

Real-time mobile robot navigation based on stereo vision and
low-cost GPS
Soonhac Hong, Ming Li, Miao Liao, Peter van Beek
Sharp Laboratories of America
Camas, Washington, USA

Abstract
As most robot navigation systems for large-scale outdoor

applications have been implemented based on high-end sensors, it
is still challenging to implement a low-cost autonomous ground-
based vehicle. This paper presents an autonomous navigation
system using only a stereo camera and a low-cost GPS receiver. The
proposed method consists of Visual Odometry (VO), pose
estimation, obstacle detection, local path planning and a waypoint
follower. VO computes a relative pose between two pairs of stereo
images. However, VO inevitably suffers from drift (error
accumulation) over time. A low-cost GPS provides absolute
locations that can be used to correct VO drift. We fuse data from
VO and GPS to achieve more accurate localization both locally and
globally, using an Extended Kalman Filter (EKF). To detect
obstacles, we use a dense depth map that is generated by stereo
disparity estimation and transformed into a 2D occupancy grid map.
Local path planning computes temporary waypoints to avoid
obstacles, and a waypoint follower navigates the robot towards the
goal point. We evaluated the proposed method with a mobile robot
platform in real-time experiments in an outdoor environment.
Experimental results show that the mobile vision and control system
is capable of traversing roads in this outdoor environment
autonomously.

Introduction
Tremendous advances have been made in the area of self-

driving cars since the DARPA Grand Challenges over 10 years ago.
However, most autonomous navigation systems to date have been
designed based on high-end sensors, such as laser scanners, LIDAR,
high accuracy augmented GPS receivers and high-cost inertial
sensors [1][2][3][4]. These all add up to the significant cost of such
vehicles and robots, making them unaffordable for many
applications. At the same time, continuous high reliability is not
guaranteed even for high-end sensors, such as augmented GPS or
RTK-GPS, in a variety of environments. For example, GPS is not
sufficiently reliable in dense urban environments. Thus, it is both
attractive and challenging to implement an autonomous navigation
system that is both low-cost and robust for a wide range of
applications.

This paper presents a real-time autonomous navigation system
using a stereo camera and a low-cost GPS. Although a couple of
related works have presented robot navigation systems with low-
cost sensors [5][6][7][8], these systems are often evaluated in indoor
or small-scale environments only. We demonstrated real-time stereo
vision-guided navigation in outdoor environments on long
trajectories with a mobile robot.

The sensors in our system include a forward-facing stereo
camera and a low-cost GPS. The proposed method includes 3D
Visual Odometry (VO), pose estimation by Extended Kalman Filter
(EKF), obstacle detection, local path planning, and a waypoint
follower as shown in Figure 1. VO computes relative poses between

consecutive pairs of stereo images. EKF pose estimation combines
VO data with GPS data to estimate position and orientation. The
algorithm combines the advantages of both VO and GPS; namely,
GPS provides accuracy in a global sense, and VO provides locally
precise and smooth position updates between GPS readings. To
detect obstacles in the driving path, we generate a dense 3D point
cloud using stereo image pairs. After removing 3D points in the
ground plane, remaining 3D points are projected into a 2D
occupancy grid map. A path planning algorithm computes
temporary waypoints to avoid obstacles, based on the local 2D
occupancy grid map and the estimated robot pose. After avoiding an
obstacle, a waypoint following algorithm navigates the robot back
to the desired route and goal point.

The following sections explain VO, EKF pose estimation,
obstacle detection, and local path planning. We describe a waypoint
follower in the experimental results section.

Figure 1. Overview of real-time mobile robot navigation with stereo vision and
low-cost GPS

Visual Odometry
We followed algorithms described in [13] and [14] to develop

a robust visual odometry system. The first step is to get the intrinsic
and extrinsic parameters of the cameras. Here we estimate both
camera intrinsic and extrinsic parameters with Camera Calibration
Toolbox for Matlab [11]. Camera calibration requires capturing
multiple images of the calibration pattern at different poses, in order
to accurately estimate the intrinsic camera parameters.

Second, when images from both left and right cameras are
received, we need to remove the image distortion introduced by the
lenses. Usually, wide angle lens has large distortion close to image
boundaries. The lens distortion parameters are contained in the
output of the camera calibration [12]. Therefore, we simply use
these distortion parameters to reverse the distortion process in order
to remove image distortion.

Third, since stereo VO involves feature matching between left
and right images, it is necessary to rectify left and right image after
undistortion to make the same feature point lie on the same
horizontal line. By doing this, the feature searching space is reduced
from 2D to 1D, largely improving the algorithm efficiency.

10
IS&T International Symposium on Electronic Imaging 2017

Intelligent Robotics and Industrial Applications using Computer Vision 2017

https://doi.org/10.2352/ISSN.2470-1173.2017.9.IRIACV-259
© 2017, Society for Imaging Science and Technology

Image rectification involves projecting both left and right

image onto a common image plane. This new image plane must be
parallel to the line that connects left and right camera center, which
guarantees the projections of a scene point are on the same
horizontal line on both left and right rectified images. It also
guarantees that rectified left and right images have the same intrinsic
camera parameters. Once the new image plane is defined, we can
simple rectify both images by a homography warping.

Figure 2. Transformation between 2 neighboring frames (image courtesy of
Libviso [13]).

As shown in Figure 2, we use two stereo pairs to estimate the
robot movement between time s-1 and s. First we establish feature
correspondences across these 4 images. Feature matches between
left and right images are used to reconstruct 3D positions of those
features in the scene. For the same set of feature points, we can find
their 3D positions at both time s-1 and s. Under the assumption of
rigid body transformation, the transformation of those 3D points is
actually inverse of the robot transformation.

Thus, we estimate the rigid transformation (rotation R and
translation t) of those 3D points by minimizing the following term
in the least squares sense:

෍ฮ࢖ࡾ௜,௦ିଵ ൅ ࢚ െ ௜,௦ฮ࢖

௡

௜ୀଵ

where we assume total number of 3D points is n. ࢖௜,௦ିଵ and ࢖௜,௦ are
3D positions of point p at time s-1 and s respectively. If we define
the coordinate system at center of left camera, the 3D position of
feature points can be easily obtained once left and right image are
rectified:

ݖ ൌ
ܤ݂
݀
, ݔ ൌ

ݖݑ
݂
, ݕ ൌ

ݖݒ
݂

where f is camera focal length, B is baseline of left and right
cameras, d is disparity of the feature on left and right images. [u, v]
is 2D coordinate of the feature on left image.

Since the transformation of 3D point is inverse of that of robot,
we can simply get robot transformation (ࡾ௦ and ࢚௦) by:

௦ࡾ ൌ ଵିࡾ
௦࢚	 ൌ െିࡾଵ࢚

In order to estimate the current pose of robot, we need to
accumulate frame-to-frame transformations from a known start
point. We here assume that the pose of the first frame is world origin

[0, 0, 0], then the pose of robot at time s can be obtained by
following equation:

ቂࡻ௦ ௦ࡼ
0 1

ቃ ൌ ቂࡾ௦ ௦࢚
0 1

ቃ ∗ ቂࡻ௦ିଵ ௦ିଵࡼ
0 1

ቃ

where ࡻ௦ିଵ is a 3x3 matrix recording robot orientation at time s-1
and ࡼ௦ିଵ is a 3x1 vector recording 3D position of the robot at time
s-1.

VO algorithm inevitably suffers from drift after long distance
traveling, because error is also accumulated when frame-to-frame
transformations are concatenated. In order to minimize the drift, we
need to minimize the number of frames used for VO estimation.
That means we have to keep neighboring frames as distant as
possible but not lose feature tracking. In our system, we compute the
distance between two neighboring frames from ࢚௦, which is the
translation of the camera center in 3D space. We also compute
rotation angle from ࡾ௦. ࡾ௦ is first converted to a rotation vector
using Rodrigues algorithm. The normal of the result vector is the
rotation angle we need. If normal of ࢚௦ < 5 cm or rotation angle of
 ௦ < 5 degrees, we simply drop current frame and capture new frameࡾ
to calculate robot transformation to last frame.

Up to this point, the result robot pose is defined in the
coordinate system of left camera. In particular, the coordinate
system origin coincides with the camera center of left camera when
it captures the first frame. Z axis of the coordinate system is aligned
with the looking direction of the camera. This may cause some
issues when the camera looking direction is not parallel to the
ground. In order to measure the distance it traveled on the ground,
we need to transform the robot pose into a coordinate system that is
parallel to the ground.

Figure 3. Transformation from camera coordinate system to world coordinate
system.

As shown in the Figure 3, we define a world coordinate system
using a calibration checkerboard. We put the checkerboard
perpendicular to the ground, so that its x and z axis are both parallel
to the ground. Once we get the robot pose in camera’s coordinate
system, we transform that pose into world coordinate system and
then project it onto the xz plane to get the distance traveled on the
ground. The transformation between camera coordinate system and
world coordinate system can be easily obtained through camera
calibration.

EKF Pose Estimation
Although VO accurately computes a relative pose between two

pairs of stereo images, VO suffers from drift accumulation over
time. A low-cost GPS provides absolute locations that can be used

IS&T International Symposium on Electronic Imaging 2017
Intelligent Robotics and Industrial Applications using Computer Vision 2017 11

to correct VO drift. We fuse data from VO and GPS to achieve more
accurate localization both locally and globally, using an EKF.

EKF pose estimation is composed of two steps: prediction
and correction. In the prediction step, the robot pose ࢞ෝ௦ and its
covariance ࡼ෡௦ at time s can be predicted by

ෝ௦࢞ ൌ ݂ሺ࢞௦ିଵ, ௦ሻ࢛	
෡௦ࡼ ൌ ௫்ࡲ෡௦ିଵࡼ௫ࡲ ൅ ௨்ࡲ௦ࡽ௨ࡲ

where ࢛௦ is the relative robot pose computed by VO between two
robot poses. As the robot pose ࢞ෝ௦ can be represented by (ݔො௦, ݕො௦, (෠௦ߠ
in the 2D environment, the prediction function ݂ሺ࢞௦ିଵ, ௦ሻ can be࢛	
represented by

ො௦ݔ ൌ 	 ො௦ିଵݔ ൅	ߜ௫
ො௦ݕ ൌ ො௦ିଵݕ	 ൅	ߜ௬
෠௦ߠ ൌ ෠௦ିଵߠ	 ൅	ߜఏ

where ߜ௫ and ߜ௬ are the relative translations in x-axis and y-axis
respectively. ߜఏ is the relative orientation between two robot poses.
These relative translations and orientation are computed by VO.
 ௨ are the Jacobians of the robot pose with respect to theࡲ ௫ andࡲ
previous pose and relative pose respectively. In the 2D environment,
 ௨ can be represented byࡲ ௫ andࡲ

௫ࡲ ൌ 	 ቎
1 0 െ݀ sin ෠௦ߠ
0
0

1
0

݀ cos ෠௦ߠ
1

቏

௨ࡲ ൌ 	 ቎
cos ෠௦ߠ െ݀ sin ෠௦ߠ
sin ෠௦ߠ
0

݀ cos ෠௦ߠ
1

቏

where ݀ is the Euclidean distance between ࢞ෝ௦ and ࢞ෝ௦ିଵ.

In the correction step, the robot pose ࢞௦ and its covariance ࡼ௦
can be corrected by

௦࢞ ൌ ෝ௦࢞ ൅ ௦࢜௦ࡷ
௦ࡼ ൌ ෡௦ࡼ െ ෡௦ࡼ௫ࡴ௦ࡷ

where ࡷ௦ ൌ ௫ࡴ෡௦ࡼ

்ሺࡿ௦ሻିଵ (Kalman gain), ࡿ௦ ൌ ௫ࡴ෡௦ࡼ௫ࡴ
் ൅

௪ࡴ௦ࢃ௪ࡴ
் , and ࢜௦	 ൌ 	௦ࢠ െ ݄ሺ࢞ෝ௦, ௪ are theࡴ ௫ andࡴ .ሻ࢝

Jacobians of the robot position with respect to the measured robot
position by GPS and measurement noise of GPS. ݄ሺ࢞ෝ௦, ሻ can be࢝
represented in the 2D environment by

݄ሺ࢞ෝ௦, ሻ࢝ ൌ 	 ൤
ො௦ݔ
ො௦ݕ
൨ ൅	ቂ

௫ݓ
 ௬ቃݓ

where ࢝ ൌ ሺݓ௫, .௬ሻ is the measurement noise of GPSݓ
Thus, ࡴ௫ and ࡴ௪ can be represented by

௫ࡴ ൌ 	
߲݄
ݔ߲

|௪ୀ଴ ൌ 	 ቂ
1 0 0
0 1 0

ቃ

௪ࡴ ൌ
߲݄
ݓ߲

|௪ୀ଴ ൌ 	 ቂ
1 0
0 1

ቃ

and ࢠ௦ obtained by GPS can be represented by

௦ࢠ ൌ 	 ቂ
௚ݔ
௚ቃݕ ൅	ቂ

௫ݓ
 ௬ቃݓ

 The prediction and correction steps are executed repeatedly
whenever new data is available from either VO or GPS. If new data
is available from both VO and GPS at time s, EKF estimates the
robot pose by running the prediction step and the correction step
sequentially. If new data is available from only VO at time s, EKF
updates the robot pose by running the prediction step only.

Obstacle Detection
This section presents the obstacle detection using dense stereo

matching. The algorithm is built based on two assumptions which
are reasonable in terms of the robot and automobile application.
First, the cameras are pre-calibrated and are mounted on the
platform with known pitch angle and height to the ground plane.
Second, the cameras have a smooth trajectory which can avoid
heavy computation related to rotation, scale invariant feature
descriptors. The assumptions allow us to project between world
coordinate system, camera coordinate system and image plane.

The first step of the algorithm is dense stereo matching. In this
system, we used the Library for Efficient Large-scale Stereo
Matching (LibELAS) [9] for stereo matching. The library is efficient
enough to achieve real-time matching result. Using the disparity
map, 3D coordinate can be calculated with camera matrix from
calibration. Given focal length f, principle point ሾݔ௖, ௖ሿ and baselineݕ
B, the 3D coordinates of a matched point in camera coordinate
system can be computed by the following equations:

ܺ௖ ൌ 	
݂ሺݔ െ ௖ሻݔ

݀

௖ܻ ൌ 	
݂ሺݕ െ ௖ሻݕ

݀

ܼ௖ ൌ 	
ܤ݂
݀

With ሾܺ௖, ௖ܻ , ܼ௖ሿ coordinate in camera coordinate system, the point
can be projected to world coordinate system using the extrinsic
camera matrix as follows:

൦

ܺ௪
௪ܻ
ܼ௪
1

൪ ൌ ቂࡾ ࢚
0 1

ቃ ൦

ܺ௖
௖ܻ
ܼ௖
1

൪ ൌ ൦

1 0 0 0
0 cos	ߠ െߠ݊݅ݏ െ݄
0 ߠ݊݅ݏ ߠݏ݋ܿ 0
0 0 0 1

൪ ൦

ܺ௖
௖ܻ
ܼ௖
1

൪

where ߠ is the pitch angle of the cameras facing down, ݄ is the height
of the cameras from the ground plane.
 When the point cloud is in the world coordinate system, the
next step is to remove the points that represent the road region. For
road point removal, RANdom SAmpling Consensus (RANSAC)
[10] algorithm is used. In the outdoor application, the most
dominant plane in a scene is the road plane. Based on this
assumption, RANSAC is used to fit just one plane. This algorithm
used the RANSAC algorithm in the Point Cloud Library (PCL) to
estimate planes. While it is powerful, it also requires a heavy
computation time considering the number of points in a point cloud.
So the plane estimation process was designed to work periodically,
instead of being active every frame in order to be able to run online.
To make plane estimation more computation efficient, some
optimizations are made to the algorithm. The primary reason of the
costly computation time is the large number of points as input to the
RANSAC algorithm. Before, we used all the points generated from
disparity map. Because the random sampling process, it requires all
the points are included in error measurements. The large number of

12
IS&T International Symposium on Electronic Imaging 2017

Intelligent Robotics and Industrial Applications using Computer Vision 2017

outliers also increases the number of iterations intensively. The
optimization here is to limit the input size.
 Since the goal of the algorithm to estimate ground plane, we
can limit the input points to be in a certain region in the 3D space.
Using the points in this region can still estimate the ground plane
accurately, because the ground is still the dominant plane in the
subsample of the point clouds. The sub sample point cloud also has
less outliers, such as sky, trees, thus the algorithm can converge in
fewer iterations. It can reduce the computation time of RANSAC
algorithm and achieve real-time speed.
 After the ground plane is estimated, the inliers of this plane are
removed. The remaining points are then project the points into an
occupancy grid. Occupancy grid is a 2D grid map with each grid cell
representing a block in the 3D space. Points are projected to the
ground plane and into different cells on the grid map based on their
location. A cell is considered as an obstacle once the number of
points in the cell reaches a pre-defined threshold.

Local Path Planning
To avoid obstacles and regenerate the path, we implement local

path planning. Local path planning uses EKF pose estimation and
Obstacle Detection (OD) presented in the previous sections. EKF
pose estimation provides the robot pose for local path planning to
localize the robot in the world coordinate. OD generates an
occupancy grid map which is used for local path planning to avoid
obstacles. We implement a Tangent Bug (TB) algorithm for local
path planning.

TB is capable of finding the shortest path to the goal when a
robot has a finite range sensor. TB has two basic behaviors: 1)
moving toward the goal; 2) following the boundary of a concave
obstacle. When the robot encounters obstacles, TB finds a waypoint
which minimizes the travel path to the goal. In addition, TB can
follow the boundary of a concave obstacle until it clears that obstacle
and resume a path toward the goal point.

TB can be described as shown in Algorithm 1, 2 and 3.
Whenever a new image pair (i.e., left and right images) is obtained
from a stereo camera, TB computes a robot pose using EKF pose
estimation and generates an occupancy grid map using OD (Line 3
and 4 in Algorithm 1). In 2D environments, a robot pose can be
parameterized as x= [x, y, θ], where [x, y] is the translation and θ is
the orientation in the world coordinate W. The occupancy grid map
can be presented as M = {m1, m2, …, mn}, where mn is the nth grid
cell in the robot coordinate. In the occupancy grid map, each cell has
1 or 0. If a cell is occupied by obstacles, it has 1. Otherwise, the cell
has 0. Figure 4 depicts a robot pose in the world coordinate and an
occupancy grid map in the robot coordinate.

If the occupancy grid map has obstacles (Line 6-8 in Algorithm
1), TB finds a temporary waypoint n which minimizes the following
cost function

݄ሺ࢞, ሻ࢔ ൌ ݀ሺ࢞, ሻ࢔ ൅ ݀ሺ࢔, ሻࢍ

where d(n, g) is the Euclidean distance between a temporary
waypoint n and the goal g. d(x, n) is the Euclidean distance between
the current robot location x and a temporary waypoint n. Temporary
waypoints N = {n1, n2, …, nk} are selected by Algorithm 2. n is
selected among unoccupied grid cells around the occupied grid cells.
If there is no unoccupied grid cells in the nearest row of the map,
the right location of the most right occupied grid cell in the nearest
row is selected as a temporary waypoint because we assume the area
out of the grid map is obstacle-free.

If the cost function h(x, n) increases, TB begins to follow the
boundary of a concave obstacle (Line 10 and 17 in Algorithm 1). In
the boundary following algorithm (Algorithm 3), TB continues to
follow the boundary of the concave obstacle and updates dreach and
dfollowed, where dreach is the shortest distance between the robot and
the goal and dfollowed is the shortest distance between the sensed
boundary and the goal, respectively (Line 1-2 in Algorithm 3). If
dreach < dfollowed, TB terminates the boundary following (Line 3-4 in
Algorithm 3) and moves the robot toward the goal.

Figure 4. Robot pose relative to world coordinate system, and occupancy grid
map (based on robot obstacle perception) relative to local robot coordinate
system.

IS&T International Symposium on Electronic Imaging 2017
Intelligent Robotics and Industrial Applications using Computer Vision 2017 13

Experimental Results
We implemented the proposed autonomous navigation system

using ROS [22] and evaluated the autonomous navigation system
with a mobile robot as shown in Figure 5. The mobile robot consists
of a Jaguar4x4 wheel [23], two Pointgrey Chameleon cameras [24]
for a stereo vision, a u-blox GPS evaluation Kit [25], and a mini-
computer. VO updates a relative robot pose at 15 Hz and GPS
updates a absolute robot position at 3 Hz. The mobile robot runs at
1 m/s of speed in the experiment.

Figure 5. Mobile robot

We evaluated the real-time stereo vision-guided navigation
system in outdoor environments on long trajectories (e.g. ~430
meter) as shown in Figure 6. We generate a waypoint list which
includes three waypoints. Two waypoints are generated at the corner
of the trajectory and one waypoint is generated at the end point of
the trajectory. Each waypoint is composed of the waypoint location
and the target orientation of the robot at the waypoint.

Once the robot starts, a waypoint follower drives the robot
toward the first waypoint. The waypoint follower computes the
translational and rotational velocity of the robot using the distance
and orientation difference between the estimated robot pose and the
first waypoint. The translational and rotational velocity is used for
Jaguar4x4 controller to run the robot. If the robot detects an obstacle,
local path planning generates a temporary waypoint to avoid the
obstacle and the waypoint follower drives the robot toward the
temporary waypoint. If the robot reaches the temporary waypoint,
the waypoint follower resumes the path toward the first waypoint.
Once the robot reaches the first waypoint, the waypoint follower
drives the robot toward the second waypoint. After passing the first
and second waypoints, the robot stops at the last waypoint.

The experimental results show that: 1) the proposed
autonomous system allows the robot to run along the path and arrive
at the end point successfully; 2) the final position error at the end
point is about 3 meter as shown in Figure 7; 3) stereo vision-based
obstacle detection is able to detect low curbs at the side of the road;
4) local path planning successfully generates a temporary waypoint
for avoiding low curbs; 5) autonomous navigation in this
environment is not yet robust, due to limited precision of location
and pose estimation and due to limited mapping capability.

Figure 6. Trajectories of VO, GPS and EKF pose estimation and detected
obstacles. Red rectangles represent detected obstacles along the trajectory.

Figure 7. Final position error at the end point

Conclusion
We proposed the real-time autonomous navigation system

using only a stereo camera and a low-cost GPS. The proposed
method is composed of VO, EKF pose estimation, obstacle
detection, local path planning, and a waypoint follower. EKF pose
estimation computes the robot pose by fusing VO and GPS.
Obstacle detection and local path planning avoid obstacles on the
path. The waypoint follower generates transitional and rotational
velocity to drive the robot toward a waypoint or a temporary
waypoint. The proposed method is successfully demonstrated in
outdoor environments.

In the future study, we will improve pose estimation by using
additional a low-cost sensor such as IMU. In addition, we will try to
build a map to improve accuracy of pose estimation and robustness
of autonomous navigation.

References
[1] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, J. Dolan, D.

Duggins, D. Ferguson, T. Galatali, C. Geyer, M. Gittleman, S.
Harbaugh, M. Hebert, T. Howard, A. Kelly, D. Kohanbash, M.
Likhachev, N. Miller, K. Peterson, R. Rajkumar, P. Rybski, B.
Salesky, S. Scherer, Y. Woo-seo, R. Simmons, S. Singh, J. Snider, A.
Stentz, W. R. Whittaker, J. Ziglar, J. Struble, and M. Taylor, “Tartan
Racing: A Multi-Modal Approach to the DARPA Urban Challenge,”
Defense, vol. 94, no. 4, pp. 386–387, 2007.

14
IS&T International Symposium on Electronic Imaging 2017

Intelligent Robotics and Industrial Applications using Computer Vision 2017

[2] C. Stiller and J. Ziegler, “3D perception and planning for self-driving
and cooperative automobiles,” International Multi-Conference
System Signals Devices, pp. 1–7, 2012.

[3] C. Siagian, C. K. Chang, and L. Itti, “Autonomous Mobile Robot
Localization and Navigation Using a Hierarchical Map
Representation Primarily Guided by Vision,” Journal of Field
Robotics, vol. 31, no. 3, pp. 408–440, 2014.

[4] M. Bibuli, M. Caccia, and L. Lapierre, “Autonomous Driving in
Urban Environments: Boss and the Urban Challenge,” IFAC Proc.,
vol. 7, pp. 81–86, 2007.

[5] F. Dayoub, T. Morris, B. Upcroft, and P. Corke, “Vision-Only
Autonomous Navigation Using Topometric Maps,” IEEE
International Conference on Intelligent Robots and Systems, pp. 3-7,
2013.

[6] H. Morioka, S. Yi, and O. Hasegawa, “Vision-based mobile robots
SLAM and navigation in crowded environments,” IEEE Int. Conf.
Intell. Robots and Systems, pp. 3998-4005, 2011.

[7] K. Konolige, E. Marder-Eppstein, B. Marthi, “Navigation in hybrid
metric-topological maps,” IEEE International Conference on
Robotics and Automation (ICRA), pp. 3041-3047, 2011.

[8] M. Agrawal, K. Konolige, and R. C. Bolles, “Localization and
mapping for autonomous navigation in outdoor terrains: A stereo
vision approach,” IEEE Workshop Applications of Computer Vision (
WACV), 2007.

[9] A. Geiger, M. Roser and R. Urtasun, “Efficient Large-Scale Stereo
Matching,” Asian Conference on Computer Vision (ACCV), 2010.

[10] M. Fischler and R. C. Bolles, “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography,” Communications of the ACM, vol. 24, pp.
381-395, 1981.

[11] Camera Calibration Toolbox for Matlab
https://www.vision.caltech.edu/bouguetj/calib_doc/

[12] J. Heikkila and O. Silven, “A Four-step Camera Calibration
Procedure with Implicit Image Correction,” Conference on Computer
Vision and Pattern Recognition (CVPR), 1997.

[13] A. Geiger, J. Ziegler and C. Stiller, “StereoScan: Dense 3D
Reconstruction in Real-time,” Intelligent Vehicles Symposium, 2011.

[14] B. Kitt, A. Geiger and H. Lategahn, “Visual Odometry based on
Stereo Image Sequences with RANSAC-based Outlier Rejection
Scheme,” Intelligent Vehicles Symposium, 2010.

[15] J. Engel, J. Sturm, D. Cremers, “Semi-Dense Visual Odometry for a
Monocular Camera,” IEEE International Conference on Computer
Vision (ICCV), 2013.

[16] K. Konolige, M. Agrawal, R. C. Bolles, C. Cowan, M. Fischler, and
B. Gerkey, “Outdoor mapping and navigation using stereo vision,”
International Symposium on Experimental Robotics (ISER), pp. 179-
190, 2006.

[17] V.J. Lumelsky and A.A. Stepanov, “Path-planning strategies for a
point mobile automation moving amidst obstacles of arbitrary shape,”
Algorithmica, pp. 403-430, 1987.

[18] J. Borenstein and Y. Koren, “The vector field histogram- fast obstacle
avoidance for mobile robots,” IEEE Journal of Robotics and
Automation, vol. 7, pp. 278-288, 1991.

[19] C. Siagian, C. Chang and L. Itti, “Mobile robot navigation system in
outdoor pedestrian environment using vision-based road recognition,”
IEEE International Conference on Robotics and Automation, pp. 564-
571, 2013.

[20] K. Sabe, M. Fukuchi, J. Gutmann, T. Ohashi, K. Kawamoto, T.
Yoshigahara, “Obstacle avoidance and path planning for humanoid
robots using stereo vision,” IEEE International Conference on
Robotics and Automation, vol. 1, pp. 592-597, 2004.

[21] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” IEEE International Conference on Robotics and
Automation (ICRA), pp. 802-807, 1993.

[22] Robot Operating System, http://www.ros.org/

[23] Jaguar4x4 wheel, http://jaguar.drrobot.com/specification_4x4w.asp

[24] Pointgrey chameleon camera, https://www.ptgrey.com/chameleon-
usb2-cameras

[25] u-blox 7 GNSS evaluation kits, https://www.u-
blox.com/en/product/evk-7p

Author Biography
Soonhac Hong received his BS and MS in mechanical engineering from
Hanyang University (1994,1996), MS in computer science from Columbia
University (2010) and PhD in engineering science and systems from
University of Arkansas at Little Rock (2014). Since then he has worked at
Sharp Laboratories of America, WA. His work has focused on visual
Simultaneous Localization and Mapping (SLAM) and autonomous robot
navigation.

Ming Li received his BS from Wuhan University in China (2011), MS in
imaging science from Rochester Institute of Technology (2015). He is a
researcher and engineer at Sharp Laboratories of America. His work
mainly focuses on autonomous robot navigation and computer vision.

Miao Liao received his BS in school of software from Tsinghua University
(2005), and PhD in Computer Science from University of Kentucky (2011).
Currently, he is a Senior Researcher at Sharp Labs of America. His
research interests include image processing and image-based 3D sensing
& modeling.

Peter van Beek is a group manager and project leader at Sharp Labs of
America. His interests are in signal / image / video processing, computer
vision and machine learning, From 1996 to 1998, he was a research
associate with the Department of Electrical and Computer Engineering at
the University of Rochester. Peter received the M.Sc.Eng. and Ph.D.
degrees in Electrical Engineering from the Delft University of Technology,
the Netherlands (1990 and 1995).

IS&T International Symposium on Electronic Imaging 2017
Intelligent Robotics and Industrial Applications using Computer Vision 2017 15

