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Abstract 
As most robot navigation systems for large-scale outdoor 

applications have been implemented based on high-end sensors, it 
is still challenging to implement a low-cost autonomous ground-
based vehicle. This paper presents an autonomous navigation 
system using only a stereo camera and a low-cost GPS receiver. The 
proposed method consists of Visual Odometry (VO), pose 
estimation, obstacle detection, local path planning and a waypoint 
follower. VO computes a relative pose between two pairs of stereo 
images. However, VO inevitably suffers from drift (error 
accumulation) over time. A low-cost GPS provides absolute 
locations that can be used to correct VO drift.  We fuse data from 
VO and GPS to achieve more accurate localization both locally and 
globally, using an Extended Kalman Filter (EKF). To detect 
obstacles, we use a dense depth map that is generated by stereo 
disparity estimation and transformed into a 2D occupancy grid map. 
Local path planning computes temporary waypoints to avoid 
obstacles, and a waypoint follower navigates the robot towards the 
goal point. We evaluated the proposed method with a mobile robot 
platform in real-time experiments in an outdoor environment. 
Experimental results show that the mobile vision and control system 
is capable of traversing roads in this outdoor environment 
autonomously.   

Introduction  
Tremendous advances have been made in the area of self-

driving cars since the DARPA Grand Challenges over 10 years ago. 
However, most autonomous navigation systems to date have been 
designed based on high-end sensors, such as laser scanners, LIDAR, 
high accuracy augmented GPS receivers and high-cost inertial 
sensors [1][2][3][4]. These all add up to the significant cost of such 
vehicles and robots, making them unaffordable for many 
applications. At the same time, continuous high reliability is not 
guaranteed even for high-end sensors, such as augmented GPS or 
RTK-GPS, in a variety of environments. For example, GPS is not 
sufficiently reliable in dense urban environments. Thus, it is both 
attractive and challenging to implement an autonomous navigation 
system that is both low-cost and robust for a wide range of 
applications. 

This paper presents a real-time autonomous navigation system 
using a stereo camera and a low-cost GPS. Although a couple of 
related works have presented robot navigation systems with low-
cost sensors [5][6][7][8], these systems are often evaluated in indoor 
or small-scale environments only. We demonstrated real-time stereo 
vision-guided navigation in outdoor environments on long 
trajectories with a mobile robot. 

The sensors in our system include a forward-facing stereo 
camera and a low-cost GPS. The proposed method includes 3D 
Visual Odometry (VO), pose estimation by Extended Kalman Filter 
(EKF), obstacle detection, local path planning, and a waypoint 
follower as shown in Figure 1. VO computes relative poses between 

consecutive pairs of stereo images. EKF pose estimation combines 
VO data with GPS data to estimate position and orientation. The 
algorithm combines the advantages of both VO and GPS; namely, 
GPS provides accuracy in a global sense, and VO provides locally 
precise and smooth position updates between GPS readings. To 
detect obstacles in the driving path, we generate a dense 3D point 
cloud using stereo image pairs. After removing 3D points in the 
ground plane, remaining 3D points are projected into a 2D 
occupancy grid map. A path planning algorithm computes 
temporary waypoints to avoid obstacles, based on the local 2D 
occupancy grid map and the estimated robot pose. After avoiding an 
obstacle, a waypoint following algorithm navigates the robot back 
to the desired route and goal point.  

The following sections explain VO, EKF pose estimation, 
obstacle detection, and local path planning. We describe a waypoint 
follower in the experimental results section.  

 

 

Figure 1. Overview of real-time mobile robot navigation with stereo vision and 
low-cost GPS 

Visual Odometry 
We followed algorithms described in [13] and [14] to develop 

a robust visual odometry system. The first step is to get the intrinsic 
and extrinsic parameters of the cameras. Here we estimate both 
camera intrinsic and extrinsic parameters with Camera Calibration 
Toolbox for Matlab [11]. Camera calibration requires capturing 
multiple images of the calibration pattern at different poses, in order 
to accurately estimate the intrinsic camera parameters. 

Second, when images from both left and right cameras are 
received, we need to remove the image distortion introduced by the 
lenses. Usually, wide angle lens has large distortion close to image 
boundaries. The lens distortion parameters are contained in the 
output of the camera calibration [12]. Therefore, we simply use 
these distortion parameters to reverse the distortion process in order 
to remove image distortion. 

Third, since stereo VO involves feature matching between left 
and right images, it is necessary to rectify left and right image after 
undistortion to make the same feature point lie on the same 
horizontal line. By doing this, the feature searching space is reduced 
from 2D to 1D, largely improving the algorithm efficiency. 
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Image rectification involves projecting both left and right 

image onto a common image plane. This new image plane must be 
parallel to the line that connects left and right camera center, which 
guarantees the projections of a scene point are on the same 
horizontal line on both left and right rectified images. It also 
guarantees that rectified left and right images have the same intrinsic 
camera parameters. Once the new image plane is defined, we can 
simple rectify both images by a homography warping. 

 
 

 

Figure 2. Transformation between 2 neighboring frames (image courtesy of 
Libviso [13]). 

As shown in Figure 2, we use two stereo pairs to estimate the 
robot movement between time s-1 and s. First we establish feature 
correspondences across these 4 images. Feature matches between 
left and right images are used to reconstruct 3D positions of those 
features in the scene. For the same set of feature points, we can find 
their 3D positions at both time s-1 and s. Under the assumption of 
rigid body transformation, the transformation of those 3D points is 
actually inverse of the robot transformation.  

Thus, we estimate the rigid transformation (rotation R and 
translation t) of those 3D points by minimizing the following term 
in the least squares sense: 
 

෍ฮ࢖ࡾ௜,௦ିଵ ൅ ࢚ െ ௜,௦ฮ࢖

௡
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where we assume total number of 3D points is n. ࢖௜,௦ିଵ and ࢖௜,௦ are 
3D positions of point p at time s-1 and s respectively. If we define 
the coordinate system at center of left camera, the 3D position of 
feature points can be easily obtained once left and right image are 
rectified: 
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where f is camera focal length, B is baseline of left and right 
cameras, d is disparity of the feature on left and right images. [u, v] 
is 2D coordinate of the feature on left image.  

Since the transformation of 3D point is inverse of that of robot, 
we can simply get robot transformation (ࡾ௦ and ࢚௦) by: 
 
௦ࡾ ൌ  ଵିࡾ
௦࢚	 ൌ െିࡾଵ࢚ 
 

In order to estimate the current pose of robot, we need to 
accumulate frame-to-frame transformations from a known start 
point. We here assume that the pose of the first frame is world origin 

[0, 0, 0], then the pose of robot at time s can be obtained by 
following equation:  
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0 1
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where ࡻ௦ିଵ is a 3x3 matrix recording robot orientation at time s-1 
and ࡼ௦ିଵ is a 3x1 vector recording 3D position of the robot at time 
s-1. 

VO algorithm inevitably suffers from drift after long distance 
traveling, because error is also accumulated when frame-to-frame 
transformations are concatenated. In order to minimize the drift, we 
need to minimize the number of frames used for VO estimation. 
That means we have to keep neighboring frames as distant as 
possible but not lose feature tracking. In our system, we compute the 
distance between two neighboring frames from ࢚௦, which is the 
translation of the camera center in 3D space. We also compute 
rotation angle from ࡾ௦. ࡾ௦ is first converted to a rotation vector 
using Rodrigues algorithm. The normal of the result vector is the 
rotation angle we need.  If normal of ࢚௦ < 5 cm or rotation angle of 
 ௦ < 5 degrees, we simply drop current frame and capture new frameࡾ
to calculate robot transformation to last frame. 

Up to this point, the result robot pose is defined in the 
coordinate system of left camera. In particular, the coordinate 
system origin coincides with the camera center of left camera when 
it captures the first frame. Z axis of the coordinate system is aligned 
with the looking direction of the camera. This may cause some 
issues when the camera looking direction is not parallel to the 
ground. In order to measure the distance it traveled on the ground, 
we need to transform the robot pose into a coordinate system that is 
parallel to the ground. 

 

 

Figure 3. Transformation from camera coordinate system to world coordinate 
system. 

As shown in the Figure 3, we define a world coordinate system 
using a calibration checkerboard. We put the checkerboard 
perpendicular to the ground, so that its x and z axis are both parallel 
to the ground. Once we get the robot pose in camera’s coordinate 
system, we transform that pose into world coordinate system and 
then project it onto the xz plane to get the distance traveled on the 
ground. The transformation between camera coordinate system and 
world coordinate system can be easily obtained through camera 
calibration. 

EKF Pose Estimation 
Although VO accurately computes a relative pose between two 

pairs of stereo images, VO suffers from drift accumulation over 
time. A low-cost GPS provides absolute locations that can be used 

IS&T International Symposium on Electronic Imaging 2017
Intelligent Robotics and Industrial Applications using Computer Vision 2017 11



 

 

to correct VO drift.  We fuse data from VO and GPS to achieve more 
accurate localization both locally and globally, using an EKF. 

EKF pose estimation is composed of two steps:  prediction 
and correction. In the prediction step, the robot pose ࢞ෝ௦ and its 
covariance ࡼ෡௦ at time s can be predicted by  

 
ෝ௦࢞ ൌ ݂ሺ࢞௦ିଵ,  ௦ሻ࢛	
෡௦ࡼ ൌ ௫்ࡲ෡௦ିଵࡼ௫ࡲ ൅ ௨்ࡲ௦ࡽ௨ࡲ  
 
where ࢛௦ is the relative robot pose computed by VO between two 
robot poses. As the robot pose ࢞ෝ௦ can be represented by (ݔො௦, ݕො௦,  (෠௦ߠ
in the 2D environment, the prediction function ݂ሺ࢞௦ିଵ,  ௦ሻ can be࢛	
represented by 
 
ො௦ݔ ൌ 	 ො௦ିଵݔ ൅	ߜ௫ 
ො௦ݕ ൌ ො௦ିଵݕ	 ൅	ߜ௬ 
෠௦ߠ ൌ ෠௦ିଵߠ	 ൅	ߜఏ 
 
where  ߜ௫ and  ߜ௬ are the relative translations in x-axis and y-axis 
respectively. ߜఏ is the relative orientation between two robot poses. 
These relative translations and orientation are computed by VO.  
 ௨ are the Jacobians of the robot pose with respect to theࡲ ௫ andࡲ
previous pose and relative pose respectively. In the 2D environment, 
 ௨ can be represented byࡲ ௫ andࡲ
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where ݀ is the Euclidean distance between ࢞ෝ௦ and ࢞ෝ௦ିଵ. 

In the correction step, the robot pose ࢞௦ and its covariance ࡼ௦ 
can be corrected by 
 
௦࢞ ൌ ෝ௦࢞ ൅  ௦࢜௦ࡷ
௦ࡼ ൌ ෡௦ࡼ െ  ෡௦ࡼ௫ࡴ௦ࡷ
 
where ࡷ௦ ൌ ௫ࡴ෡௦ࡼ

்ሺࡿ௦ሻିଵ (Kalman gain),  ࡿ௦ ൌ ௫ࡴ෡௦ࡼ௫ࡴ
் ൅

௪ࡴ௦ࢃ௪ࡴ
் , and ࢜௦	 ൌ 	௦ࢠ െ ݄ሺ࢞ෝ௦,  ௪ are theࡴ ௫ andࡴ .ሻ࢝

Jacobians of the robot position with respect to the measured robot 
position by  GPS and measurement noise of GPS. ݄ሺ࢞ෝ௦,  ሻ can be࢝
represented in the 2D environment by 
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where ࢝ ൌ ሺݓ௫,  .௬ሻ is the measurement noise of GPSݓ
Thus, ࡴ௫ and ࡴ௪ can be represented by  
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and  ࢠ௦ obtained by GPS can be represented by 
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௚ݔ
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௫ݓ
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 The prediction and correction steps are executed repeatedly 
whenever new data is available from either VO or GPS. If new data 
is available from both VO and GPS at time s, EKF estimates the 
robot pose by running the prediction step and the correction step 
sequentially. If new data is available from only VO at time s, EKF 
updates the robot pose by running the prediction step only.      

Obstacle Detection 
This section presents the obstacle detection using dense stereo 

matching. The algorithm is built based on two assumptions which 
are reasonable in terms of the robot and automobile application. 
First, the cameras are pre-calibrated and are mounted on the 
platform with known pitch angle and height to the ground plane. 
Second, the cameras have a smooth trajectory which can avoid 
heavy computation related to rotation, scale invariant feature 
descriptors. The assumptions allow us to project between world 
coordinate system, camera coordinate system and image plane.  

The first step of the algorithm is dense stereo matching. In this 
system, we used the Library for Efficient Large-scale Stereo 
Matching (LibELAS) [9] for stereo matching. The library is efficient 
enough to achieve real-time matching result. Using the disparity 
map, 3D coordinate can be calculated with camera matrix from 
calibration. Given focal length f, principle point ሾݔ௖,  ௖ሿ and baselineݕ
B, the 3D coordinates of a matched point in camera coordinate 
system can be computed by the following equations:  
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With ሾܺ௖, ௖ܻ , ܼ௖ሿ coordinate in camera coordinate system, the point 
can be projected to world coordinate system using the extrinsic 
camera matrix as follows:  
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where ߠ is the pitch angle of the cameras facing down, ݄  is the height 
of the cameras from the ground plane. 
 When the point cloud is in the world coordinate system, the 
next step is to remove the points that represent the road region. For 
road point removal, RANdom SAmpling Consensus (RANSAC) 
[10] algorithm is used.  In the outdoor application, the most 
dominant plane in a scene is the road plane. Based on this 
assumption, RANSAC is used to fit just one plane.  This algorithm 
used the RANSAC algorithm in the Point Cloud Library (PCL) to 
estimate planes. While it is powerful, it also requires a heavy 
computation time considering the number of points in a point cloud.  
So the plane estimation process was designed to work periodically, 
instead of being active every frame in order to be able to run online.  
To make plane estimation more computation efficient, some 
optimizations are made to the algorithm. The primary reason of the 
costly computation time is the large number of points as input to the 
RANSAC algorithm. Before, we used all the points generated from 
disparity map. Because the random sampling process, it requires all 
the points are included in error measurements. The large number of 
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outliers also increases the number of iterations intensively.  The 
optimization here is to limit the input size. 
 Since the goal of the algorithm to estimate ground plane, we 
can limit the input points to be in a certain region in the 3D space. 
Using the points in this region can still estimate the ground plane 
accurately, because the ground is still the dominant plane in the 
subsample of the point clouds. The sub sample point cloud also has 
less outliers, such as sky, trees, thus the algorithm can converge in 
fewer iterations. It can reduce the computation time of RANSAC 
algorithm and achieve real-time speed.  
 After the ground plane is estimated, the inliers of this plane are 
removed. The remaining points are then project the points into an 
occupancy grid. Occupancy grid is a 2D grid map with each grid cell 
representing a block in the 3D space. Points are projected to the 
ground plane and into different cells on the grid map based on their 
location. A cell is considered as an obstacle once the number of 
points in the cell reaches a pre-defined threshold. 

Local Path Planning 
To avoid obstacles and regenerate the path, we implement local 

path planning. Local path planning uses EKF pose estimation and 
Obstacle Detection (OD) presented in the previous sections. EKF 
pose estimation provides the robot pose for local path planning to 
localize the robot in the world coordinate. OD generates an 
occupancy grid map which is used for local path planning to avoid 
obstacles. We implement a Tangent Bug (TB) algorithm for local 
path planning.  

TB is capable of finding the shortest path to the goal when a 
robot has a finite range sensor.  TB has two basic behaviors: 1) 
moving toward the goal; 2) following the boundary of a concave 
obstacle. When the robot encounters obstacles, TB finds a waypoint 
which minimizes the travel path to the goal. In addition, TB can 
follow the boundary of a concave obstacle until it clears that obstacle 
and resume a path toward the goal point. 

TB can be described as shown in Algorithm 1, 2 and 3. 
Whenever a new image pair (i.e., left and right images) is obtained  
from a stereo camera, TB computes a robot pose using EKF pose 
estimation and generates an occupancy grid map using OD  (Line 3 
and 4 in Algorithm 1). In 2D environments, a robot pose can be 
parameterized as x= [x, y, θ], where [x, y] is the translation and θ is 
the orientation in the world coordinate W.  The occupancy grid map 
can be presented as M = {m1, m2, …, mn}, where mn is the nth grid 
cell in the robot coordinate. In the occupancy grid map, each cell has 
1 or 0. If a cell is occupied by obstacles, it has 1. Otherwise, the cell 
has 0. Figure 4 depicts a robot pose in the world coordinate and an 
occupancy grid map in the robot coordinate. 

If the occupancy grid map has obstacles (Line 6-8 in Algorithm 
1), TB finds a temporary waypoint n which minimizes the following 
cost function  

 
݄ሺ࢞, ሻ࢔ ൌ ݀ሺ࢞, ሻ࢔ ൅ ݀ሺ࢔,  ሻࢍ
 
where d(n, g) is the Euclidean distance between a temporary 
waypoint n and the goal g. d(x, n) is the Euclidean distance between 
the current robot location x and a temporary waypoint n. Temporary 
waypoints N = {n1, n2, …, nk} are selected by Algorithm 2. n is 
selected among unoccupied grid cells around the occupied grid cells. 
If there is no unoccupied grid cells in the nearest row of the map, 
the right location of the most right occupied grid cell in the nearest 
row is selected as a temporary waypoint because we assume the area 
out of the grid map is obstacle-free.  

If the cost function h(x, n) increases, TB begins to follow the 
boundary of a concave obstacle (Line 10 and 17 in Algorithm 1). In 
the boundary following algorithm (Algorithm 3), TB continues to 
follow the boundary of the concave obstacle and updates dreach and 
dfollowed, where dreach is the shortest distance between the robot and 
the goal and dfollowed is the shortest distance between the sensed 
boundary and the goal, respectively (Line 1-2 in Algorithm 3). If 
dreach < dfollowed, TB terminates the boundary following (Line 3-4 in 
Algorithm 3) and moves the robot toward the goal. 
 

 

Figure 4. Robot pose relative to world coordinate system, and occupancy grid 
map (based on robot obstacle perception) relative to local robot coordinate 
system. 
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Experimental Results 
We implemented the proposed autonomous navigation system 

using ROS [22] and evaluated the autonomous navigation system 
with a mobile robot as shown in Figure 5. The mobile robot consists 
of a Jaguar4x4 wheel [23], two Pointgrey Chameleon cameras [24] 
for a stereo vision, a u-blox GPS evaluation Kit [25], and a mini- 
computer. VO updates a relative robot pose at 15 Hz and GPS 
updates a absolute robot position at 3 Hz. The mobile robot runs at 
1 m/s of speed in the experiment. 

 

 

Figure 5. Mobile robot 

We evaluated the real-time stereo vision-guided navigation 
system in outdoor environments on long trajectories (e.g. ~430 
meter) as shown in Figure 6. We generate a waypoint list which 
includes three waypoints. Two waypoints are generated at the corner 
of the trajectory and one waypoint is generated at the end point of 
the trajectory. Each waypoint is composed of the waypoint location 
and the target orientation of the robot at the waypoint.  

Once the robot starts, a waypoint follower drives the robot 
toward the first waypoint. The waypoint follower computes the 
translational and rotational velocity of the robot using the distance 
and orientation difference between the estimated robot pose and the 
first waypoint. The translational and rotational velocity is used for 
Jaguar4x4 controller to run the robot. If the robot detects an obstacle, 
local path planning generates a temporary waypoint to avoid the 
obstacle and the waypoint follower drives the robot toward the 
temporary waypoint. If the robot reaches the temporary waypoint, 
the waypoint follower resumes the path toward the first waypoint. 
Once the robot reaches the first waypoint, the waypoint follower 
drives the robot toward the second waypoint. After passing the first 
and second waypoints, the robot stops at the last waypoint.  

The experimental results show that: 1) the proposed 
autonomous system allows the robot to run along the path and arrive 
at the end point successfully; 2) the final position error at the end 
point is about 3 meter as shown in Figure 7; 3) stereo vision-based 
obstacle detection is able to detect low curbs at the side of the road; 
4) local path planning successfully generates a temporary waypoint 
for avoiding low curbs; 5) autonomous navigation in this 
environment is not yet robust, due to limited precision of location 
and pose estimation and due to limited mapping capability. 
 
 

 

Figure 6. Trajectories of VO, GPS and EKF pose estimation and detected 
obstacles. Red rectangles represent detected obstacles along the trajectory. 

 

Figure 7. Final position error at the end point 

Conclusion 
We proposed the real-time autonomous navigation system 

using only a stereo camera and a low-cost GPS. The proposed 
method is composed of VO, EKF pose estimation, obstacle 
detection, local path planning, and a waypoint follower. EKF pose 
estimation computes the robot pose by fusing VO and GPS. 
Obstacle detection and local path planning avoid obstacles on the 
path. The waypoint follower generates transitional and rotational 
velocity to drive the robot toward a waypoint or a temporary 
waypoint. The proposed method is successfully demonstrated in 
outdoor environments. 

In the future study, we will improve pose estimation by using 
additional a low-cost sensor such as IMU. In addition, we will try to 
build a map to improve accuracy of pose estimation and robustness 
of autonomous navigation.    
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