 83.33%.

Of all of the different anomaly detectors, the angle detector
was the most accurate of the anomaly detector, as it had the ability
to identify even small motions as they lead up to a large

anomalous motion as it could identify a car moving toward the
edge.

The system was also tested by running footage of cars
changing lanes, and making small anomalous movements. This
was designed to ensure that TCD3 was smart enough to avoid false
positives. This system of creating test footage to ensure that the
different parts of TCD3 all work effectively is critical to ensuring
that it is ready to work in reality.

Stage 2: Future Work
The future of this project is very bright as there is a strong

foundation currently implemented and tested. The future work
focuses on facilitating faster processing by allowing for memory
to be parallelized, including implementing a Spark based system.
In addition, further traffic camera footage will be pursued, from a
diverse set of environments, to ensure that the system retains
accuracy beyond the initial test footage that was used.

Stage 3: Impact
This project will have a massive impact on the way that we

deal with drunk and distracted driving, as it will finally allow us to
move our enforcement of DUI laws into the 21st century. The
solution that was designed is crafted for scalability, and will
therefore make it possible for use in a variety of cities of different
sizes. The system utilizes many algorithms designed to maximize
efficiency to increase accuracy. By having a system that is able to
utilize the current resources and leverage current technology to
help law enforcement, we have eliminated the need to consistently
use human resources to monitor roads. The system is also
intrinsically private, as the license plates of cars are only recorded,
and the data is only given to humans when a car’s path is flagged
as exhibiting anomalous behavior. In conclusion, the technical
advancements that we have made throughout this project have
allowed for a system that is able to efficiently deal with the
pressing issue of distracted and drunk drivers.

References

[1] CDC. (n.d.). Impaired Driving: Get the Facts. Retrieved from Centers
for Disease Control and Prevention:
http://www.cdc.gov/Motorvehiclesafety/impaired_driving/impaired-
drv_factsheet.html

[2] Droogenbroeck, Marc Van. "ViBe: A Disruptive Method for

Background Subtraction - Van Droogenbroeck Marc." ViBe: A
Disruptive Method for Background Subtraction - Van Droogenbroeck
Marc. ViBe, n.d. Web. (n.d)

[3] Foschi, Patricia G. "Feature Extraction for Content-Based Image

Retrieval." (n.d.): n. pag. Feature Extraction for Image Mining. San
Francisco State University. Web

[4] Kokash, N. An Introduction to Heuristic Algorithms. PSU.

[5] Jain. "Edge Detection." (n.d.): n. pag. Edge Detection. University of

Nevada Reno. Web.

[6] Morphology Fundamentals: Dilation and Erosion. Mathworks.

[7] Reynolds, Douglas. "Gaussian Mixture Models." (n.d.): n. pag. Print.

[8] Shi, Jianbo, and Carlo Tomasi. "Good Features to Track." Good

Features to Track (1994): n. pag. Web.

[9] Shrivakshan, G. T. "A Comparison of Various Edge Detection

Techniques Used in Image Processing."International Journal of
Computer Science Issues 1st ser. 9.5 (2012): 269-76. A Comparison of
Various Edge Detection Techniques Used in Image Processing.
International Journal of Computer Science Issues, 1 Sept. 2012. Web.

[10] Sun, Min, and Srdjan Krstic. Computer VisionToday's Outline (n.d.):

n. pag. Optical Flow. Princeton. Web.

Author Biography
Vidur Prasad is a student at the University of Michigan pursuing a dual
major in Computer Science and Economics. He has worked at the
University of Dayton Research Institute and at Aptima, Inc. on a variety of
Computer Vision and Machine Learning applications. He has presented his
work at the Intel International Science and Engineering Fair. Moving
forward, he would like to continue his work in data analytics through a
career in Management Consulting.

72
IS&T International Symposium on Electronic Imaging 2017

Intelligent Robotics and Industrial Applications using Computer Vision 2017

