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Abstract
This paper presents an accurate and robust surgical in-

strument recognition algorithm to be used as part of a Robotic
Scrub Nurse (RSN). Surgical instruments are often cluttered, oc-
cluded and displaying specular light, which cause a challenge for
conventional vision algorithms. A learning-through-interaction
paradigm was proposed to tackle this challenge. The approach
combines computer vision with robot manipulation to achieve ac-
tive recognition. The unknown instrument is firstly segmented out
as blobs and its poses estimated, then the RSN system picks it up
and presents it to an optical sensor in an established pose. Lastly
the unknown instrument is recognized with high confidence. Ex-
periments were conducted to evaluate the performance of the pro-
posed segmentation and recognition algorithms, respectively. It is
found out that the proposed patch-based segmentation algorithm
and the instrument recognition algorithm greatly outperform their
benchmark comparisons. Such results indicate the applicability
and effectiveness of our RSN system in performing accurate and
robust surgical instrument recognition.

Introduction
US hospitals are facing critical problems of nurse shortage.

One report predicts that there will be a shortage of 260,000 reg-
istered nurses by 2025 in the USA [1]. This could lead to an
increment in mortality. It was found that patient mortality risk is
6% higher in hospitals understaffed with nurses compared to units
fully staffed [2]. One solution to such nurse shortage problem is
to create robotic solutions which can take over the highly mechan-
ical, mundane and repetitive tasks from the nurses, so as to allow
them to focus on more complicated tasks. Out of all the tasks that
the nurses are responsible for, the surgical instrument preparation
and delivery task is one of the most important and dominant cases,
which the proposed RSN system is aiming to take over.

To build a functioning RSN system, accurate instrument
recognition is a critical component. Although humans can deal
with this challenge using both vision and tactile information,
robots are not capable to achieve comparable level of perfor-
mances currently. The reason for this is that surgical instruments
are often clustered together on the mayo stand and have a reflec-
tive and uniform appearance in both shapes and colors, as shown
in Figure 1. Such characteristics bring challenges to conventional
object recognition algorithms, since the object-of-interest does
not obtain distinctive visual features. Moreover, holistic images
are not easy to be taken due to heavy occlusion. To enable a RSN
system to serve surgeons effectively in the Operating Room (OR),
it is critical for the robot to recognize the instrument accurately,
localize them precisely and manipulate them robustly. The aim of
this paper is to propose one such system which meets the afore-
mentioned requirements.

Figure 1. A realistic mayo tray configuration

Related work
Robotic systems have been brought into the OR in mainly

three different forms [3], 1) handheld robotic tools; 2) teleoper-
ated surgical systems and 3) autonomous surgical assistants. The
first two cases focus on designing robots to increase surgeons sen-
sorimotor capabilities. Such systems include the minimally inva-
sive telesurgery system da Vinci, the steady-hand robotic system
for microsurgical augmentation [4] and the touch-less telesurgery
systems [5]. The third category focuses on robots which assist
surgeons and nurses without directly touching the patient. One
specific type of robot surgical assistant is the Robotic Scrub Nurse
(RSN) system, which is the focus of this work. Many previous ef-
forts in building the RSN have been spent on the human robot
interaction part, where gestures [6, 7], speech [8], haptics [9] and
EEG/EMG sensors [10] were used to enable communications be-
tween surgeons and RSN systems. However, there is a lack of
treatment to the problem of instrument recognition and manipu-
lation in realistic/uncontrolled settings. One way to tackle this
challenge has been to develop specially-designed mayo platforms
to ease the process of detecting non-overlapping instruments [11].
In another case, the instrument locations were fixed and stored
ahead of time and their categories recognized through infrared la-
bels [9]. Post-attached barcode was also used to detect and locate
surgical instruments [12]. This paper tries to bridge the gap of rec-
ognizing surgical instruments in an uncontrolled surgical setting
without the usage of any additional aids.

The proposed recognition algorithm is based on a hybrid pro-
cess of instrument segmentation, reactive grasping and finally in-
strument recognition. These problems are at the core of this paper
and the relevant literature are discussed in the following.
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Figure 2. Illustration of the system. The highlighted regions are mayo tray

(green), recognition pad (brown), Kinect (yellow) and robotic arm (red).

Traditional segmentation algorithms rely on intensity thresh-
olding [13], edge detection [14] and region splitting [15]. Seg-
mentation results show a split of the entire image into multiple
unidentified sub-regions, nevertheless, the identity of the sub-
regions was missing. Segmentation and recognition were per-
formed at the same time using Convolutional Neural Network
(CNN) [16, 17], however, significant memory and hardware re-
quirement were necessary. In this paper, the proposed patch-
based segmentation algorithm solves segmentation and recogni-
tion problem at the same time, while not requiring ambitious hard-
ware.

For instrument recognition, an interactive object recognition
strategy was used [18]. In this scheme, the object-of-interest was
grasped, manipulated and observed actively by a robot to deter-
mine its identity [19]. Such procedure mimics the process of hu-
man learning, where the interaction with the environment plays
an important role in skill development [20]. Such approach re-
quires the robot to be capable of grasping objects without prior
knowledge of the environment nor the objects, which is challeng-
ing on its own. Most commonly, robot grasping protocols rely
on properties of the target objects, such as their full 3D models
[21], depth information [22] or physical properties [23]. Reactive
grasping algorithms were proposed to compensate for the loss of
full object model, using tactile feedback [24] and optical prox-
imity sensors [25]. Our proposed force-based reactive grasping
protocol can enable robots to grasp objects without full models.

This paper makes the following contributions: 1) proposes
an innovative segmentation algorithm based on visual codebook
generation and weighted histogram backprojection; 2) develops
a force-based reactive grasping protocol to enable reliable instru-
ment grasping; 3) outlines a surgical instrument recognition algo-
rithm. All these components, when working together, can achieve
robust and automated surgical instrument recognition in a clut-
tered setting without any additional labels. The design and inte-
gration of these components is key for successful introduction of
RSN to the OR. An illustration of the developed RSN system is
given in Figure 2. Different components are color-coded for better
understanding.

Figure 3. System architecture

Methodology
Recognizing and grasping surgical instruments from mayo

trays in a clinical setting due to two reasons: (a) the instruments
are packed together leading to occlusion, discontinuities and clut-
ter; (b) salient points are difficult to find on metallic instruments
due to their uniform and reflective composition. To tackle this
challenge, we resorted to an active recognition process which in-
volves hybrid manipulation and recognition. The system architec-
ture is shown in Figure 3. First, a codebook of local appearances
is created for segmentation purposes (step 1). In usage, the packs
of instruments are segmented using the generated codebook, and
their poses are estimated for grasping (step 2). Finally, a robotic
arm grasps the surgical instrument and places it over a side tray
where the recognition is performed (step 3). Once the instrument
is recognized, clusters of instruments are assigned a specific label.
The following subsections describe the instrument segmentation,
reactive grasping and recognition algorithms respectively.

Instrument Pack Segmentation
To enable the robot to pick up and manipulate surgical in-

struments, each instrument needs to be localized on the mayo tray
first. The instrument segmentation process consists of: (1) seg-
menting the mayo stand using adaptive threshold; (2) building
color codebooks of distinctive instrument appearances; (3) seg-
menting instrument blobs out based on weighted histogram back-
projection using the color codebook; (4) estimating poses for each
cluster of instruments. Each step is discussed in the following.

Mayo Segmentation
The setup consists of a Kinect sensor placed directly on top

of the mayo stand facing down to capture a complete view of the
region of interest (as shown in Figure 2). A Kinect sensor delivers
a color image IC and depth image ID, which serve as the input to
the mayo and instrument segmentation process.

Otsu’s threshold [13] and contour analysis are used together
to get the mask of the mayo tray (denoted as Mmayo). Otsu’s
threshold was applied on the raw depth image ID to generate a
foreground mask M f g. The rectangularity was then computed for
every contours in M f g. The rectangularity is defined as the ratio
of the width to the height of the rotated bounding box of the con-
tour. A standard mayo stand has a rectangular shape which can be
identified by choosing the contour with the largest rectangularity
among the candidates. This process is depicted in Figure 4.

38
IS&T International Symposium on Electronic Imaging 2017

Intelligent Robotics and Industrial Applications using Computer Vision 2017



Figure 4. Mayo segmentation procedure. (left) raw input depth image ID

from Kinect; (middle) foreground mask M f g generated from Otsu’s threshold;

(right) mayo mask Mmayo generated from contour examination

Codebook Generation
From the mayo stand image, each pile of unknown instru-

ment needs to be segmented and their poses must be determined.
The first step is to segment the foreground (instruments) from the
background (mayo surface). A classification-based segmentation
technique was utilized to accomplish this task. Classification-
based segmentation consists of building a class-specific codebook
of local appearance (both color and texture) and then classifying
each pixel in the image as belonging to one of those classes. Sup-
pose there are R classes in the image, whose labels are denoted
as c1, ,cR. First, a class-specific codebook of local appearances,
denoted as φ r, was built for each object category cr.The codebook
φ r consists of K characteristic local color models, represented by
color histograms (histr

k), and a corresponding weight factor (wr
k),

as shown below:

φ
r = {φ r

k}= {(w
r
k,histr

k)|k = 1, ...,K} (1)

where wr
k and histr

k represents the kth weight and local color
model for codebook φ r. The histograms histr

k are used later
to generate a back-projected image for segmentation, and the
weights wr

k represent the relative importance of each color model.
To build the codebook, we proposed a variant of the Bag of Visual
Words (BoVW) algorithm [26]. The traditional BoVW method
fails when directly used for instrument recognition, due to the
similarity of the appearances when cluttered together. There-
fore, we adopted an active recognition approach where instrument
packs were segmented using BoVW as whole regions. After that,
the pose for each instrument pack was estimated and a robotic
arm was used to change the instrument pose for maximum visi-
bility for further recognition.

In the codebook generation process, N random patches
Pi(i = 1, ...,N) were extracted from manually segmented image
regions of each category cr, from each training image. Each patch
Pi is associated with local color and depth information and a patch
label θi, all together represented as:

Pi = {θi,{IC, ID}∩W (xi,yi)}, i = 1, ...,N (2)

where i is the index of the patch and θi ∈ {c1, ...,cR} is the
label of the patch. {IC, ID} represents the raw color and depth
image, and W (xi,yi) is a squared window of size w×w centered
at (xi,yi), which is the location of the patch Pi. From each patch
Pi, a stack of color and depth features were extracted, forming a
feature representation Fi for patch Pi. The feature set Fi includes
(with d as dimensions):

• Histogram of grayscale pixel values (d = 16).

Figure 5. Codebook clusters for foreground φ 1
k (cyan) and background φ 0

k

(red). Each codebook entry φ r
k is a pair consisting of its importance (weight

wr
k) and the local color model (histogram histr

k ). The patch with colored border

is the clusters average image.

• Histogram of Hue and Saturation channel pixel values (d =
32).

• Histogram of oriented gradient (HOG) from the grayscale
image (d = 36).

• Global descriptor of grayscale image: mean and standard
deviation of pixel values, and mean of the Laplacian image
(d = 3).

• Histogram of raw depth image pixels (d = 16).
• Global descriptor of raw depth image: mean and standard

deviation of pixel values, and mean of the Laplacian image
(d = 3).

In total, the feature representation Fi has a dimension of 106.
The set of all the patches for category cr were clustered using their
feature representation Fi with Gaussian Mixture Models (GMM):

{Fi|θi = cr}=
K

∑
k=1

α
r
kN (F |µr

k ,Σ
r
k) (3)

where each cluster center (µr
k ,Σ

r
k) represents the kth proto-

typical local feature appearance for object type cr, and the weight
αr

k represents the relative importance of that local appearance.
From a given cluster k, a 2D Hue-Saturation histogram (256 bins
for each dimension) was calculated from the local color images
of all the patches that belong to that cluster. This histogram from
cluster k, denoted as histr

k , forms one of the K local color mod-
els for codebook φ r, as shown in Equation 1. The corresponding
weight αr

k of cluster k is used as the weight wr
k for this local color

model. An illustration of the generated codebook for the fore-
ground and background categories is given in Figure 5.

Segmentation
Given a color image IC, the probability of each pixel be-

longing to a category cr is estimated to generate a per-pixel seg-
mentation. Such probability for a given pixel (x,y), denoted as
P(cr|IC(x,y)), can be estimated using the Bayes minimum error
criterion [27]. It requires the estimation of a priori probability
P(cr) and a data likelihood p(IC(x,y)|cr).

The prior P(cr) for each category is estimated using the rel-
ative frequency of all the patches associated with each category:
P(cr) =

|{Pi|θi=cr}|
∑

R
s=1 |{Pi|θi=cs}|

. The data likelihood p(IC(x,y)|cr) was es-
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timated through the marginalization over all codebook entries of
that category:

p(IC(x,y)|cr) =
K

∑
k=1

p(IC(x,y),φ r
k |cr)

=
K

∑
k=1

P(φ r
k |cr)p(IC(x,y)|φ r

k ,cr) (4)

The generated codebook as of Equation 1 was used to esti-
mate the parameters in the above equation. P(φ r

k |cr) is approxi-
mated using the weight wr

k for the kth codebook entry, indicating
the relative importance of this codebook entry. p(IC(x,y)|φ r

k ,cr)
is the likelihood of observing pixel IC(x,y) given category cr and
codebook entry P(φ r

k ). This likelihood was estimated using his-
togram back-projection (HBP). HBP algorithm can generate a
probability of each pixel matching to a histogram from a given
codebook entry. The segmentation probabilities calculated from
HBP were accumulated using the corresponding weight wr

k for
the kth codebook entry, according to as Equation 4. Finally, a
likelihood ratio between the different categories was calculated
for each pixel in the image IC. This value was used to segment
foreground from background. The likelihood of a pixel (x,y) be-
longing to the foreground (c1) w.r.t. the background (c0) is:

L(x,y) =
P(c1|IC(x,y)
P(c0|IC(x,y)

∝
P(c1)p(IC(x,y)|c1)

P(c0)p(IC(x,y)|c0)

=
P(c1)∑

K
k=1 w1

k p(IC(x,y)|hist1
k )

P(c0)∑
K
k=1 w0

k p(IC(x,y)|hist0
k )

(5)

This value was compared with a threshold ρ to obtain a fore-
ground mask (as L(x,y)> ρ). The hyper-parameter ρ was varied
to generate a precision-recall curve in the later experiment.

Pose Estimation
After the segmentation, the pose for each pack of unknown

instrument was estimated for initial robot grasping, as shown in
Figure 6. The dominant direction of each pile was found using
the Hough transform [28] (Figure 6.d). The lines extracted corre-
spond to the edges of the instruments from a top-view. A majority
vote of line directions was casted to find the dominant one. After
the dominant direction has been identified, the line perpendicular
to the dominant direction through the centroid of the pack was
found (see the blue line in Figure 6.d). The intersection of the
line with the group contour was used as the initial grasping point
(yellow dot in Figure 6.d). The grasping strategy relies on pick-
ing the instrument from the center of mass and in a perpendicular
direction.

After the position of the initial grasping point has been iden-
tified, the rotation of the gripper was estimated. The depth image
was used to determine whether the instrument is lying flat on the
mayo tray, or vertically packed within a group of instruments.
The depth along the perpendicular line (blue) was scanned and
its depth fluctuation was used to determine which of those two
poses the instrument is at (Figure 6.e). The standard deviation of
the normalized height along the scanning line was calculated as:

σh =
√

1
N ∑i=1 N(hi−µ)2, where hi is the depth value at point

Figure 6. Pose estimation process. (a) mask of the unknown instrument

pile; (b) extracted color image; (c) extracted depth image; (d) red lines are the

result of Houghline transform and blue line indicates the perpendicular depth

profile scanning line, the orange point indicates the initial picking point. (e)

the scanned depth profile. The fluctuation indicates a more likely vertical

pose instead of flat pose

i (in total N points) and µ = 1
N ∑

N
i=1 hi is the average. σh indi-

cates the depth fluctuation of the instrument and is compared with
an empirical threshold σre f to determine whether the instruments
state is flat or standing. The threshold σre f was chosen optimally
based on a separate validation dataset. In the case where the in-
strument is lying flat, the robot would pick it from above; while
a tilted instrument would require approach in a perpendicular di-
rection to the instrument surface.

Reactive Grasping Protocol

Our approach to instrument recognition is done through ma-
nipulation of the instrument. Classical grasping approaches re-
quire a 3D model of the object that is to be grasped. Such ap-
proaches cannot be applied directly to our scenario since direct
recognition of the instruments is not attainable. We first pick
generic objects and only after manipulation will their category
be determined. Assume that the instruments are packed in piles.
The instrument orientation is determined through the value of the
force feedback at the end-effector of the robot when in contact
with the instrument. Once the orientation is determined, the in-
struments are picked by extending the end-effector in a perpen-
dicular direction. A special end-effector was developed with an
integrated electromagnet to attract metal instruments. Four force
sensors were mounted between the electro-magnet gripper and the
wrist of the robot, forming a cross shape in the xy-plane to acquire
force information at the robots end-effector, as its diagram shown
in Figure 7.

To improve the accuracy of force readings and compensate
potential placement imbalances of the four force sensors, a cal-
ibration process was carried out before deployment. For raw
force reading F̃x (where x ∈ {up,down, le f t,right}), the mini-
mum force F̃x

min was recorded when the robotic arm is at a ready-
to-pick position above the mayo stand, and the maximum force
F̃max

x was recorded when the robotic arm is physically touching
the instrument side ways to ensure that only force sensor x makes
a point contact with the mayo stand. After recording the mini-
mum and maximum readings for each sensor, the force value was
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Figure 7. Diagram of the force sensors and electromagnet. The four force

sensors are placed on the x-y plane between the electromagnet and the

robot wrist, forming a cross shape.

normalized following equation:

Fx =


0, if F̃x < F̃min

x

1, if F̃x > F̃max
x

F̃x−F̃min
x

F̃max
x −F̃min

x
, otherwise

(6)

The resultant force Fx was in the range [0,1] and sampled at 5
Hz rate. The four normalized force readings are stacked as a vec-
tor ~F = [Fup,Fdown,Fle f t ,Fright ]. A sharp increase in the sensing
force indicates contact between the end-effector and the instru-
ment. Given the force readings ~F and the sensors known locations
under the electromagnet, the norm direction ~n = [n1,n2,n3]

T of
the force plane is estimated. When proper contact is being made,
all the force sensors acquire approximately the same force value
(the force is evenly distributed in the surface when the magnet is
perfectly perpendicular to the plane of the instrument), thus re-
sulting in a force norm vector ~n to be aligned with the z-axis ẑ.
If the force norm is not aligned, then the end-effectors orientation
is corrected towards the direction to reduce discrepancy between
the norm direction~n and z-axis ẑ. Figure 8 shows a sample force
reading during one instrument picking procedure.

The norm direction ~n was estimated using least square

Figure 8. Sample force readings for one instrument picking. The first peak

is the first contact with instrument, while second peak indicates a second

contact after adjusting orientation, and the last peak indicates a final stable

contact (evenly distributed force).

Figure 9. System diagram for the reactive grasping protocol

regression with force input ~F following the equation: ~n =
(β T β )−1β T ~F , where β is the coefficient incorporating loca-
tions of force sensors in the wrist coordinate, denoted as β =
[1,0,Fup;−1,0,Fdown;0,1,Fle f t ;0,−1,Fright ] ∈ R4×3. The angle
difference θ between~n and z-axis ẑ was calculated and compared
against a reference angle θr to form the control input ∆θ . Here
the reference angle θr was set to 0 to ensure an evenly distributed
force during contact. Different θr can be chosen in favor of other
grasping poses. A tolerance ∆θτ was used to limit the orientation
correction. The reactive grasping control algorithm is illustrated
in Figure 9.

Instrument Recognition
Once the end-effector attracted an instrument, it was lifted

and subsequently placed on a side surface (known as the recogni-
tion pad). The recognition pad has a uniform background and al-
lows maximum exposure to enable instrument recognition. Then,
an object recognition procedure was used to recognize the type
of instrument. The instrument recognition framework is shown
in Figure 10. It includes foreground extraction, feature encoding
and instrument classification. Detailed steps of each module are
presented next.

The pipeline of the image processing module involves first to
record an image frame It−1 when no instruments are present in the
recognition pad. A color-based background model BGt−1 is built
based on the pixel values of It−1 using Gaussian Mixture Models
[29]. Then, given the current frame It in which an instrument is
present, the foreground mask M is extracted using It and BGt−1.
The object contour cnt is then extracted from foreground mask
M. Certain region related properties are then extracted from the
contour cnt to represent the foreground object.

Next, a straight line is fit to the contour pixels as the major
axis for the object, then the foreground object is rotated based on

Figure 10. Instrument recognition algorithm framework
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the angle difference between the major axis and the vertical line,
so that the foreground object can be vertically oriented. Last, the
instrument is rotated again (if necessary) so that the lower half
part of the objects area is larger than the upper half. The pixel
area was used as an approximation for mass. This is a reason-
able assumption for our scenario, since most surgical instruments
have a scissors-like shape where the larger area corresponding to
the handle has a larger mass. After localization, rotation and clip-
ping, the Region-Of-Interest (ROI) image R which contains the
foreground object was generated. Certain features were then ex-
tracted from R for instrument classification.

We applied 3 types of feature extraction methods, as de-
scribed below:

• Histogram of Oriented Histograms (HOG) [30] extracted
from the raw image It

• Elliptic Fourier Descriptor (EFD) [31] extracted from con-
tour cnt

• Region-Of-Interest HOG (ROI-HOG) is the proposed
method which generates HOG features based on the ROI
image R. This method combines the advantage of HOG fea-
tures with the context of the task (the region of interest),
aiming to achieve better performances.

The generated features were then classified by several dis-
criminative classifiers, including Support Vector Machines (with
linear and radial basis function kernel) [32], Decision Trees [33],
Random Forest [34] and Adaboost [35]. The one-vs-all classifi-
cation strategy was used to enable a multiclass recognition.

Experiments
Experiments were conducted to test the performance of the

instrument segmentation, reactive grasping and instrument recog-
nition algorithms, respectively. The image dataset used in our pa-
per is publicly available at https://github.com/tian-zhou/
Surgical-Instrument-Dataset

Instrument Pack Segmentation Experiment
This experiment aims to evaluate the proposed segmentation

algorithm to discriminate the group of surgical instruments (fore-
ground) from the mayo stand image (background). A dataset of
surgical instrument images on the mayo stand was collected using
Kinect, with various instrument layouts and lighting conditions.
The instrument ground truth mask was manually annotated using
the LabelMe toolbox [36]. Initially 60 image sets (color image,
depth image and ground truth mask) were recorded and then each
image was distorted by rotating in 8 angles (0 to 360 stepped by
45) to generate a larger data set (resulting in total 480 images).

The experiment follows a 10-fold cross-validation setup,
where in each fold, 90% of the entire dataset was used for training
and the remaining 10% for testing. From each image in the train-
ing data, 100 random patches (N = 100) of size 16×16(w = 16)
were extracted for both foreground and background. The ex-
tracted patches from all the training images were then clustered
by fitting a GMM model on their associated feature representa-
tions with 10 components (K = 10). Codebooks were then gen-
erated by saving the color histograms and corresponding weights
for each cluster. For both foreground and background categories,
a codebook was generated during the training process. For seg-
mentation purposes, the weighted histogram backprojection algo-

Figure 11. Precision-recall curve for the proposed segmentation algorithm,

compared against grabcut and active contour model (snake) algorithms. The

AUC and max F1 score were shown in the legend. The max F1 scores were

marked with star.

rithm was used to calculate the likelihood of a given pixel belong-
ing to the foreground. The likelihood ratio was then compared to
the threshold ρ to determine the final segmentation result. The
segmentation result was compared against the ground truth mask.
The F1 score was used for evaluation, which is a common met-
ric to evaluate segmentation result [37]. The likelihood threshold
was swept to obtain the precision-recall (PR) curve demonstrat-
ing the segmentation performance. The Area Under Curve (AUC)
is used as a cumulative metric for evaluation. We compared the
proposed segmentation algorithm against grabCut algorithm [38]
and Morphological Geodesic Active Contours (snake) algorithm
[39]. Both benchmark algorithms need an initial segmentation
marker to start the full segmentation process. We generated the
marker image using ground truth labels, where the centroid pixel
of each instrument pile was labeled as positive. The segmentation
was then carried out on the RGB image of the instrument. Figure
11 presents the PR curves for the three different algorithms. The
maximum F1 score achieved by each algorithm was also marked.

It is found that the proposed segmentation algorithm
achieves the highest AUC and maxF1 score, followed by grabCut
and last snake algorithm. It is also worth noting that the proposed
algorithm does not require an initial marker to start the segmenta-
tion process, while both of the benchmark algorithms do.

Reactive Grasping Experiment
To assess the effectiveness of the grasping method, two

methods were compared: one using the reactive grasping protocol
(RG), and the other using the open-loop grasping (OLG) protocol.
Both protocols use the estimated pose from the optical sensor to
build an initial picking strategy, while the RG protocol addition-
ally used force sensors to correct the orientation of the tool-tip.
This experiment compared the instrument picking success rate of
these two protocols. Figure 13 shows the setup for the mayo stand
in this experiment. It includes five sets of surgical instruments,
named retractor (2 pieces), scalpel (5), Babcock forceps (6), scis-
sors (8) and hemostat (10). They were all grouped together in a
way similar to the surgical setting in the operating room. For both
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Figure 12. Mayo setup for the grasping experiment. There are five sets of

surgical instruments, with their name shown.

grasping methods, the task is to pick up each surgical instrument
in sequence successfully. The grasping process was repeated 10
times for each type of instrument, resulting in a total of 50 picks.
The average picking success rate was 64% for OLG protocol and
92% for RG protocol. The per-instrument average picking suc-
cess rate was shown in Figure 14. A paired sample t-test between
the per-instrument average success rates of the two protocols yield
a one tail p-value of 0.029, which indicates the superiority of the
RG policy compared to the OLG policy.

Since the instruments are packed tightly, the electromagnetic
force was propagated to near-by instruments, resulting in poten-
tially picking up multiple instrument at the same time. This was
not a desired outcome and resulted in false alarms. Under the RG
protocol, 6 out of the 46 successful picks include picking multi-
ple instruments, resulting in a false alarm rate of 13%. The same
number calculated for OLG protocol was 6.3%. The RG proto-
col has a higher false alarm rate, since the orientation correction
algorithm leads to a better contact between the magnet and the
instruments. Such better contact resulted in a stronger electro-
magnetic force propagated to the instrument pile. 62% of all the
false alarms in both grasping methods occurred when picking the
scalpel, since it is one of the lightest instruments

Instrument Recognition Experiment
A dataset of surgical instruments on the recognition pad was

collected using our system setup. There are in total 5 types of
instruments, named scalpel, retractor, scissors, hemostat and for-
ceps. For each type of instrument, 20 images were taken initially
with different illumination and layout conditions.

The dataset was increased by using label-preserving transfor-
mation [40] to produce variants of the original images. This helps
to increase dataset size and also prevent over-fitting. Two distinct
forms of data augmentation techniques were applied. The first
consists of applying rotation and mirroring (horizontally) on the
original image. Each input image was rotated in 8 angles (0 to 360
degrees stepped by 45), and then mirrored horizontally. The sec-
ond consists of altering the RGB channel intensities. This tech-
nique follows an important property of natural images since an
object recognition algorithm should be invariant to intensity and
illumination changes. We followed the steps of [40]. A Principal

Figure 13. Picking success rate for Reactive Grasping vs Open-loop Grasp-

ing.

Component Analysis (PCA) was first applied on the set of RGB
pixel values of the entire training dataset. Then for each training
image, multiples of the principal components were added. The
magnitudes were proportional to the corresponding eigenvalues
times a random variable drawn from a Gaussian with zero mean
and standard deviation of 0.1. Therefore to each RGB image pixel
Ixy = [IR

xy, I
G
xy, I

B
xy]

T , we added the following brightness values:

[p1,p2,p3][α1λ1,α2λ2,α3λ3]
T (7)

Where pi and λi are the ith eigenvector and eigenvalue of the
3× 3 covariance matrix of RGB pixel values, respectively, and
αi is the random variable mentioned before. Both the original
version and the altered version were kept in the dataset. After
applying both data augmentation techniques, 32 augmented im-
ages were generated out of 1 training seed, and the final dataset
includes 3200 images with 640 for each instrument type. The
learning setting follows a special 5-fold cross validation, where
the original training instance and its augmented variants always
reside in the same data split. This is to avoid the case where the
original example was used for training and its variants were used
for testing.

The hyper-parameters for each feature extraction method
were chosen based on a grid search. The parameters yielding the
highest recognition accuracy on a separated split were chosen as
the optimal parameters. In the HOG feature method, image It was
resized to dimension 72×56, and then 8×8 cell size, 2×2 cells
per block and 9 orientation bins were used for HOG calculation.
In the EFD case, the first 3 orders of Fourier coefficients were
used as features. For the ROI-HOG case, the ROI image R was
resized to 24× 48, and then 8× 8 cell size, 2× 2 cells per block
and 9 orientation bins were used. For all feature extraction meth-
ods, the generated features were normalized to have mean of zero
and standard deviation of one for each channel.

The features were classified using five classifiers, including
linear SVM, rbf-kernel SVM, Decision Tree, Random Forest and
Adaboost. The implementation was based on scikit-learn library
[41]. The default hyper-parameters were used to ensure a fair
comparison. The resultant recognition accuracy on the testing
split is shown in Figure 14.
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Figure 14. The recognition accuracy for different features using different

classifiers. The average and maximum performance of 5 classifiers for each

features set was summarized in the two rightmost columns. The best per-

formance was achieved by ROI-HOG with rbf-kernel SVM, with a recognition

accuracy of 94.8%.

In all except Decision Tree cases, the ROI-HOG features
outperformed the EFD method and HOG features, which indi-
cates the superiority of the proposed feature extraction method.
The best recognition accuracy was achieved by the proposed ROI-
HOG algorithm with rbf-kernel SVM, with an average accuracy
of 94.8%. Recognition results showed that the strategy consisting
of grasping and moving the instruments allows for reliable instru-
ment recognition.

Conclusion

In this paper we presented a solution to the challenge of ac-
curate surgical instrument recognition by a Robotic Scrub Nurse
in the Operating Room. Recognizing surgical instruments from
mayo trays in a clinical setting is challenging due to the instru-
ment clustered in groups, leading to self-occlusion, discontinu-
ities and clutter. A hybrid computer vision and robotic manipu-
lation strategy was adopted to tackle this challenge. Initially, the
instruments were segmented and their poses estimated for robotic
manipulation. Later, the RSN system picked up the unknown in-
strument and presented it in an optimal view for robust recogni-
tion. Experiments were conducted to evaluate the performance
of each critical component of the system. The proposed segmen-
tation algorithm achieved an F-score of 0.90, which outperforms
the baseline grabCut algorithm (0.84) and snake algorithm (0.71).
The proposed force-based grasping protocol achieved an average
picking success rate of 92% with various instrument layouts, com-
pared to a success rate of 64% for open-loop grasping protocol.
The proposed based instrument recognition module can reach a
recognition accuracy of 94.8%, which is the highest among sev-
eral benchmark methods. The experimental results proved the fea-
sibility and effectiveness of the proposed RSN system.

Future work includes the design of an adaptive force con-
troller to ensure one instrument being picked up every time. We
also plan to deploy the developed system in the OR. To that end,
it is necessary to design a safe instrument delivery protocol for a
reliable human-machine collaboration in the surgical setting.
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