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Abstract. The determination of local components in human skin
from in vivo spectral reflectance measurements is crucial for
medical applications, especially for aiding the diagnostic of skin
diseases. Hyperspectral imaging is a convenient technique since
one spectrum is acquired in each pixel of the image, and by inverting
a light scattering model, we can retrieve the concentrations of skin
components in each pixel. The good performance of the method
presented in this article comes from both the imaging system and the
model. The hyperspectral camera that we conceived uses polarizing
filters in order to remove gloss effects generated by the stratum
corneum; it provides a high-resolution image (1120 × 900 pixels),
with a thin spectral sampling of 10 nm over the visible spectrum. The
acquisition time of 2 seconds is short enough to prevent movement
effects of the imaged area, which is usually the main issue in
hyperspectral imaging. The model relies on a two-layer model for
the skin, and the Kubelka–Munk theory with Saunderson correction
for the light reflection. An optimization method enables computing,
in less than one hour, several skin parameters in each of the million
of pixels. These parameters (blood, melanin and bilirubin volume
fractions, oxygen saturation. . . ) are then displayed under the form
of density images. Different skin structures, such as veins, blood
capillaries, hematoma or pigmented spots, can be highlighted. The
deviation between the measured spectrum and the one computed
from the fitted parameters is evaluated in each pixel. c© 2016
Society for Imaging Science and Technology.

INTRODUCTION
Skin chromophores and their influence on skin color per-
ception are a major concern in dermatology and cosmetics
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in order to evaluate pigmentation issues.1–3 Noninvasive
imaging systems of the skin are used in a wide range
of clinical applications in the last decades, particularly
in order to get information on pigmentation disorders:
melanin index, port wine vein, vitiligo, erythema. . .4,5 Since
pigmentation determines the spectral reflectance of the skin,
the best way to observe it is to make images in different
spectral bands, either in three wide spectral bands as in
classical RGB imaging,6,7 or in more than 10 short spectral
bands as in multispectral imaging.8,9 There already exist
several multispectral imaging instruments for skin observa-
tion in the marketplace (e.g. SIAscope from Astron Clinica
Limited, or MelaFind from Mela Sciences, . . .) generally
dedicated to specific measurements. In the present study,
we used the hyperspectral camera that we developed and
presented in Hyperspectral Imaging System, SpectraCamr,
whose spectral and spatial resolutions are higher than the
aforementioned ones, thus permitting more accurate skin
analysis.

The concentration and localization of chromophores
and photophores in the skin cannot be measured directly
by optical device, but they can be deduced from light
signal captured by the imaging system, by using a spectral
reflectance model for the skin taking into account the
spectral absorbance of the chromophores.10 Two main
approaches are usually followed in the literature: Monte-
Carlo simulation, and two-flux models. The Monte-Carlo
method consists of a stochastic stimulation of light paths in
the skinwithmultiple interactions with scatterers.1,11–14 The
drawback of this method is that it cannot be easily reversed
in order to deduce skin parameters frommeasured spectra:15
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several minutes are needed for treating one spectrum, even
with fastenedmethods such as the adaptivemethodproposed
by Spanier.16 The two-flux models rely on a physical model
of light propagation which can be seen as a special solution
of the radiative transfer equation, standing in case of
strong scattering. The Kubelka–Munk model predicts the
reflectance and transmittance of one homogeneous layer as
a function of its thickness,17 and the Kubelka compositional
model can predict the reflectance and transmittance of stacks
of homogeneous layers.18 Two-flux models have been used
in a wide range of applications, included skin analysis,3,19–21
most of the time without Saunderson correction,22 which
means that the optical effect of the air–skin interface is
not taken into account. More advanced models describe
more thinly the scattering of light by the skin tissues,
especially the angular distribution of the scattered light,
thanks to methods based on the radiative transfer theory
with a multilayer model.15,23,24 This approach is physically
more rigorous but difficult to use in practice due to the
required computation time for computing the parameters
from bidirectional spectral reflectance measurements. The
number of parameters should be also restricted in order to
guarantee uniqueness of the solution in the optimization
process.25

The method that we present in this article relies
on the Kubelka–Munk model with Saunderson correction
(Kubelka–Munk Model and Saunderson Correction), by
considering the simplified model for skin tissues presented
in Simplified Skin Model. The inversed model, fastened by
an optimized algorithm, enables fast computation of five
skin parameters: epidermis depth, melanin volume fraction,
blood volume fraction, oxygen saturation and bilirubin
volume fraction. These parameters can be displayed under
the form of density maps.3 The estimation error between
simulated and real spectrum is computed using least square
and spectral angle similarity (SAS).26 In order to verify the
performance of the method, acquisitions were made on ten
Caucasian skins to correlate results reported by previous
works27,28 and pigment maps were compared to literature29
(Experimental Testing).

HYPERSPECTRAL IMAGING SYSTEM
The imaging system that we used is a modular device
for hyperspectral imaging, SpectraCamr, developed by
Newtone Technologies, France. In its standard mode, it can
capture up to 31 images in different thin wavebands of the
visible spectrum (400–700 nm), every 10 nm. For specific
clinical applications, it can also capture one image every 1 nm
through a spectral band of 10 nm. The surface is illuminated
at approximately 8◦ from its normal by four large visible
band power LEDs symmetrically disposed around optical
axis (see Figure 1). The acquisition time for each waveband is
selected in order to prevent saturation while ensuring good
signal-to-noise ratio. The total acquisition time for the 31
images is 2.5 seconds, which is appreciable formeasurements
on alive surfaces: the risk of movement is low, and the images

Figure 1. SpectraCam (left) and its schematic (right). Light emitted by
LEDs is transmitted through the polarizers (P.) and reflected by the skin. A
tunable filter (TF) let pass a specific wavelength and is used as analyzer.
The resulting image is captured by a monochromatic camera.

corresponding to the different wavelengths are most often
perfectly registered with each other.

In order to avoid artifacts due to the specular reflection
of light by the skin surface (gloss), the system integrates
two polarization filters, one for polarizing the incident
light, another one for the reflected light. This system
uses the fact that when the incident light is polarized,
the light reflected by the surface of a dielectric medium
has similar polarization as the incident light, whereas the
light scattering into the diffusing medium is unpolarized.
Thus, when the second polarizing filter is parallel to the
first one (Parallel-Polarization mode, hereinafter denoted as
PP), it transmits both the specular and diffused reflected
light components. When it is perpendicular to the first
filter (Cross-Polarization mode, CP), it transmits only the
diffused light, without the specular reflected component (see
Figure 2).

For an analysis of the pigment composition of the skin,
the CP mode is preferable since information is deduced
from the spectral distribution of the diffused reflected light.
The PP mode is useful for an analysis of the skin surface
structure, highlighted by the specular reflectance. Note that
the specular reflected light can be computed by subtracting
the CP-image to the PP-image.

The SpectraCamr device also enables analyzing flu-
orescence emission by photophores thanks to a UV-A
lamp emitting around 365 nm. Thirty-one images are
captured corresponding to the same wavelengths as for the
chromophores analysis. When the UV lamp is on and the
white light off, the measured spectrum corresponds to the
fluorescence emittance. This mode is not used in the present
study.

The repeatability of the spectral measurement system is
similar to spectrophotometers used in color reproduction:
the standard deviation over 10 measurements on a same
white ceramic, expressed in CIELAB 19761E∗ab, is 0.09 unit
with our system, therefore comparable to the KonicaMinolta
CM-700d instrument (0.04 unit on the same sample) and the
X-Rite SP62 instrument (0.05 unit).

KUBELKA–MUNKMODEL AND SAUNDERSON
CORRECTION
The Kubelka–Munk model describes the propagation of
diffuse natural light within a layer of homogeneous scattering
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Figure 2. Same skin area observed by the hyperspectral imaging system in cross-polarization mode (left) or parallel-polarization mode (center); subtracting
the two images yields the gloss image displayed on the right. Here, hyperspectral images are converted into RGB color images.

and absorbing medium, characterized by its thickness h, its
linear absorption coefficient K and its linear backscattering
coefficient S.17 The fluxes i and j propagating respectively
forwards and backwards within the layer satisfy at every
depth z the following system of differential equations

di
dz
=−(K + S)i(z)+ Sj(z)

dj
dz
=−Si(z)+ (K + S)j(z).

(1)

By integrating these differential equations,30 one obtains
the following expressions for the reflectance R and the
transmittance T of the layer:

R=
sinh(bSh)

b cosh(bSh)+ a sinh(bSh)
, (2)

and
T =

b
b cosh(bSh)+ a sinh(bSh)

, (3)

with
a= (K + S)/S and b=

√
a2− 1. (4)

As the layer thickness tends to infinity, the reflectance tends
to the limit

R∞ = a− b=
K + S−

√
K (K + 2S)
S

(5)

and the transmittance obviously trends to 0.
When the layer is on top of an opaque background with

reflectance ρg , the reflectance becomes30

Rg =
(1− aρg ) sinh(bSh)+ bρg cosh(bSh)
(a− ρg ) sinh(bSh)+ b cosh(bSh)

. (6)

Note that since absorption and scattering coefficients gener-
ally depend on wavelength, all reflectance and transmittance
expressions also depend on wavelength.

Most of the time, the refractive index of the layer is
different from the one of the surrounding medium, e.g., air.
The reflectance Rg of the layer with background, expressed
by Eq. (6), is thus transformed into the following one

RS = rs+
TinToutRg
1− riRg

(7)

where the terms rs, Tin and Tout are derived from the
Fresnel formulas according to the measuring geometry.31
This expression generalizes the Saunderson correction for
the Kubelka–Munk model for any measuring geometry (in
his original article, Saunderson considered illumination at
45◦ from the normal of the layer, and observation in the
normal of the layer).22 For the 8◦ : 0◦ geometry, one has

rs = 0

Tin = Tfresnel(8◦)= 1−Rfresnel(8◦)

Tout = Tfresnel(0◦)/n2,

(8)

where n is the refractive index of the layer and the factor
1/n2 introduces the fact that the captured radiance has been
spread into a larger cone when crossing the interface due
to refraction.31 Note that rs = 0 because the incident and
reflection are different; it is also zero when the specular
reflection is removed by polarization filtering. Moreover, it
has been shown that Tin, Tout and ri are almost not modified
by eventual roughness of the surface.32

SIMPLIFIED SKINMODEL
Human skin has a multilayer structure where each layer
has specific optical properties. Depending on the optical
model that is used, the considered number of layers is 2,
3, 5, 7, or even more (Refs 33, 34, 44–47, respectively).
Anderson19 considers a two-layer system: epidermis (which
contains melanin) and dermis (containing collagen fibers
as scatterers), and blood and its derivatives as absorbers,
among which is hemoglobin (Hb), oxyhemoglobin (HbO2),
bilirubin, as well as β-carotene. We adopted a similar two-
layer structure (see Figure 3). We considered the epidermis
as a diffusing layer with refractive index n= 1.4, thickness h,
absorption coefficient Ke and scattering coefficient Se, and
the dermis as a diffusing layer with absorption coefficient
Kd and scattering coefficient Sd . The dermis thickness is
assumed infinite and its refractive index identical to the one
of the epidermis. For this structure where a diffusing layer
is on top of a background, Eq. (7) applies. Surprisingly, the
optical effect of the air–skin interface (here modeled by the
Saunderson correction) is ignored in most works referred
to in this article, except in Ref. 24 where specific bounding
conditions are used in the auxiliary function method for
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Figure 3. Skin model with two layers. Epidermis is composed of
baseline (b.) and melanin (m.) and has a thickness h. Dermis is composed
of baseline (b.), deoxyhemoglobin (Hb.), oxyhemoglobin (HbO2) and
bilirubin (bi.). Its thickness is assumed to be infinite.

solving of the radiative transfer equation. Ignoring the
reflections and refractions of light at the skin surface is in
contradictionwith the optical laws and introduces significant
error in the skin reflectance model.

For the spectral scattering coefficients of the epidermis
and dermis, and the spectral absorption coefficients of the
skin pigments used in our model, we referred to Ref. 27.
The absorption coefficients of the two layers depend on the
pigments contained in them and their respective volume
fraction: according to the Beer–Lambert–Bouguer law,35 the
spectral absorption coefficient of the absorber mixture is
a linear, additive combination of the spectral absorption
coefficients of the individual absorbers, weighted by their
respective concentration.36

The epidermis contains a baseline with absorption
coefficient Kb(λ), and melanin with absorption coefficient
Km(λ) and volume fraction cm. The absorption coefficient of
the epidermis is therefore

Ke(λ)= (1− cm)Kb(λ)+ cmKm(λ). (9)

With this absorption coefficient Ke(λ) and the scattering
coefficient Se(λ), the reflectance Re and transmittance Te of
the epidermis can be computed as a function of its thickness
h by using Eqs. (2) and (3).

The dermis contains the same baseline as the epi-
dermis (absorption coefficient Kb(λ)), deoxyhemoglobin
Hb (absorption coefficient KHb(λ) and volume fraction
cHb), oxyhemoglobin Hb02 (KHb02(λ), cHb02) and bilirubin
(Kbi(λ), cbi):

Kd(λ)= cbKb(λ)+ cHbKHb(λ)+ cHb02KHb02(λ)+ cbiKbi(λ)
(10)

with cb = 1− (cHb+ cHb02+ cbi). With this absorption coef-
ficientKd and the scattering coefficient Sd , the reflectanceRd
of the dermis can be computed using Eq. (5).

MODEL INVERSION FOR THE COMPUTATIONOF
THE SKIN PARAMETERS
The spectral reflectance of the skin is given by Eq. (7), with
Rg (λ) given by Eq. (6). In the expression for Rg (λ), the
background reflectance ρg (λ) is replaced with the dermis
reflectance Rd(λ) expressed by Eq. (5) as a function of Sd(λ)
and Kd(λ) (Eq. (10)); the reflectance R and transmittance T
of the epidermis are respectively expressed by Eqs. (2) and (3)

as functions of Se(λ) andKe(λ) (Eq. (9)). For each pixel of the
hyperspectral image, one fits the pigment concentrations and
the epidermis thickness as values for which the error between
the spectrum Rp(λ) predicted by our reflectance model and
the measured spectrum Rm(λ) is minimal. Two errors where
implemented as cost function to optimize the model, a
classical least square error (Eq. (11)) and the Spectral Angle
Similarity (SAS) (Eq. (12)):37

{cm, cHb, cHbO2, cbi, h} =
argmin

cm, cHb, cHbO2 , cbi, h∑
(Rp(λ)−Rm(λ))2 (11)

{cm, cHb, cHb02, cbi, h} =
arg min

cm, cHb, cHb02, cbi, h arccos( ∑
Rp(λ)Rm(λ)[∑

R2
p(λ)

] [∑
R2
m(λ)

]) . (12)

The optimization yielding the parameter values relies on the
Nelder–Meadmethod.38 The fact that the different pigments
have different absorption bands insures a unique solution
for this optimization process. In order to verify the stability
of the obtained values of parameters, we introduced small
variations in the hyperspectral image and observed that the
variations of the parameter values were low. Moreover, we
could verify that a bijective relationship exists between the
parameter values and the reflectance spectra, which means
that the model can be reversed. This enables attributing
a unique set of parameters to every reflectance spectrum
of skin. The five parameters are computed for each of the
1,008,000 pixels in less than one hour (3.4 ms per pixel). The
computation speed optimization that has been achieved is an
advantage for medical applications: it remains important for
immediate clinical diagnosis but is acceptable for offline data
evaluation in the context of clinical trials.

From the obtained set of parameters, one may compute
again the skin reflectance and compare it to the measured
ones. This enables assessing the relevance of the parameter
values and the accuracy of the model. The deviations may
come from the presence of other pigments, nonmodeled
optical phenomena, or local variations of the optical
properties of the skin which are not taken into account in
our model. The SAS metric is computed for each pixel of the
image and can be also displayed under the form of density
images.

EXPERIMENTAL TESTING
Clinical experiments were performed onto 10 Caucasian
subjects with phototypes I (fair skin) to III (light brown
skin) on the Fitzpatrick scale,39,40 5 males and 5 females
between 20 and 50 years old. Seven areas of interest were
observed on each subject, located on the right and left inner
forearms, on the right and left cheeks and on the forehead.
This makes a set of 70 hyperspectral images. The size of each
area is 5 cm× 4 cm (1120× 900 pixels). The SAS value has
been shown to be less sensitive than least square error to
irradiance variation across the image, especially visible on
oxygen saturation maps (Figure 4).
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(a) (b) (c)

(d) (e) (f)

Figure 4. Color images (a and d), and oxygen saturation images reconstructed using a least square cost function (b and e) and a SAS cost function
(c and f).

Table I. Skin parameters estimated from 7 areas on 10 Caucasian subjects.

Skin parameter Estimated value* Data from the literature

Epidermis thickness 41± 8 µm 34± 4 µm Ref. 41
Melanin volume fraction 15± 5.7% 1.3–43% Ref. 27
Blood volume fraction 5.5± 3.7% 2–5% Ref. 27
Oxygen saturation 50± 15% 25–90% Ref. 42
Bilirubin volume fraction 0.35± 0.15% 0.3–1.2 mg/dL Ref. 43**

*Average over the 10 Caucasian subjects and standard deviation.
**This concentration of bilirubin is measured in serum whereas our measurement is an
effective volume fraction in the skin.

Computed over all pixels of the 70 hyperspectral images,
the SAS value was 0.044, which is of the same order
as the value 0.017 given in Ref. 3 where this value can
theoretically vary from 0 to I/2. Average skin parameters and
their standard deviation, obtained from the 70 hyperspectral
images, are given in Table I. Except from the epidermis
thickness that is overestimated compared to literature, all
parameters fit in the range detailed in previous works. An
originality of our study is the estimation of the bilirubin
volume fraction by hyperspectral imaging.

We compared ourmethod with themethod proposed by
Stamatas et al., a reference work in the literature in which
spectral data are used to estimate melanin, oxyhemoglobin
and deoxyhemoglobin.29 In both methods, we combined
oxy- and deoxyhemoglobin in order to obtain blood and
oxygenation values. Blood map is defined as the sum of oxy-

and deoxyhemoglobin concentrations and oxygenation as
the ratio between oxyhemoglobin and blood concentrations.

Blood capillaries network is roughly visible using
Stamatas et al. (Figure 5b) whereas it is more clearly defined
with the proposed method (Fig. 5e). Some pigmented spots,
visible in the color image are not identifiable in the Stamatas
et al. melanin maps (Fig. 5c) whereas they are well defined
in the proposed method (Fig. 5f). Furthermore, with the
proposed method, some of the spots can be differentiated
between the ones visible only on the melanin image and the
ones visible both in the melanin and blood images. Finally,
with the proposedmethod, oxygenationmap displays clearly
veins network (Fig. 5g) whereas they generate artifacts in
blood and melanin maps (Fig. 5b but Fig. 5a) and are not
visible in oxygenation maps (Fig. 5d) using the method by
Stamatas et al.

Figure 6 shows another example of observed skin
area, with a color image and relevant gray-level images
representing density images for three skin parameters: the
whole eyelid and eye contour blood irrigation is well
described in the blood image (Fig. 6b). The dark circle is
well defined on the oxygen saturation image (Fig. 6d). The
melanin image (Fig. 6a) shows no specific variations around
the eye helping the diagnosis between dark circles due to
oxygenation issues and eye contour hyperpigmentation.

CONCLUSIONS
The method presented in this article enables quantitative
estimation of pigment concentrations in each point of a given
area of human skin, and therefore display of their spatial
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 5. Color image (a) and blood (b), melanin (c) and oxygen (d) maps implemented using Stamatas et al. method29 compared with blood (e),
melanin (f) and oxygen (g) maps with the proposed method.

(a) (b)

(c) (d)

Figure 6. Color image (a), and density images of blood volume fraction
(b), melanin volume fraction (c) and oxygen saturation (d) issued from a
hyperspectral image of female eye contour (courtesy of Clarins S.A).

distribution. The good performance of the method comes
from the combination of a high-resolution hyperspectral
imaging system with polarizing filters, and an inverse model
based on the two-flux theory (Kubelka–Munk model in a
two-layer structure for the skin, with Saunderson correction
in order to take into account the internal reflections of
light at the skin–air interface). The use of cross-polarization
enables removing light reflections of the stratum corneum,
which may be an important error factor in chromophores
quantification. Themodel allows retrieving six parameters of

Caucasian skin: epidermis depth, melanin volume fraction,
blood volume fraction, oxygen saturation and bilirubin
volume fraction. The estimation of this latter parameter is
an originality of our work compared to the existing works.
Images of each of these parameters can be displayed to
observe different structures such as veins, blood capillaries,
hematoma or pigmented spots. A spectral deviation image
is also displayed to highlight structures that do not fit well
with the developed skin model. From the tests carried out in
this study, we observed good agreement between estimated
parameter values with our system and those available in
the literature. In the future, we would like to validate the
estimated parameters values with specific protocols in which
their variations are under control.
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