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Abstract 
The goal of the TCD3 project is to identify anomalous and 

dangerous driving patterns from traffic camera feeds. Successful 
execution can improve road safety by assisting law enforcement 
catch dangerous drivers, who text while driving or drink and 
drive. TCD3—in real time—uses Computer Vision to detect cars 
on the road, utilizes Machine Learning algorithms to identify cars 
exhibiting dangerous behaviors, and then notifies law enforcement 
of suspicious vehicles. The project overcomes several technical 
challenges such as detecting vehicles under different lighting 
conditions, tracking vehicles in different frames, and 
distinguishing random variations in a vehicle’s path due to 
normal driving from anomalous variations due to distracted 
driving. TCD3’s C++ script runs on a server and receives live 
streaming traffic camera feed. A heuristic Computer Vision 
algorithm utilizes optical flow analysis, background subtraction, 
and feature extraction algorithms to reliably determine vehicle 
positions. A proprietary recursive matrix density-based method 
was created to clean sensor feeds, sizably improving detection 
accuracy, and greatly improving on current morphological 
methods. Image registration allows a vehicle’s path to be analyzed 
through multiple frames. A test suite of traffic camera footage was 
used to evaluate vehicle detection. Frames were doctored and 
drunk drivers were simulated to test the Machine Learning system, 
the algorithm was found to have an 83% accuracy. Machine 
Learning was used for historical and active comparative analyses 
of vehicle paths to identify anomaly. The system is contextually 
aware and is robust with respect to normal irregularities in traffic 
patterns such as from red lights. Permission for large scale testing 
of the prototype on actual high fidelity traffic camera footage has 
been requested. Upon detection, the relevant video clip will be 
extracted and sent to law enforcement for further action. To 
increase affordability, processing speed, and scalability, a multi-
node networked Spark-based supercomputing architecture is 
being investigated. TCD3 is multi-threaded for maximum resource 
allocation. The project website is at drunkdriverdetection.com. 

Introduction 
The TCD3 project was conceptualized from the growing need 

to have automated active analyses of drivers on roads to detect 
distracted or drunk drivers. The aim of the project was to use open 
source, low-level languages to be create Computer Vision and 
machine learning algorithms to actively analyze traffic camera 
footage to identify drunk or distracted drivers. This paper will 
outline the different foundational algorithms that were used, the 
reasoning and justification for their selection, there importance, 
and their implementation.  

Drunk and Distracted Driving 
Drunk and distracted driving is a problem that is growing in 

our society, and is a problem that affects us all. The current 
paradigm for solving this pressing problem is fundamentally 
outdated: convince drivers to not drive drunk or distracted, or use 
human resources to identify these drivers. Unfortunately, this 

solution is flawed as it has been concretely proven that drunk and 
distracted driving is not on a decline, even with the advent of 
commercials urging people to drive safely, and with recent law 
enforcement budget cuts, it is becoming more difficult to deploy 
human assets to observe and find these drivers.  

The current push to use technology to solve the problem is 
also flawed for two reasons, one, it requires new hardware and 
investments to pay for it, and two, many of these methods call for 
drivers to manually opt-in to self-monitor, which is not a 
permanent nor a viable solution.  

There are over 600,000 distracted drivers on the road on any 
daylight hour in the United States. There are also over, on average, 
300,000 injuries and deaths resulting from just drunk driving 
every year.  

After analyzing this problem, it is clear that the only long-
term, and financially, as well as technically, feasible solution is to 
use existing technology and have a pervasive and active 
monitoring system.  

Technical Goal 
The goal of this project is to create a hardware and software 

package that is able to take in live streams of traffic camera 
footage and process these streams to determine the position of the 
cars in the feed. The cars’ positions are then intelligently analyzed 
to determine if the cars are exhibiting anomalous behavior 
commonly shown by distracted or drunk drivers. If a car is flagged 
as being suspected of being driven by a drunk or distracted driver, 
then the clip of video containing the car, and its license plate, is 
sent to law enforcement for final validation, and for further 
investigation. 

This system will help law enforcement target its efforts by 
leveraging the current visual sensing infrastructure to identify 
suspicious drivers.   

Previous Work 
TCD3 was initially created using Octave, a language based 

on MATLAB, by Mathworks, and used simple blob analysis and 
manual background subtraction to identify cars. Morphological 
operators were used to refine detects, and the grassfire algorithm 
was utilized to identify and register discrete objects. A system to 
record the x and y displacement of the coordinates was created to 
perform rudimentary threshold to determine when the cars were 
moving outside of the normal zone. This work was instrumental in 
understanding the complexity of Computer Vision, and developing 
a paradigm that is used in the current iteration of TCD3.  

Language 
C++, long considered the main language to be used for 

Computer Vision, alongside Python, was chosen for use for its 
broad support with various Machine Learning and Computer 
Vision APIs, as well as for its low-level access to optimize 
systems. TCD3 is written in C++ as OpenCV, the primary library 
used, is natively written in C++, and other versions, such as 
Python, operate with wrappers. C++ offered some obstacles in 
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regards to memory leaks when working with larges sets of frames, 
but efficient use of pointers and careful memory checking was 
able to reduce RAM usage to approximately 2 GB. 

OpenCV is a library that contains more than 2500 algorithms 
for use in Computer Vision and Machine learning. OpenCV 
provides a Matrix data structure that has broad support across 
multiple other libraries, such as BGSLibrary. OpenCV, as it is 
completely implemented in C++, allows all of its algorithms to be 
edited and tweaked for the specific use case.  

Phase 1: Computer Vision 
Stage 1: Generate Background Model 
Step 1: Reading Images 

 
TCD3 reads video files, of standard MP4 or MOV type, and 

converts the files into individual frame that are then passed 
through the system to be processed.  

This architecture allows all frames to be stored once, 
reducing RAM load, and allows all frames to be saved only once, 
reducing IO usage. Client methods can additionally clone data 
from global vector if analysis will edit actual frames. On startup, a 
buffer of frames are loaded into the vector, usually around 100, 
and the architecture is in place to allow methods to access the 
buffer as it is being built to begin initializing their systems.  

The buffer is also created to ensure that no systems ever 
cause an out of bounds error, as there is sufficient memory. The 
size of the buffer controls multiple events as it effects the time it 
takes to train, and effects the timing of initialization as many steps 
must be completed in sequence, as they cannot be done in parallel, 
and proper relational timing is kept to ensure that no matter the 
size of the buffer memory, there are no runtime errors. The size of 
the buffer, also, as expected, affects the quality of the Background 
Detection, as many operations, such as the median background 
generator, rely on large data sets to reliably estimate and separate 
the background from the foreground objects. An additional vector 
of gray scale frames is also maintained, as certain algorithms do 
not require color. The raw frames that are read and kept for 
conversion are deleted at the end of every cycle, after one frame 
has been processed, and are scrubbed to reduce RAM usage and 
ensure that there are not memory leaks.  
Step 2: Background Model Median 

The first background subtraction method that is used is the 
median model, or BMM. TCD3 can generate BMMs, and can read 
a BMM, stored as an image and containing the median value for 
each pixel, and perform analysis. A BMM is generated by 
stepping through the entire buffer memory and creating a vector of 
integers of every pixel value in history for every specific position, 
and calculating the median value.  

A mean based model was investigated, but an accurate 
reading required a very large buffer memory, and removing 
ghosting is impossible, as variations will constantly affect the 
learned average. Another pro to using a median based model is 

that with advanced sorting methods such as Tim Sort, a median 
calculation is highly efficient. 

The BMM generation runs on its own thread, and has the 
ability to perform simultaneous operations by separate the image 
and process using multiple threads to decrease compute time. As 
the current testing rig has only 8 cores, further branching of 
threads will not increase speed, but it is an option for the future. 
The BMM model is generated every 1.5 minutes to account for 
changing weather conditions, as well as general lighting changes. 
The thread silently works in the background, and does not slow 
runtime as the new model is used only when the BMM is 
successfully generated.  

A sample of a BMM generated model is shown below, at no 
point in the test footage was a picture of the road without cars ever 
shown, proving that the BMM model is able to effectively 
generate a background model. The BMM model shown was 
generated with a buffer memory of 100 frames. The image also 
shows no ghosting, a common result of background models.  

 
All BMM models are generated in gray scale for speed, as a 

RGB model would require 3X time, and as background 
subtraction is more efficient and clean using gray scale images. 
Step 3: Gaussian Model (Kaewtrakulpong & 
Bowden) 

Multiple background subtraction methods exist that use 
techniques such as BMM, however, these methods, especially 
BMM, suffer as a result of lighting changes and are forced to 
recalculate a model periodically to remove these changes.  

The Kaewtrakulpong & Bowden approach is designed to use 
a Gaussian Mixture Model in conjunction with revised model 
update equations to allow for more accurate lighting adjustment, 
as well as to allow for shadow removal in the model. The 
approach, referred to in the OpenCV library as the MOG1 
approach, utilizes this approach to reduce the training time to 
detect the objects. 

TCD3 utilizes MOG1 and trains during run time by feeding 
color images to fill the GMM. This model also uses a kernel 
estimator for each pixel that allows regular movements, such as in 
trees in the image, to be ignored. Other systems utilized by TCD3, 
such as Optical Flow Analysis, are also used to further crosscheck 
the models, and increase overall accuracy. MOG1 runs on its own 
separate thread, and is one of the slowest of the Computer Vision 
algorithms used by TCD3 for real time computation. 
Step 4: Gaussian Model (Zivkovic) 

The second Gaussian approach utilizes recursive equations to 
actively update the parameters of the model, such as the number of 
Gaussian mixture models, and size of the memory for each pixel. 
The Zivkovic approach is referred to as MOG2 in OpenCV. This 
adaptive method offers better response to objects such as wildlife 
or shadows that normally mess up other subtraction methods.  

The primary purpose of running both the Kaewtrakulpong & 
Bowden and the Zivkovic approach was to adapt the model to the 
conditions, allowing for a system that is able to update and reflect 
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the scene as accurately as possible. Running both models also 
allows multiple guesses to be made, which increases accuracy.  

This model furthers the paradigm that the system should be 
able to adapt to any situation with minimal initial input, as it is 
able to adapt to lighting and weather changes without requiring 
outside sensor input, and increase the chance of a successful 
detect. MOG2 runs on its own separate thread, and is one of the 
fastest methods for real time computation. 
Step 5: Gaussian Mixture Model (GMM) 

TCD3 also uses a traditional GMM model, using three 
mixtures, to adjust and deal with changes in the lighting 
conditions. The traditional GMM model does not work as well as 
MOG1 or MOG2 as it is not able to adapt to changing conditions 
as well, and is also not able to intelligently develop a GMM.  

After multiple tests, it was determined that using a three 
mixture model gave the most accurate detect, but due to the 
variance in the number of mixtures actually found in the sensor 
data, the traditional GMM model has many false-positives. To 
help reverse this, the buffer memory for the GMM is tripled. 

Of the detection methods, the traditional GMM is weighted 
the lowest in the final confidence detector, and future versions will 
quite likely stop using the traditional GMM and rely solely on 
MOG1 and MOG2 for a GMM based background mode. 
Step 6: Background Model ViBe 

ViBe is a commercial background subtraction algorithm 
designed to perform analysis over multiple frames to create a 
background model. ViBe works by analyzing the values of a pixel 
over a period and then calculating the probability density function. 
This method cause ViBe to require a long training time, about 
seven times the buffer memory, to get a proper understanding of 
the background model. Through its use of advanced statistical 
analysis of pixel histories, ViBe creates a highly accurate model of 
the background. Given enough time, ViBe returns a model of the 
cars better than both MOG1 & MOG2. TCD3 runs ViBe even 
after real-time analysis begins, and continues training ViBe after 
an appropriate training period, about seven times the buffer 
memory. 

Stage 2: Detect Cars 
Step 1: Background Subtraction 

The next step in TCD3 is to use the generated background 
models to perform subtraction with the current frame to determine 
the difference, or objects in the frame.  

Background subtraction starts with the Median background 
frame, which is subtracted from the raw gray scale frame. This 
returns a Matrix where the amplitude of the difference correlates 
with the actual difference, allowing for thresholds to be applied. 
After subtraction, a binary image is generated with every value 
above 50, eliminating small differences due to shadows, saved as 
one. Using a binary image also greatly decreases compute time. 
The various models also generate binary masks that show the 
difference, calculated through various methods, to identify objects.  
Step 2: Optical Flow Analysis Detection 
 

 

During the planning stages of TCD3, research work was 
conducted to gain an understanding how humans understand 
images. One of the main things that was gleaned from this 
research was that humans use a multi-faceted approach, using 
different “Computer Vision” like methods to create a composite 
model, from which a final decision to recognize an object is done. 

To emulate this method, TCD3 utilizes multiple background 
subtraction methods to understand an image. However, to add 
redundancy, an Optical Flow based method was created to detect 
objects. The Farneback Dense Optical Flow model was used to 
generate a model, for each pixel, that showed its movement frame 
over frame. Using this Optical Flow model, a threshold is run to 
detect every pixel that has movement. From this, the Sliding 
Window Neighbor Detector is used to clean the image, and 
develop a complete model of all large motion in the image.  This 
is an effective method as all the cars, no matter how optically 
complex and similar to the background, can be caught through 
motion. The Farneback Optical Flow algorithm creates an image 
of motion vectors, from which a heat map of motion is generated.  

Stage 3: Clean Data 
Step 1: Sliding Window Neighbor Detector 

 
Various morphological approaches were tried to attempt to 

repair holes and other issues with the results of background 
subtraction, but required too much compute time, as well as did 
not do a good job. One of the biggest issues was that running 
repeated morphological operators degraded the quality of the 
detect by causing multiple cars close together to morph into one, 
as well as were not adequate at removing noise.  

To address this problem, a custom recursive algorithm was 
created to read in raw background subtracted day and perform 
image cleaning in a manner reminiscent of morphological 
operators. The Sliding Window Neighbor Detector, or SWND, is 
designed to determine a pixels value based on the density of its 
neighbors, and therefore fill holes and remove noise, while 
retaining the quality of an outline of a well define object. The 
algorithm works by sliding through each pixel while observing the 
area around the pixel to determine if the pixel is part of well-
defined object. 

A pixel will be determined as existing if over 25% of its 
neighbors exist. This ensures that holes inside of images will be 
filled, as they will have non-adjacent relatively close neighbors 
that cause the SWND to detect a pixel. SWND is also able to 
remove noise, as it is able to identify a pixel as being a loner as its 
neighborhood does not contain many other pixels.  

The property of SWND that makes it powerful, and quite 
accurate, is its ability to work recursively by starting with 
relatively small sectors to larger and larger sectors that carefully 
remove more noise, fill larger holes, and, more importantly, 
careful knead the objects into cleaner, more ovular shapes. This 
approach drastically reduces noise, and improves object detection.  

The SWND is usually run three times with quadrupling 
sector size to get a proper detect. SWND is used for all data 
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sources, and is one of the primary innovations in the Computer 
Vision Phase as it allows for all sensor values to be carefully 
analyzed, and equalized as they all pass through the same 
processer. Equalization is critical as a single car must keep a 
similar detect through its path to ensure that all deviations are 
caused by motion, not by inaccurate detects. SWND is optimized 
to move through the image in the most efficient path as possible, 
and does the minimum movement. SWND also attempts to scrub 
temporary variables as quickly as possible to reduce RAM usage. 
As SWND is imperative for a detect to be considered finished, it 
does not open a new thread, and instead is launched from each 
thread running computer vision. 
Step 2: Canny Contour Detector 

 
The next step in the process is to take the raw binary images 

and determine the center point of all of the cars. To detect the 
individual cars as discrete objects, the Canny contour detector is 
used to identify just the outlines. A raw threshold is then used to 
remove objects too small to be a car. Objects that are on the 
outsides, where a complete detect is not yet possible, are thrown 
out. This is to ensure that all of the anomaly detection happens 
after a proper solid detect is acquired. 

After the canny contours are detected, the center points of the 
contours are saved into a global vector of points. This method 
allows every car detected, through each of the different Computer 
Vision methods, to be saved in one vector. 

Phase 2: Tracking Machine Learning  
Stage 1: Process Coordinates 
Step 1: Average Detected Points 

 
After all of the different Computer Vision methods run, a 

method to cluster the points was devised. K-Means is the optimal 

method, but it requires that one knows the number of cars before 
running the clustering algorithm.  

The averaging system works by identifying all the points 
close to each other, and then averaging them and finding the 
center point of the cars. The distance threshold is set so that it is 
large enough to detect all points that are within a car, but small 
enough to not detect two adjacent cars. The final detected points 
are then saved into the same vector of detected points.  
Step 2: Learning Area Sector Model (LASM)  

One of the central qualities of TCD3 is the ability to be able 
to adapt and work in a diverse array of highway situations. One of 
the models used is an area sector model, where an image is 
divided up into sectors of 7 pixels by the size of one lane’s width.  

         
This requires the number of lanes to be entered into the 

system. A grid is created where a car is classified into the lane that 
it is traveling in, and then every general area, 7 pixels across, to 
have an updated model of where most cars are when they travel 
through each sector. This allows the model to continuously update 
and become more accurate the longer it is used. This model is 
generated so that thresholds can be applied to determine if a car is 
outside of the safe range. This model is useful so that scenes with 
multiple different roads and different directions and speeds will be 
able to intelligently apply correct models to appropriate cars. 

LASM will eventually be modified to include angular and 
movement data, in addition to position data, for each of the 
individual sectors. The LASM is useful as it is an infrastructure 
that is able to utilize any metric and save it into sectors. LASM, 
and LASM Enforcement, are designed to use raw thresholds, as 
well as learned models. LASM & LASME are generated using a 
vector of positions that is entered by the user, which shows the 
boundaries between each lane, and run on the main thread. 
Step 3: Matching Coordinates  
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The next step, prior to running deeper analysis, is to 
determine the x and y displacement for each car. This is done by 
saving all of the coordinates of the cars into a vector of vectors of 
coordinates, and the comparing the current frame of detects to the 
previous frame of detects. A matching algorithm was created to 
allow cars to be tracked frame over frame, and from this, the x and 
y displacement of each car was extrapolated. 

Stage 2: Movement Property Detection 
Step 1: Learning X and Y Normal 

 
The first machine-learning algorithm that is run is a simple 

averaging system that accumulates the x & y movements for every 
car, and then average by the number of detects, thereby building 
an accurate model of the movement. The x & y movements are 
useful as they can be used to identify excessive movement, as well 
as changes in acceleration, which is a main sign of drunk or 
distracted driving. The movement property calculations are all 
calculated on the main thread, after Computer Vision. 
Step 2: Learning Angular Movement 

The second machine-learning algorithm is to determine the 
normal range of angular movement that cars exhibit. The angular 
movement is calculated by computing the inverse tangent of the x 
and y movement. The angular movement is an excellent indicator 
to identify anomalous behavior as it gives a clear indication of the 
direction of acceleration, and shows if someone is swerving. The 
angular movement is learned so that the limit of normal movement 
can be learned. It is from this metric that the threshold value for 
anomalous behavior can be calculated.  
Step 3: Learning Speed 

The next step, designed to also perform the job of speed 
cameras, is to use the Pythagorean Theorem to calculate total 
movement in each frame. The normal displacement, as it is 
calculated frame over frame, yields the speed.  

Stage 3: Detecting Anomalies 
Step 1: Hard Threshold Detection 

One method to detect anomalies is to use hard thresholds for 
each of the different properties. The hard threshold method is used 
to catch anomalous cars even if the learning stage has not created 
a reliable model of drivers yet.  

The first hard threshold that is set is for the individual x and y 
displacement. This is useful to find users making quick swerve 
movements. The thresholds are calibrated based on the situation, 
and are applied to all of the different paths. The x and y 
displacement is calculated with an absolute value, so that it works 
for both direction of lanes. In some situations, taking the inverse 
of the x and y displacement is useful for some situations that have 
roads going in different directions. The issue with the hard 
thresholds, and the reason that the learning system is given a 
higher weight during actual run, is that it is difficult to craft 
thresholds that work for each of the different lanes and parts of the 
road. This is one of the primary reasons that LASM is used.  

Step 2: Learned Model Detection 

 
The primary method that TCD3 uses to detect anomalies is by 

comparing active movement with the learned model. For each of 
the metrics, a proportional, as well as absolute distance based 
method is used to recognize anomalies. For the proportional 
system, if the anomaly exceeds a 25% safety zone, for any of the 
metrics, then it is considered anomalous. However, in some cases, 
the safety zone may be edited to tune TCD3’s sensitivity. 

Any time an anomaly is detected, it is written to a frame of 
anomalies. This frame of anomalies is cleared after a set time, the 
time it takes for a car to go across the frame, after the first 
anomaly is detected. If more than one anomaly is detected in the 
same frame, a separate frame of anomalies is opened and saved to. 
The confidence of an anomaly detect can also be ascertained by 
counting the number of movement properties that exceed limits, 
the amount of time that the cars are anomalous, as well as the 
amplitude with which the car exceed safe limits.  

If these frames have more than the required number of 
anomaly detects, usually at least 10, corresponding to 2/3 of 
second of anomalous behavior, at 15 FPS, the corresponding video 
is tagged as anomalous. This method ensures that one time detects, 
or small movements are not considered anomalous, and a long 
registered set of anomalies across the life cycle of a cars 
movement across the frame is detected. This method ensures that 
small variances are not caught, and only large deviations are 
caught that occur over an extended period of time. This is critical 
in removing false positives, and removing instances where the 
system incorrectly identifies one or two movements as anomalous.  

A long series of anomaly detects therefore shows, with high 
probability that the driver is indeed anomalous. This system runs 
on the main thread, and is the final step in the process.  

Phase 3: Processing Enhancements  
Stage 1: Multi-Threading 

One of the main methods used to optimize TCD3 was to 
multi-thread the system to spread processing load across multiple 
cores. The pthread library is used to open threads, check 
successful thread completion, and close threads after the task 
finished. For each of the major tasks listed above, a new thread is 
opened and global variables are used to pass data into the threads. 
All threads poll the same global vector that contains the frames.  

The paradigm for processing and controlling the multiple 
threads is to utilize thread handlers that each handle a set of 
threads and report completion back to the main thread. Each of the 
major steps has a thread handler that launches all necessary 
threads to finish a step.   

A more abstract thread handler then waits for its child threads 
to finish, before terminating completion and reporting back to the 
main thread, where a while loop executes until all major Computer 
Vision steps are complete. This system is designed specifically for 
scalability and to be able to add more steps to the system without 
increasing compute time. This system of abstraction also makes it 
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easier for more methods to be added, allowing the system to be 
continually updated, and work with the existing infrastructure.  

Stage 2: Saving Models 
Efforts were also made to lower compute time by reducing 

the amount of things that needed to be calculated every frame, and 
therefore allow the system to work faster. Some of the models, 
such as the BMM, can be saved and read during run time to avoid 
recalculation. This is part of the primary processing paradigm of 
TCD3 all steps should be executed in series if and only if there is 
no way to perform the steps in parallel. This paradigm has allowed 
the system to be optimized as much as possible, and will allow 
more powerful hardware to significantly decrease compute time. 

Phase 4: Conclusions  
Stage 1: Testing 

One of the challenges to creating a system such as TCD3 is 
that there is a lack of footage to test and see if the system is able to 
detect drunk or distracted drivers. To rectify this, it was decided 
that drunk or distracted driving footage would be artificially 
generated. To do this, iMovie was used to edit in cars with tracks 
that emulated drunk drivers. Using the path-editing tool, a car was 
edited in to show it swerving through the frame, as well as 
speeding through the frame. After creating multiple videos, they 
were run through the system to ensure that TCD3 would be able to 
detect a variety of anomalous movements accurately. 36 different 
anomalous car paths were created, of which 34 were accurately 
flagged by the system, with an additional 4 false positives. 
Therefore, 30/36 tests showcased accurate results, with an 
accuracy rate of 83.33%. 

Of all of the different anomaly detectors, the angle detector 
was the most accurate of the anomaly detector, as it had the ability 
to identify even small motions as they lead up to a large 

anomalous motion as it could identify a car moving toward the 
edge.  

The system was also tested by running footage of cars 
changing lanes, and making small anomalous movements. This 
was designed to ensure that TCD3 was smart enough to avoid false 
positives. This system of creating test footage to ensure that the 
different parts of TCD3 all work effectively is critical to ensuring 
that it is ready to work in reality. 

Stage 2: Future Work 
The future of this project is very bright as there is a strong 

foundation currently implemented and tested. The future work 
focuses on facilitating faster processing by allowing for memory 
to be parallelized, including implementing a Spark based system. 
In addition, further traffic camera footage will be pursued, from a 
diverse set of environments, to ensure that the system retains 
accuracy beyond the initial test footage that was used. 

Stage 3: Impact 
This project will have a massive impact on the way that we 

deal with drunk and distracted driving, as it will finally allow us to 
move our enforcement of DUI laws into the 21st century. The 
solution that was designed is crafted for scalability, and will 
therefore make it possible for use in a variety of cities of different 
sizes. The system utilizes many algorithms designed to maximize 
efficiency to increase accuracy. By having a system that is able to 
utilize the current resources and leverage current technology to 
help law enforcement, we have eliminated the need to consistently 
use human resources to monitor roads. The system is also 
intrinsically private, as the license plates of cars are only recorded, 
and the data is only given to humans when a car’s path is flagged 
as exhibiting anomalous behavior. In conclusion, the technical 
advancements that we have made throughout this project have 
allowed for a system that is able to efficiently deal with the 
pressing issue of distracted and drunk drivers.
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