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Abstract
Image based measurement setups are widely used for multi-

directional reflectance measurements of materials. Different re-
flection models are used to estimate the material reflectance.

In this paper we use two commonly known simple reflection
models to evaluate an image based measurement setup proposed
in our previous studies. Sample material is measured at multi-
ple incident and viewing directions using the setup. The captured
data is divided into training and test set to evaluate the setup.
Two reflection models are trained using the training dataset. To
evaluate the measurement setup, one of the sample materials is
measured at few incident and viewing directions using a light
source and a Tele-Spectro-Radiometer (TSR). This measured data
is then compared with the reflectance estimated by the two reflec-
tion models.

Results shows that image based multi-directional reflectance
measurements can be performed using measurement setup pro-
posed in our previous work. The data captured using the setup
can be used to fit different reflections models for the sample ma-
terials used in this setup.

Introduction
Image based instruments that are relatively cheap and fast,

are being increasingly used in multi-angle reflectance measure-
ments of the material [1, 2, 3]. The multi-angle data captured
can be further processed (for example to estimate the material
BRDF). Where the need is to acquire fast and cheap measure-
ments, image based instruments can be a good alternative com-
pared to the expensive, time consuming, but precise instruments
(like Goniospectrometers). These measurements can then be used
to train reflection models to calculate the BRDF and simulate or
reproduce the material appearance. A number of reflection mod-
els are proposed till now which mainly aim towards fulfilling the
needs of the computer graphics field to simulate material appear-
ance in a given scence/situation. One of the main aims of the
computer graphics field is to accurately measure the appearance
of materials and simulate/reproduce synthetically the real object
using simple methods/techniques [4]. A Bidirectional Reflection
Distribution Function (BRDF) is a distribution function that de-
scribes the surface reflectance properties of opaque and homoge-
nous materials [5] as given in Equation (1).

fBRDF (θi,φi;θr,φr,λ ) =
dLr(θi,φi,θr,φr,Ei)

dEi(θi,φr)
(1)

Here, i and r denote incidence and reflection respectively. θ and φ

together indicate the direction, Ei is incident irradiance, Lr is radi-
ance and d is the differential. Guarnera [4] presented an overview

of the BRDF models used to represent surface/material reflection
characteristics. As discussed in [4], BRDF models can be clas-
sified into Physically-based models and Phenomenological mod-
els. Physically-based models are based on physics and optics and
are described using micro-facets of varying size and orientations.
One of the very well known and widely used physical models
is the Cook-Torrance [6] model. Phenomenological models are
approximations of the reflectance data using measured data and
fitting of the same using analytical models. Some of the com-
monly known phenomenological models are the Phong [7], Ward
[8], Lafortune [9], etc.

In our previous studies [3] we presented a measurement
setup which can perform multi-angle reflectance measurements
of homogenous, flexible materials in a fast and relatively cheap
way. In this setup, we mount the flexible sample onto a cylin-
der of known radius and measure using a RGB camera [10, 3].
The captured RGB data is converted into the colorimetric space
CIEXYZ using the conversion matrix M̂. Matrix M̂ is derived us-
ing the camera spectral sensitivity (measured using a monochro-
mator) and the CIE 2◦ colour matching functions by minimising
the error using least square technique [11]. This data can be used
further as training data to train different reflection models (like
Cook-torrance or Ward model) to estimate the sample BRDF and
simulate the material appearance.

The objectives of the work presented in this paper are:

• to estimate the surface reflectance properties of the sample
materials used in the experimental setup using the image
based multi-angle measurement setup proposed in previous
studies [3],

• to train different reflection models using the colorimetric
data captured with the image based multi-angle measure-
ment setup and evaluate the setup against measurements ob-
tained using a TSR,

• test the trained reflection models to predict the sample mate-
rial reflectance at different illumination and viewing direc-
tions.

Background
In order to evaluate the measurement setup we used 2 re-

flections models; Cook-Torrance (hereby referred as CT in this
paper) and Ward to fit the measurement data obtained in the mea-
surement setup by using the RGB camera [3]. The trained model
parameters were then used to estimate the BRDF measurement at
different incident and viewing directions. CT model is a physical
model that describes the intensity and spectral composition of the
light reflected from the object/material. CT model as described in
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Figure 1. Angles and vectors used in reflection equations.

[6] is given in Equation (2).

Ir = IiaRa +∑
l

Iil(n · l)ωl(sRs +dRd) (2)

Where, Ir is the total reflected intensity reaching the viewer, Iia
is the ambient light intensity, Ra is the ambient reflection compo-
nent, Iil is the incident light intensity for incident light l, n is the
normal vector as the given pixel point (P), l is the incident light
vector, ωl is the incident light solid angle, s and d are the specular
and diffuse component co-efficients dependent on the material be-
ing simulated/reproduced, Rs and Rd are the specular and diffuse
component of the model. The ambient Ra and diffuse Rd compo-
nent of the model reflect light equally in all directions and there-
fore are independent of the location of the observation, whereas,
the specular Rs component is dependent on the location of ob-
servation. For the specular component Rs, the angular spread is
described assuming that the surface consist of microfacets, whose,
normal is in the h direction and contributes in the specular com-
ponent of reflection. Vector h is the half angle vector between the
viewing vector v and incident light vector l such that l ·h = v ·h.
The specular component is given as

Rs =
FDG

π (n · l)(n ·v) (3)

where, F is the Fresnel term that describes how light is reflected
from each microfacet. G is the geometrical attenuation factor ac-
counting for the shadow and masking and D is the Beckmann dis-
tribution. n is the vector normal at the given pixel point (P), v is
the viewing vector and l is the illumination vector. G and D are
given as

G = min
{

1,
2(n ·h)(n ·v)

(v ·h)
,

2(n ·h)(n · l)
(v ·h)

}
D =

1
m2 cos4 α

e−[(tanδ )/m]2
(4)

where α is the angle between n and h (refer Figure 1), m is the
root mean square slope of the facet in the material (or roughness
co-efficient) and h is the half angle vector between v and l.

Ward model [8] is a phenomenological model with the aim to
fit measured reflectance data with a simple empirical formula.This
model represents both isotropic and anisotropic reflection and

uses a gaussian distribution for the specular peaks. As the sam-
ples used in this work are isotropic samples we use the isotropic
Ward model. The isotropic Ward model is given as

ρbdiso (θi,φi;θr,φr) =
ρd

π
+

ρs√
cosθi cosθr

e[− tan2 δ/α2]

4πα2
(5)

here ρbdiso is the bidirectional reflectance distribution for the
given isotropic sample material, ρd is the diffuse reflectance, ρs
is the specular reflectance, δ is the angle between vectors n̂ and
ĥ as shown in Figure 1, α is the standard deviation (RMS) of the
surface slope and 1/4πα2 is the normalisation factor.

Method
Sample measurement

Wax based inks printed on a matt coated white plotting paper
were used as test sample material to capture using the image based
multi-angle reflectance measurements. We used the OCE Color-
Wave 600 to print 7 different colour samples on matt coated white
plotting paper. These samples were measured using the measure-
ment setup [3] at 10 different illumination directions (θL = 5◦,
10◦, 15◦, 18◦, 20◦, 22◦, 25◦, 28◦, 30◦, and 35◦). A tungsten
point light source was used to illuminate the samples and Nikon
D200 DSLR camera as measurement sensor. Figure 2 shows the
captured image of the sample at θL = 15◦. Spectralon tile was
used as reference white in the scene. The incident (θi) and refec-
tion (θr) angles at given pixel points (P) were calculated for all
the illumination directions (θL). Raw images of the samples were
captured. No white balance or gamma corrections are performed
on the captured RGB data. The captured R, G and B intensities are
transformed into CIEXYZ colour space using the transformation
matrix M̂ derived using the camera spectral sensitivity (measured
using a monochromator) and the CIE 2◦ colour matching func-
tions by minimising the error using least square technique [11].

Training of the BRDF models
As the print samples are reproduced from wax inks, as can

be seen in the captured image (refer Figure 2), the samples show
some specularity but overall are diffuse. We train two BRDF mod-
els (CT and Ward) using the camera measurements of these sam-
ples. These samples are measured at 10 different incident light
directions (θL). Figure 3 and 4 show plots of the CIE Y for the
corresponding viewing angles (θr) for the samples Cyan and Pan-
tone 10309C measured at θL = 25◦ and 28◦. To train the 2 models
we use measurement data (hereby referred as training dataset) of
5 of these 10 incident light directions (particularly 5◦, 15◦, 20◦,
25◦ and 30◦). Figure 1 shows the sign convention followed for
the measurement angles in this paper. The same sign convention
is followed in the image based multi-angle measurement setup
and the TSR measurements performed.

Cook-Torrance model
Assuming that the samples are homogeneous, uniform and

non-florescent, to train the CT model, we insert the measurement
setup parameters in Equation (2). The camera colorimetric output
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Figure 2. Captured image of the samples.

−40 −20 0 20 40

θr

0.0

0.2

0.4

0.6

0.8

1.0

C
IE
X
Y
Z
_Y

cyanMeasured at θL =25 ◦

cyanMeasured at θL =28 ◦

Figure 3. CIEXYZ Y value, Cyan sample.
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Figure 4. CIEXYZ Y value, Pantone 10309C sample.

I(X ,Y,Z) at pixel points (P) will be,

IP =

IPX

IPY

IPZ

= IiaRa + Ii(n · l)(sRs +dRd) (6)

To simplify the optimisation of the CT model, we use s+d = 1.
Therefore,

IP =

IPX

IPY

IPZ

= IiaRa + Ii cosθi

ksRs +(1− ks)

RdX

RdY

RdZ

 (7)

Where, Rs is as defined in Equation (3), F is assumed as 1, D and
G are as defined in Equations (4), IiaRa = ambient light (assumed
as zero as the measurements are performed in dark conditions), Ii
= incident light intensity, θi = angle between the incident light di-
rection and normal to the sample surface, θr = angle between the
viewing direction and normal to the sample surface, ks =specular
coefficients of the sample material, Rs=specular reflectance com-
ponent, RdX ,Y,Z =spectral diffuse reflectance component, δ = n ·h =
cos((θi−θr)/2) at the given pixel point (P) in the used measure-
ment setup, n · l = cosθi, n ·v= cosθr. As the area on the sample
measured by the pixel being very small we absorb the solid angle
ωl term in the coefficients Ks and RdX ,Y,Z .

Ward model
As the training dataset is the colorimetric data obtained from

camera output in terms of RGB intensities, we train the Ward
model using the intensity measurements rather than as reflectance.
Also the measurements being planner, angle (φ ) can be ignored.
Inserting the measurement setup parameters in Equation (5)

IP (θi;θr) =

IdX

IdY

IdZ

= Ii cosθi


RdX

RdY

RdZ

 1
π
+

ks√
cosθi cosθr

e[− tan2 δ/m2]

4πm2


(8)

where, Ii = incident light intensity, θi and θr as explained in
the CT model, ks =specular coefficients of the sample mate-
rial, RdX ,Y,Z =spectral diffuse reflectance component, δ = cos((θi−
θr)/2) at the given pixel point (P) in the used measurement setup.

Reflection coefficients ks, RdX ,Y,Z and m are fitted and opti-
mised using the training dataset. Nelder-Mead down-hill sim-
plex algorithm [12] was used to optimise the coefficients using
the ∆E00 colorimetric difference as the error function. In order
to calculate the ∆E00 colorimetric difference, the CIEXYZ val-
ues were converted to CIELAB colour space using the same point
light source that was used in the image based multi-angle mea-
surement setup. The spectralon tile was measured using a Minolta
CS1000 TSR for a given incident light directions. Assuming the
spectralon tile as a perfect diffuser, these measurements were then
used as the reference white in the CIELAB calculations. Table 1
provides the optimized co-efficient obtained for the 7 samples us-
ing both the models.

Physical measurements using a TSR
To validate the image based multi-angle measurement setup

against physical measurements (e.g. performed using gonio- or
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multiangle measurement setup using spectrometers), we mea-
sured one of the sample material (Cyan) using the Minolta
CS1000 TSR at 4 different viewing directions (θr) for a given in-
cident direction (θi). The cyan sample is measured at θi = 40◦ and
θr =−10◦,0◦,10◦ and, 30◦. Spectralon tile was measured along
with the patch to normalise the radiance measurements and to cal-
culate the spectral reflectance. The obtained spectral reflectances
were converted to CIEXYZ colour space using the point light
source (used in the image based multi-angle measurement setup)
as the light source and transformed colour matching functions
Ĉ obtained using the matrix M̂ and the CIE 2◦ colour matching
functions as derived in [11]. The obtained CIE Y value was then
compared with the CIE Y value estimated using the trained CT
and Ward model for the same incident and viewing directions.
To estimate the CIEXYZ value using the BRDF models, we used
the co-efficients RdX ,RdY ,RdZ ,ks and, m (refer Table 1) that are
optimised using the camera measured training dataset. These co-
efficients are implemented in Equations (7) and (8) for θi = 40◦

and θr =−10◦,0◦,10◦ and, 30◦.

Table 1: Coefficients for the 7 samples optimised using the CT
and Ward model

Material RdX RdY RdZ ks m
CT model

Munsell white 1.175 1.131 2.215 0.042 0.393
Red 0.303 0.229 0.112 0.029 0.119
Cyan 0.517 0.519 1.465 0.068 0.230

Pantone 10309C 0.181 0.256 0.304 0.029 0.133
Magenta 0.499 0.374 0.651 0.079 0.222

Pantone 10213C 0.428 0.407 0.508 0.0 0.759
Pantone 10153C 0.426 0.324 0.219 0.095 0.252

Ward model
Munsell white 1.508 1.451 3.5 0.663 0.45

Red 0.537 0.351 0.251 0.061 0.122
Cyan 0.951 1.022 2.756 0.163 0.249

Pantone 10309C 0.377 0.514 0.579 0.061 0.134
Magenta 0.864 0.596 1.286 0.174 0.225

Pantone 10213C 0.265 0.188 0.607 0.085 0.143
Pantone 10153C 0.817 0.591 0.561 0.119 0.197

Results
We measured 7 sample materials at 10 different illumination

directions (θL). We used the measurement data captured at 5 il-
lumination directions as training data set to train the two models.
In order to test the performance of the trained models we use the
measured data from the remaining 5 illumination directions (par-
ticularly 10◦, 18◦, 22◦, 28◦ and 35◦ hereby referred to as test
dataset) and compared the data estimated by the trained models at
these illumination directions.

We use the ∆E00 colorimetric difference [13] to compare the
estimated and measured data. Table 2 shows the average, maxi-
mum and minimum colorimetric difference ∆E00 obtained using
the test dataset, between the camera measurements and the esti-
mated data for all the samples. Figure 5 shows the histogram plot
for the colorimetric difference calculated between the measured
and estimated CIEXYZ values for the training dataset of all the
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Figure 5. ∆E00 histogram calculated for all the samples measured and

estimated at the test dataset illumination angles using CT and Ward model.

samples. The average ∆E00 obtained using the Ward model is
1.14 while with CT model is 1.17 with maximum number within
the range of 0 to 2.0. From the histogram plot it can be observed
that both the models perform well with the image based measure-
ment setup for the samples used in this paper.

Table 2: Colorimetric difference (∆E00) between camera mea-
sured data and data estimated data using CT and Ward model
for all the samples

Material Avg.∆E00 Max.∆E00 Min.∆E00
CT model

Munsell white 0.61 3.37 0.06
Red 1.22 9.41 0.03

Cyan 0.91 3.65 0.11
Pantone 10309C 1.11 9.10 0.03

Magenta 1.45 7.47 0.07
Pantone 10213C 1.14 8.76 0.15
Pantone 10153C 1.75 10.86 0.14

Ward model
Munsell white 0.75 2.16 0.11

Red 1.14 9.61 0.07
Cyan 0.91 3.66 0.12

Pantone 10309C 1.06 9.32 0.02
Magenta 1.44 8.18 0.04

Pantone 10213C 0.99 8.06 0.06
Pantone 10153C 1.69 11.63 0.07

For discussions in this paper, we look at two samples (Cyan
and Pantone 10309C) out of these 7 samples measured at one il-
lumination angle (at θL = 28◦) from the test dataset. Figure 6
and 7 show the plots for the Cyan and Pantone 10309C sample,
measured and estimated CIE Y data, using these two models for
θL = 28◦. From the plots it can be observed that both the models
work well with the measurement data captured using this setup.
In order to evaluate the models colorimetrically, we calculate the
∆E00 between the measured data and the estimated data for all
the samples. For the viewing range of −40◦ to +40◦ where
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Figure 6. CIEXYZ Y value, Pantone 10309C sample, measured and esti-

mated at θL = 28 ◦ using Ward model.
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Figure 7. CIEXYZ Y value, Cyan sample, measured and estimated at θL =

28 ◦ using CT model.
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Figure 8. ∆E00 histogram calculated for the Cyan sample CIEXYZ values,

measured and estimated at the test dataset illumination angles using CT and

Ward model.
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Figure 9. ∆E00 histogram calculated for Pantone 10309C sample CIEXYZ

values, measured and estimated at the test dataset illumination angles using

CT and Ward model.
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Figure 10. CIE Y values measured using TSR and estimated using the

trained CT and Ward model.

the camera sensor is normal to the sample at θr = 0◦, the col-
orimetric difference obtained shows that we can expect an ok fit
using both the models. Figure 8 and 9 show the histogram plots
for the colorimetric difference ∆E00 between the measured and
CT/Ward model estimated CIE Y values for the Cyan and Pan-
tone 10309C sample. The trained models were compared with the
physical measurements performed using the manual gonio-setup.
Figure 10 shows the plots for the measured CIE Y data (using the
TSR setup) and the estimated CIE Y data (using both the trained
models) for the Cyan sample at θi = 40◦ and the viewing direc-
tions at which the physical measurements were performed.

Discussions
In this paper we used two BRDF models to evaluate an im-

age based multi-angle measurement setup. In total 7 samples were
measured using the image based setup at 10 different illumina-
tion directions (θL). The samples are print samples of process
and spot colours commonly used in package print industry. Wax
based inks were used as they show some specularity and can also
be processed further to reproduce 2.5D or 3D prints/objects. As
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the selected samples showed some specularity but overall were
diffuse, we used CT and Ward model. Both the models are simple
and easy to implement for the type of samples used in this paper.

Specular and diffuse reflection coefficients along with the
roughness coefficient were optimised for both the models using
the training dataset. The ∆E00 obtained between the test dataset
and the estimated values shows that the error can perhaps be re-
duced further with 1) more careful geometrical and colorimetric
calibration of the measurement setup, 2) using optimised illumi-
nation direction (θL) to train the BRDF models (either increasing
the measurement data of reducing to the minimum possible il-
lumination directions that will be sufficient to train the models).
The histogram plots for the ∆E00 obtained for the complete test
dataset gives an understanding that the data captured using the
image based measurement setup can, 1) be used to train different
BRDF models, 2) estimate the colorimetric output of the mate-
rial for simulation/reproduction purposes. Measurement data ac-
quired from 5 out of the 10 illumination directions (θL) was used
as training data set to train both the models and the remaining
were used to test the performance of the models. The measured
data was divided in half for training and testing purposes. There
was no specific reason to choose measurement data from 5 angles
as training dataset and the remaining as test dataset.

One sample (Cyan) was measured using a TSR at 4 differ-
ent viewing directions for a given incident light direction. Using
the optimised coefficients for the Cyan sample, the CIE Y value
was estimated at the incident and viewing directions used in the
TSR measurements. These estimated CIE Y values were com-
pared with the TSR measurements. Looking at the plots (referring
to Figure 10) we can see that the ∆Y between the measurements
(TSR) and the estimated CIE Y value follow the curvature/slope
but increases for the last measurement at θr = 30◦. This can also
be observed in the ratio between ∆Y and the CIEY value. One
possible reason for this error could be that we have trained the
CT model with measurement data obtained from the image based
setup which uses a point light source to illuminate a curved sam-
ple. So the measurements obtained have varying illumination and
viewing directions for the given pixel points. If we translate the
TSR measurement angles to the image based measurement do-
main, we see that it corresponds to grazing angles in the image
based measurement setup with a very low CIE Y corresponding
value used to train the model. This also corresponds well with
the TSR measurements which has a low CIE Y value at these
angles. Another point to note is that the physical measurements
performed using the TSR are not very accurate with respect to the
incident and viewing direction angles.

Conclusion
Looking at the results obtained, we can conclude that both

the models perform satisfactorily using the measurement data
captured using the image based multi-angle measurement setup.
The CIE Y values estimated using the Ward model performed well
compared to the CT model in terms of the colorimetric difference
∆E00 obtained. The Ward model also estimates the data very well
compared to the TSR measurements.

Future work
As part of the future work it would be important to evalu-

ate the image based measurement setup with gonio-measurements

obtained from a gonio-spectrometer setup or multi-angle instru-
ments, where more precise angular measurements can be per-
formed. It would also be important to evaluate the optimal mea-
surement data (training dataset) that can be used to train the mod-
els. With respect to the image based measurement setup, using
only 1 incident illumination angle (θL) would be ideal to train
different reflection models.
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